二面角的计算方法精讲
求二面角的六种方法

求二面角的六种方法求解二面角是空间几何学中常见的问题,它在多个领域如物理学、化学和工程学中都有广泛的应用。
本文将介绍六种求解二面角的方法,包括向量法、坐标法、三角法、平面几何法、球面几何法和投影法。
一、向量法向量法是一种简便的求解二面角的方法。
它利用向量的夹角来表示二面角。
首先,我们需要确定两个平面的法向量,然后计算它们之间的夹角。
通过向量的点积和模长运算,可以得到二面角的大小。
二、坐标法坐标法是一种常用的求解二面角的方法。
它利用坐标系中的点来表示二面角。
我们可以通过给定的坐标点,计算两个平面的法向量,然后利用向量夹角的公式求解二面角。
三、三角法三角法是一种基于三角函数的求解二面角的方法。
它利用三角函数的性质来计算二面角的大小。
通过已知的边长和角度,可以利用正弦定理、余弦定理等公式求解二面角。
四、平面几何法平面几何法是一种利用平面几何关系求解二面角的方法。
它通过已知的平面形状和角度关系,利用平面几何的知识来求解二面角的大小。
例如,可以利用平行线的性质、垂直线的性质等来计算二面角。
五、球面几何法球面几何法是一种利用球面几何关系求解二面角的方法。
它通过已知的球面形状和角度关系,利用球面几何的知识来求解二面角的大小。
例如,可以利用球面上的弧长、球面上的角度等来计算二面角。
六、投影法投影法是一种利用投影关系求解二面角的方法。
它通过已知的投影长度和角度关系,利用投影几何的知识来求解二面角的大小。
例如,可以利用平面上的投影线段、平面上的角度等来计算二面角。
通过以上六种方法,我们可以灵活地求解二面角的大小。
不同的问题和场景可能适用不同的方法,我们可以根据具体情况选择合适的方法来解决问题。
这些方法在实际应用中具有重要的意义,能够帮助我们更好地理解和解决相关问题。
总结起来,求解二面角的六种方法分别是向量法、坐标法、三角法、平面几何法、球面几何法和投影法。
每种方法都有其特点和适用场景,我们可以根据具体问题选择合适的方法来求解二面角。
二面角四种求法_5个例题解决二面角难题

四法求二面角二面角是高考的热点内容之一,求二面角的大小应先作出它的平面角,下面介绍作二面角的平面角四种方法:定义法、垂面法、三垂线定理法、射影面积法。
(1)定义法——在棱上取点,分别在两面内引两条射线与棱垂直,这两条垂线所成的角的大小就是二面角的平面角。
注:o 点在棱上,用定义法。
(2)垂线法(三垂线定理法)——利用三垂线定理作出平面角,通过解直角三角形求角的大小。
注:o 点在一个半平面上,用三垂线定理法。
(3)垂面法——通过做二面角的棱的垂面,两条交线所成的角即为平面角。
注:点O 在二面角内,用垂面法。
(4)射影面积法——若多边形的面积是S ,它在一个平面上的射影图形面积是S`,则二面角θ的大小为COS θ= S`÷ SA 图3αβO B lO图5β α l C B A例1 如图1-125,PC⊥平面ABC,AB=BC=CA=PC,求二面角B-PA-C的平面角的正切值。
(三垂线定理法)分析由PC⊥平面ABC,知平面ABC⊥平面PAC,从而B在平面PAC上的射影在AC 上,由此可用三垂线定理作出二面角的平面角。
解∵ PC⊥平面ABC∴平面PAC⊥平面ABC,交线为AC作BD⊥AC于D点,据面面垂直性质定理,BD⊥平面PAC,作DE⊥PA于E,连BE,据三垂线定理,则BE⊥PA,从而∠BED是二面角B-PA -C的平面角。
设PC=a,依题意知三角形ABC是边长为a的正三角形,∴ D是∵PC = CA=a,∠PCA=90°,∴∠PAC=45°∴在Rt△DEA评注本题解法使用了三垂线定理来作出二面角的平面角后,再用解三角形的方法来求解。
