统计(平均数)
统计2.3.1平均数及其估计

怎样利用这些数据对重 力加速度进行估计 ?
问 题 思 考
a 我们常用算术平均数 ∑ai (其中 i (i = , ,, n)为n n i= ) " " , 个实验数据 作重力加速度的最理想 的近似值它 ? 的依据是什么呢
n
n 个实数 a , a , a , , an的和简记为∑ ai , " ∑ "
× + × + × + × + × .
一般地 , 若取值为 x , x , , xn 的频率为 p , p , , pn 则其平均数为 x p + x p + + xn pn .
练习1 练习 例
. 表(单位: h), 试估计该校学生的日平 均睡眠时间
时间的抽样频率分布 下面是某校学生日睡眠
例 某校高一 1 级的 甲、 乙两 个班级(均为 人)的语文成绩如 50
分析 我们可用一组数据的平均数衡量这组数据的集中水 平 因此 分别求出甲、乙两个班级的平均分即可. , , 解 用计算器分别求出甲班的平均分为 . ,乙班的平均 分为 . , 故这次考试乙班成绩要好于甲班.
, 思考 某工厂有经理 人,另有 名管理人员 名高 , 级 技工 名工人和 名学徒.现在需要增加一名新 . , , 工人小张前来应聘经理说:" 我公司报酬不错 平均 工资 元."小张工作几天后找到经 理说:" 你欺骗 , , 过 了我 我问过其他工人 没有一个工人的月工资超 元.平均工资 平均工资就是 元."
提出问题
, 根据第 . 节开头的数据还可以求出北京 地区近年来 月 日至 月 日的日最高气 温的样本平均值为 . . 高气温平均值的估计 , 我们可将其作为 北京地区近年来 月 日至 月 日的日最
平均数的计算

平均数的计算在统计学中,平均数是最常用的一种统计指标,用于衡量一组数据的集中趋势。
平均数可以帮助我们了解数据的总体特征,以便作出合理的分析和判断。
本文将介绍平均数的计算方法及其在实际应用中的意义。
1. 简介平均数是指一组数据中所有数值的总和除以数据的个数。
它可以用来代表这组数据的典型值,即表示整体特征的集中趋势。
平均数可以分为算术平均数、几何平均数和加权平均数等。
2. 算术平均数算术平均数是最基本的平均数计算方法,它的计算公式为:平均数= 总和 / 数据个数。
我们将一组数据中的每个数值相加,并除以数据的个数,即可得到算术平均数。
例如,有一组数据:4,6,8,10,12,14,则它们的算术平均数为:(4 + 6 + 8 + 10 + 12 + 14) / 6 = 54 / 6 = 93. 几何平均数几何平均数适用于一组具有乘法关系的数据,它可以用来计算这组数据的平均增长率或平均减少率。
几何平均数的计算公式为:平均数 = 根号下(数据1 ×数据2 × ... ×数据n)。
例如,有一组数据:2,4,8,16,32,则它们的几何平均数为:平均数 = 根号下(2 × 4 × 8 × 16 × 32) = 根号下(32768) = 324. 加权平均数加权平均数是考虑了数据的权重因素的一种平均数计算方法。
在计算加权平均数时,需要为每个数据指定一个权重值,并将每个数据与其对应的权重值相乘,然后再将乘积相加,最后除以权重值的总和。
加权平均数的计算公式为:平均数 = (数据1 ×权重1 + 数据2 ×权重2 + ... + 数据n ×权重n) / (权重1 + 权重2 + ... + 权重n)。
例如,有一组数据:3,4,5,6,7,其对应的权重分别为:2,3,4,1,2,则它们的加权平均数为:(3 × 2 + 4 × 3 + 5 × 4 + 6 × 1 + 7 × 2) / (2 + 3 + 4 + 1 + 2) = 55 / 12 ≈4.585. 平均数的应用平均数广泛应用于各个领域,例如经济学、社会学和自然科学等。
统计(平均数)