例2 在60°二面角M-a-N内有一点P,P到平面M、平面N的距离分别为1和2,求点P到直线a的距离。
(图1-126)(垂面法)分析设PA、PB分别为点P到平面M、N的距离,过PA、PB作平面α,分别交M、N于AQ、BQ.同理,有PB⊥a,∵ PA∩PB=P,∴ a⊥面PAQB于Q又 AQ、BQ平面PAQB∴ AQ⊥a,BQ⊥a.∴∠AQB是二面角M-a-N的平面角。
二面角的求法精华版公开课

cos
n, AA1
n • AA1 n • AA1
1 3
二面角C1 EF A为钝角
二面角C1
EF
A的大小为
arc
cos
1 3
1、二面角的定义 2、二面角的平面角的定义 3、二面角的平面角的求解:
①找(或作)出平面角
⑴定义法
⑵棱的垂面法
⑶三垂线定理法 ⑷向量法
②求解
解三角形或用向量的夹角公式
则∠BDE就是此二面角的平面角。
P
∵△ABC为正△,∴ BE=
3a 2
在Rt△PAC中,E为AC中点,
则DE= 2 a
D
4
E
在Rt△DEB中
A
C tan
∠
ቤተ መጻሕፍቲ ባይዱ
BDE=
BE DE
6
B
∴∠ BDE=arctan 6
几点说明:
⑴定义法是选择一个平面内的一点(一般为这个面的一个 顶点)向棱作垂线,再由垂足在另一个面内作棱的垂线。 此法得出的平面角在任意三角形中,所以不好计算,不是 我们首选的方法。
⑵三垂线法是从一个平面内选一点(一般为这个面的一个 顶点)向另一个面作垂线,再由垂足向棱作垂线,连结这 个点和棱上垂足。此法得出的平面角在直角三角形中,计 算简便,所以我们常用此法。
⑶垂面法需在二面角之间找一点向两面作垂线,因为这 一点不好选择,所以此法一般不用。
⑷以上三种方法作平面角都需写出作法、证明、指出平面角。
x y z
yz 2
1, SD
0
0
0,
1 2
,
1
xz n
y 2z
1,
2,1
平面SAB的法向量为AD
求二面角的六种方法

求二面角的六种方法一、引言二面角是几何学中的一个重要概念,它用于描述两个平面的夹角。
求解二面角的方法有多种,本文将介绍六种常用的方法,包括向量法、三角函数法、三边长法、内外法、旋转法和平行四边形法。
对于每种方法,我们将详细介绍其原理和具体步骤,并给出相关的实例来加深理解。
二、向量法向量法是最常用的求解二面角的方法之一,其基本原理是通过两个平面的法向量来计算二面角。
具体步骤如下:2.1 确定两个平面首先,我们需要确定需要求解的两个平面。
平面可以由三个不共线的点或者法向量和过点的方程来确定。
2.2 求解法向量找到两个平面的法向量,分别记作n1⃗⃗⃗⃗ 和n2⃗⃗⃗⃗ 。
2.3 计算二面角的余弦值通过法向量n1⃗⃗⃗⃗ 和n2⃗⃗⃗⃗ 的点积计算二面角的余弦值:cosθ=n1⃗⃗⃗⃗ ⋅n2⃗⃗⃗⃗ ∥n1⃗⃗⃗⃗ ∥∥n2⃗⃗⃗⃗ ∥2.4 计算二面角通过余弦值反函数(如反余弦函数)计算二面角的值:θ=arccos(cosθ)三、三角函数法三角函数法是另一种常用的求解二面角的方法,主要基于三角函数的关系来计算二面角。
具体步骤如下:3.1 确定两个平面同样,我们首先需要确定需要求解的两个平面。
3.2 求解法向量和对应边长求解两个平面的法向量n 1⃗⃗⃗⃗ 和n 2⃗⃗⃗⃗ ,以及两个平面上的边长。
3.3 计算三角函数的值根据边长和法向量的乘积,分别计算sinα=∥n 1⃗⃗⃗⃗⃗ ×n 2⃗⃗⃗⃗⃗ ∥∥n 1⃗⃗⃗⃗⃗ ∥∥n 2⃗⃗⃗⃗⃗ ∥和cosα=n1⃗⃗⃗⃗⃗ ⋅n 2⃗⃗⃗⃗⃗ ∥n 1⃗⃗⃗⃗⃗ ∥∥n 2⃗⃗⃗⃗⃗ ∥,其中α为两个边向量构成的夹角。
3.4 计算二面角通过三角函数的反函数(如反正弦函数、反余弦函数)计算夹角α的值,即得到二面角的值。
四、三边长法三边长法是一种适用于三角形的方法,其原理是利用给定的三边长计算三角形的角度,进而求得二面角。
具体步骤如下:4.1 确定三个边长根据具体情况,确定三个边长a 、b 和c 。
二面角的多种求法

二面角的多种求法1.概念法例1:如图所示,在四面体ABCD 中,1AC AB ==,2CD BD ==,3AD =。
求二面角A BC D --的大小。
分析:四面体ABCD 的各个棱长都已经给出来了,这是一个典型的根据长度求角度的问题。
解:设线段BC 的中点是E ,接AE 和DE 。
根据已知的条件1AC AB ==,2CD BD ==,可以知道AE BC ⊥且DE BC ⊥。
又BC 是平面ABC 和平面DBC 的交线。
根据定义,可以得出:AED ∠即为二面角A BC D --的平面角。
可以求出32AE =,3DE =3AD =。
根据余弦定理知:22222233)372cos 243232AE DE ADAED AE DE+-+-∠==-⨯⨯⨯即二面角A BC D --的大小为7arccos4π-。
例2:如图所示,ABCD 是正方形,PB ABCD ⊥平面,1PB AB ==,求二面角A PD C --的大小。
解:作辅助线CE PD ⊥于点E ,连接AC 、AE 。
由于AD CD =,PA PC =,所以PAD PCD ≅三角形三角形。
即AE PD ⊥。
由于CE PD ⊥,所以AEC ∠即为所求的二面角的大小。
通过计算可以得到:2PC =3PD =,又1CD =,在三角形PCD 中可以计算得到63CE =。
由此可以得到:63AE CE ==,又2AC =。
由余弦定理:222222133cos 22223AE CE AC AEC AE AC +-+-∠===-⋅⋅即:23AEC π∠=。
2.空间变换法空间变换法指的是基本的空间方法,包括三垂线法、补角法、垂面法、切平面法等方法。
下面用例3介绍三垂线法、补角法和垂面法。
例3:如图所示,现有平面α和平面β,它们的交线是直线DE ,点F 在平面α内,点C 在平面β内。
求二面角F DE C --的大小。
分析:过点C 作辅助线CA 垂直于DE ,作CB 垂直于平面β于点B 。
二面角公式

高中数学二面角公式是:θ=π-α。
二面角一般都是在两个平面的相交线上,取恰当的点,经常是端点和中点。
过这个点分别在两平面做相交线的垂线,然后把两条垂线放到一个三角形中考虑。
有时也经常做两条垂线的平行线,使他们在一个更理想的三角形中。
由公式S射影=S斜面cosθ,作出二面角的平面角直接求出。
运用这一方法的关键是从图中找出斜面多边形和它在有关
平面上的射影,而且它们的面积容易求得。
也可以用解析几何的办法,把两平面的法向量n1,n2的坐标求出来。
然后根据n1·n2=|n1||n2|cosα,θ=α为两平面的夹角。
这里需要注意的是如果两个法向量都是垂直平面,指向两平面内,所求两平面的夹角θ=π-α。
二面角的通常求法:
1、由定义作出二面角的平面角;
2、作二面角棱的垂面,则垂面与二面角两个面的交线所成的角就是二面角的平面角;
3、利用三垂线定理(逆定理)作出二面角的平面角;
4、空间坐标求二面角的大小。
二面角8种求法

平面角定义法例题2:已知正方体 ABCD-ABCD 中,E 、 所成的二面角二面角求法正方体是研究立体几何概念的一个重要模型,中学立体几何教学中,求平面与平面所成的二 面角是转化为平面角来度量的,也可采用一些特殊的方法求二面角,而正方体也是探讨求二面角 大小方法的典型几何体。
笔者通过探求正方体中有关二面角, 分析求二面角大小的八种方法:(1) 平面角定义法;(2)三垂线定理法;(3)线面垂直法;(4)判定垂面法;(5)异面直线上两点间 距离公式法;(6)平行移动法;(7)投影面积法;(8)棱锥体积法。
此法是根据二面角的平面角定义,直接寻求二面角的大小。
以所求二面角棱上任意一点为端点,在二面角两个平面内 分别作垂直于棱的两条射线所成角就是二面角的平面角, 如图二面角a -l- B 中,在棱I 上取一点O,分别在a 、B 两个平面内作AC L I ,BOLI ,/ AOB 即是所求二面角的平面角例题1:已知正方体ABCD-AB i CD 中,C O 是上下底面正方形的中心,求二面角 O-BC-O 的大小。
C iC利用三垂线定理法此方法是如图二面角a -l- B 中,在平面a 内取一点A, 过A 作AB 丄平面B ,B 是垂足,由B (或A )作B0(或AO 丄l ,连接A0(或B0即得A0是平面B 的斜线,B0是 A0在平面B 中的射影,根据三垂线定理(或逆定理)即得 A0LI , B0LI , 即/ A0B 是 a -I- B 的平面角。
例题3 :已知正方体 ABCD-A i C l D 中,求二面角 B-AC-B 的大小。
线面垂直法例题4:已知正方体ABCD-ABiGD 中,求平面 ACD 与平面BDC 所成的二面角。
此法利用直线垂直平面即该直线垂直平面内任何直线的性质来寻求二面角的平面角。
方法是 过所求二面角的棱上一点,作棱的垂面,与两个平面相交所得两条交线的所成角即是二面角的平 面角。
如图在二面角a -I- B 的棱上任取一点0过0作平面丫丄I , a G 丫 =A0 B G Y =B0得/ A0B 是平面角, v I 丄丫,I 丄 A0I 丄 B0•••/ A0B是二面角的平面角。
高中数学求二面角技巧

高中数学求二面角技巧
高中数学中,求解二面角是一项重要的技巧。
二面角是指两个平面相交而形成的角度,常常出现在几何题目中。
以下是一些求解二面角的技巧:
1. 使用向量法求解二面角
向量法是求解二面角的常用方法。
假设有两个平面AB和CD,且它们相交于一条直线EF。
设向量AB=n,向量CD=m,向量EF=a,则二面角θ的余弦值为:
cosθ=(n·m)/( |n|·|m| )
其中,n·m表示n和m的数量积,|n|和|m|表示向量n和向量m 的模长。
2. 利用三角函数求解二面角
如果已知二面角的两个面的斜率,可以使用三角函数求解二面角。
设两个平面的斜率分别为k1和k2,则二面角的正切值为:
tanθ=(k1-k2)/(1+k1k2)
可以使用反正切函数求解出二面角的值。
3. 利用平面几何知识求解二面角
通过平面几何知识,可以求解出两个平面的交线与一个球面的交线,从而求解二面角。
设两个平面在点O处相交,交线为AB和CD,球心为O,球面与交线AB和CD的交点分别为P和Q,则二面角θ等
于∠POQ。
以上是求解二面角的一些常用技巧,希望对高中数学学习有所帮
助。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图1二面角的计算方法精讲二面角是高中数学的主要内容之一,是每年高考数学的一个必考内容,本文主要通过一些典型的例子说明二面角的三种基本计算方法,供同学们学习参考。
一 、直接法:即先作出二面角的平面角,再利用解三角形知识求解之。
通常作二面角的平面角的途径有:⑴定义法:在二面角的棱上取一个特殊点,由此点出发在二面角的两个面内分别作棱的垂线;⑵三垂线法:如图1,C 是二面角βα--AB 的面β内的一个点,CO ⊥平面α于O ,只需作OD ⊥AB 于D ,连接CD ,用三垂线定理可证明∠CDO 就是 所求二面角的平面角。
⑶垂面法:即在二面角的棱上取一点,过此点作平面γ,使γ垂直于二面角的棱,则γ 与二面角的两个面的交线所成的角就是该二面角的平面角。
例1 如图2,在四棱锥V-ABCD 中,底面ABCD 是正方形,侧面V AD 是正三角形, 平面V AD ⊥底面ABCD . (1)证明AB ⊥平面V AD ;(2)求面V AD 与面VDB 所成的二面角的大小. 解:(1)证明:VAD ABCDAB AD AB VADAB ABCD AD VAD ABCD ⊥⎫⎪⊥⎪⇒⊥⎬⊂⎪⎪=⎭平面平面平面平面平面平面 (2)解:取VD 的中点E ,连结AF ,BE , ∵△V AD 是正三形,四边形ABCD 为正方形,∴由勾股定理可知, 2222BD AB AD AB VA VB,=+=+=∴AE ⊥VD ,BE ⊥VD ,∴∠AEB 就是所求二面角的平面角. 又在Rt △ABE 中,∠BAE=90°,AE=3AD=3AB ,因此,tan ∠AEB=.332=AE AB 即得所求二面角的大小为.332arctan例2 如图3,AB ⊥平面BCD ,DC ⊥CB ,AD 与平面BCD 成30°的角,且AB=BC.(1)求AD 与平面ABC 所成的角的大小; (2)求二面角C-AD-B 的大小;(3)若AB=2,求点B 到平面ACD 的距离。
解:(1) ∵AB ⊥平面BCD ,∴∠ADB 就是AD 与平面BCD 所成的角,即∠ADB=300,且CD ⊥AB , 又∵DC ⊥BC ,ABBC B =,∴ CD ⊥平面ABC ,∴ AD 与平面ABC 所成的角为∠DAC ,设AB=BC=a,则AC=a 2, BD=acot300=a 3,AD=2a, a BC BD CD 222=-=, ∴ tan ∠DAC=122==a a CD AC , ∴ 045=∠DAC ,即,AD 与平面ABC 所成的角为450. (2)作CE ⊥BD 于E ,取AD 的中点F ,连CF , ∵ AB ⊥面BCD ,ABD AB ⊂面, ∴ 面ABD ⊥面BCD , 又∵ 面ABD面BCD=BD ,BCD CE ⊂面,CE ⊥BD ,∴ CE ⊥面ABD ,又∵AC=BC=a 2,AF=FD ,∴AD ⊥EF ,有三垂线定理的逆定理可知,∠CFE 就是所求二面角的平面角.计算可知, 6BC CD CE a BD ⋅==,222AD AC CD a,=+=12CF AD a ==,∴ 63CE sin CFE CF ∠==,∴∠CFE=arcsin 63. 故,所求的二面角为arcsin6例3如图4,P 是边长为1的正六边形ABCDEF 所在平面外一点,1PA =,P 在平面ABC 内的射影为BF 的中点O.(1)证明PA ⊥BF ;(2)求面APB 与面DPB 所成二面角的大小。
解:(1)在正六边形ABCDEF 中,ABF ∆为等腰三角形,∵ P 在平面ABC 内的射影为O , ∴ PO ⊥平面A BF ,∴ AO 为PA 在平面ABF 内的射影; 又∵ O 为BF 中点,ABF ∆为等腰三角形, ∴ AO ⊥BF ,∴ 有三垂线定理可知,PA ⊥BF.(2)∵O 为BF 中点,ABCDEF 是正六边形 ,∴ A 、O 、D 共线,且直线AD ⊥BF , ∵ PO ⊥平面A BF ,ABF BF ⊂面,∴ 由三垂线定理可知, AD ⊥PB,过O 在平面PBF 内作OH ⊥PB 于H ,连AH 、DH , 则 PB ⊥平面A HD,所以AHD ∠为所求二面角平面角。
又∵正六边形ABCDEF 的边长为1,∴12AO =,32DO =,32BO =。
1212AHO tan ,21221AO OH AHO OH∆=∠===在中,,, 3212DHO tan 21DODHO OH ∆∠===在中,; 72116212221tan tan().72112221AHD AHO DHO +∠=∠+∠==--⨯从而,故,所求的二面角为1621-arctan9.π如图5,二面角l αβ--为锐二面角, △ABC 在半 平面α内, △ABC 在平面β内的射影为△A 1B 1C 1,那么二面角l αβ--的大小111 cos A B C ABCS S θθ∆∆=应满足.例4 如图6,矩形ABCD 中,AB=6,BC=32,沿对角线BD 将ABC ∆折起,使点A 移至点P,且P 在平面BCD 内的射影为O,且O 在DC 上. (1)求证:PD ⊥PC ;(2)求二面角P-DB-C 的平面角的余弦值;(3)求CD 与平面PBD 所成的角的正弦值.解: (1)证明: ∵ PC 在面BCD 内的射影为OC, 且OC ⊥BC ,∴由三垂线定理可知,BC ⊥PC ,又∵PB=6,BC=32, ∴PC=,62而PD=32,DC=6∴ =+22PC PD 36=DC 2,∴ PD ⊥PC.(2)PBD 1OBD S 623632PBD ∆∆∆=⨯⨯=在面BCD 内的射影为,且,OC 322136S S S BOC CBD OBD ⨯⨯-=-=∆∆∆. 设OC=x,则OD=6-x , ∵ 2222BD DO BC CO ,-=-∴ ()2261224x x --=- , ∴.4=x∴,323436=-=∆BOD S设二面角P-DB-C 的大小为θ,则.313632cos ==θ 1arccos .3故,所求二面角为I 、先用传统方法作出二面角的平面角,再利用向量的夹角公式进行计算。
例5 如图7,直二面角D-AB-E 中,四边形ABCD 是边长为2的正方形,AE =EB ,F 为CE 上的点,且BF ⊥平面ACE . (1)求证:AE ⊥平面BCE ; (2)求二面角B-AC-E 的大小; (3)求点D 到平面ACE 的距离。
解:(1)∵ 二面角D-AB-E 为直二面角,AB 为棱,CB ⊥AB ,∴ CB ⊥平面EAB ,进而可得,CB ⊥AE , 又∵ BF ⊥平面ACE ,∴ AE ⊥BF ,而BC BCE, BF BCE, BC BF=F,⊂⊂平面平面且∴AE ⊥平面BCE.(2)连结BD 交AC 于点O ,连结OF ,由于ABCD 为正方形,所以OB ⊥AC , 又因为BF ⊥平面ACE ,由三垂线定理的逆定理可知,OF ⊥AC , ∴ ∠BOF 就是所求二面角的平面角.在平面ABE 内作Ax ⊥AB,以A 为原点,分别以Ax 、AB 、AD 为x 轴、y 轴、z 轴,建立 如图7的空间直角坐标系,易知△AEB 为等腰直角三角形,所以,A ( 0, 0, 0), O ( 0, 1 , 1), B(0, 2, 0), C(0 , 2, 2 ) , E( 1 ,1 ,0 ),设F (m, n, t ),∵ C 、E 、F 三点共线, ∴ ()()CF=CE, -2 t-2112m,n ,,,,λλ=--即∴ 2 t 22 2 22m ,n ,,λλλλλλ==-=---即点F 坐标为(, ,), 又∵ BF ⊥AC ,∴()()λ -λ-λ0,2,2=0,⋅⋅BFAC=0,即,,22 ∴ 23,λ⎛⎫=⎪⎝⎭242故,点F的坐标为,,,333 ∴ ()211011333OF ,,,OB ,,.⎛⎫=-=-⎪⎝⎭∴ 3OF OB cos BOF .OF OB⋅∠==故,所求的二面角为arccos 3II 、直接求出平面αβ和的法向量12n n 、,利用向量的夹角公式求12n n 、的夹角,再根据法向量12n n 、分别相对于二面角l αβ--的方向确定出二面角l αβ--的大小。
一般地,当法向量12n n 、都是从二面角l αβ--的内部向外部(或外部向内部)穿行时,二面角l αβ--的大小就是12n n 、的夹角的补角;当法向量12n n 、一个从二面角l αβ--的内部向外部穿行,另一个从二面角l αβ--的外部向内部穿行时,二面角l αβ--的大小就是12n n 、的夹角。
例6 (2006年四川卷)如图8,在长方体1111ABCD A B C D -中,,E P 分别是11,BC A D 的中点,,M N 分别是1,AE CD 的中点,1,2AD AA a AB a === (Ⅰ)求证://MN 面11ADD A ; (Ⅱ)求二面角P AE D --的大小。
(Ⅲ)求三棱锥P DEN -的体积。
解:以D 为原点,1,,DA DC DD 所在直线分别为x 轴,y 轴,z 轴,建立直角坐标系,则()()()()()11,0,0,,2,0,0,2,0,,0,,0,0,A a B a a C a A a a D a ∵,,,E P M N 分别是111,,,BC A D AE CD 的中点∴3,2,0,,0,,,,0,0,,,2242a a a a E a P a M a N a ⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭(1)3,0,42a MN a ⎛⎫=-⎪⎝⎭取()0,1,0n =,显然n ⊥面11ADD A又0MN n ⋅=,∴MN n ⊥而MN⊄面11ADD A ∴//MN 面11ADD A(2)显然,()10,0,1m =是平面ABCD 的一个法向量;设()2,,m x y z =是平面PAE的一个法向量,则2200.m AE m AP ⋅=⋅=且而,0,,,2,0.22a a AP a AE a ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭∴ 0,220.2ax az a x ay ⎧-⋅+=⎪⎪⎨⎪-⋅+=⎪⎩ ∴ 可取212,,1,2m ⎛⎫= ⎪⎝⎭∴121212cos ,,2121m m m m m m ⋅===又法向量()10,0,1m =是从二面角P AE D --的外部向内部穿行的,法向量212,,1,2m ⎛⎫= ⎪⎝⎭是从二面角P AE D --的内部向外部穿行的 .故,所求二面角为arccos21(3)设()1111,,n x y z =为平面DEN 的法向量,则11,n DE n DN ⊥⊥又,2,0,0,,,,0,222a a a DE a DN a DP a ⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∴1111202202ax ay a y z ⎧+=⎪⎪⎨⎪+=⎪⎩ 即 111142x y z y =-⎧⎨=-⎩ ∴可取()14,1,2n =-∴P 点到平面DEN 的距离为11216DP na d n ⋅==∵cos ,85DE DN DE DN DE DN ⋅==⋅21sin ,DE DN = ∴2121sin ,28DEN S DEDN DE DN a ∆=⋅⋅= ∴32113386P DEN DEN a V S d a -∆=⋅=⨯⨯=。