统计(平均数)【教学内容】苏教版三年级下册第92-94页。
【教学目标】1.在丰富的具体问题情境中,感受求平均数是解决一些实际问题的需要,通过操作和思考体会平均数的意义,学会计算简单数据的平均数。
2.运用平均数的知识解释简单生活现象、解决简单实际问题,进一步积累分析和处理数据的方法,发展统计观念。
3.进一步发展学生的思维能力,增强与同伴交流的意识与能力,体验运用知识解决问题的乐趣,建立学好数学的信心。
【教学准备】教师:课件,板书条(一般水平,移多补少,先求和再平分),奖状学生:⑴男、女生统计图每组1套;⑵练习纸(写算式);⑶学生分组,4人一组,选好组长。
【课前谈话】以“一般水平”为话题。
【教学预设】一、引入孩子们,你们玩过套圈游戏吗?瞧,(画面)三1班的小朋友们正在进行套圈比赛呢!(声音):每个小组的男、女生进行套圈比赛,每人套15个圈。
二、探究1.特殊数据的数据代表想知道他们的比赛结果吗?我们先来看看第一组的比赛情况。
画面:把每个人套中的个数记录下来,然后制成了这样的统计图。
左边是男生成绩统计图,右边是女生成绩统计图。
从统计图中,你知道每个男生和女生的成绩了吗?谁来说说?(根据学生回答在条形上面出示数据)咦,同学们,如果你就是裁判,你会认为是男生套得准一些还是女生套得准一些?(画面出示问句)我想,每个同学一定会有自己的判断标准,为了不受别人的影响,我们能不能这样:自己先认真地想一想,然后等老师说”请判断”,我们就一起同时直接报出:“男生准”或“女生准”,行吗?准备好了吗?请判断!.(老师听到两种声音了,请认为女生套得准的先来说说理由吧。
认为女生准的同学都是这样想的吗?认为男生准的呢?对于他们的想法,你们又有什么话说?那你们是怎么想的呢?)(意见这么整齐?能说说你们的理由吗?)你们的意思是说,如果用一个数来代表男生套圈的一般水平的话用几比较合适呢?女生呢?6>5,所以你们认为是------。
掌握统计学中的平均数与中位数计算

掌握统计学中的平均数与中位数计算平均数与中位数在统计学中的计算方法统计学是一门应用数学学科,旨在通过收集、整理、分析和解释数据来描述和理解现象。
平均数和中位数是统计学中常用的两种描述数据集中趋势的计算方法。
本文将介绍平均数和中位数的含义以及计算方法,并提供一些实际应用案例。
一、平均数的计算方法平均数是一组数据的总和除以数据的个数。
它是最常用的描述数据集中趋势的指标,常用符号是x。
计算平均数的公式如下:x = (x₁ + x₂ + ... + xn) / n其中,x₁、x₂、...、xn为一组数据的各个数值,n为数据的个数。
例子1:假设有一组数据,分别是5、8、10、12、15,求平均数。
x = (5 + 8 + 10 + 12 + 15) / 5 = 10例子2:在某个地区调查了7个人的年龄,分别是22、25、28、30、33、35、40岁,求平均年龄。
x = (22 + 25 + 28 + 30 + 33 + 35 + 40) / 7 = 30二、中位数的计算方法中位数是一组数据中处于中间位置的数值。
如果数据的个数为奇数,中位数就是排序后位于中间位置的数值;如果数据的个数为偶数,中位数就是排序后中间两个数的平均值。
计算中位数的方法如下:步骤1:将一组数据按从小到大的顺序进行排序;步骤2:根据数据个数的奇偶性确定中位数的位置;步骤3:计算中位数的值。
例子1:假设有一组数据,分别是5、8、10、12、15,求中位数。
排序后的数据为5、8、10、12、15,由于数据个数为奇数,中位数就是排序后位于中间位置的数值。
中位数 = 10例子2:在某个地区调查了7个人的年龄,分别是22、25、28、30、33、35、40岁,求中位数。
排序后的数据为22、25、28、30、33、35、40,由于数据个数为奇数,中位数就是排序后位于中间位置的数值。
中位数 = 30三、平均数与中位数的对比与应用平均数和中位数是描述数据集中趋势的两种常见方法,它们各有优劣并在不同情况下具有不同的应用。
正确计算统计平均数

正确计算统计平均数历年真题及答案加扣扣2325314298平均数是社会经济统计的基本指标与基本方法,在社会经济统计学中占有十分重要的作用,国外一位统计学家曾称:统计学是一门平均数的科学。
因此,正确理解、计算、运用统计平均数,是学习社会经济统计的基本要求,也是学好后续统计方法特别是统计指数、统计评价、序时平均数等统计方法的关键。
统计平均数的计算方法按其资料的时间属性不同,分为静态平均与动态平均,前者属于截面数据的平均,即为一般平均数,后者为时间数列的平均,也称序时平均。
序时平均是静态平均方法的具体应用。
统计平均数的计算方法按其体现原始数据的充分性不同,主要可分为数值平均与位置平均,前者包括算术平均、调和平均、几何平均、平方平均,它们均有简单式与加权式之分,实践中较常用的是算术平均、调和平均与几何平均。
后者则指中位数与众数。
这些平均方法与公式具有不同的应用场合或应用条件,实践中必须正确选择。
但我们在多年的教学实践中发现,许多初学者往往无法正确区分这些不同平均方法的应用条件,特别是算术平均、几何平均、调和平均的应用条件,从而出现乱套公式的情况。
本文拟通过案例分析,与同学们谈谈如何正确计算算术平均数、调和平均数与几何平均数。
[例1]某企业报告期三个车间的职工人均日产量分别为:50件、65件、70件,车间日总产量分别为800件、650件、1050件。
要求:计算三个车间的职工每人平均日产量。
[解题过程]三个车间的职工每人平均日产量=Σm/Σ(m/x)=(800+650+1050)/(800/50+650/65+1050/70)=2500/41=60.98(件/人)[解题说明]本题从公式形式上看,是加权调和平均数。
从内容上看,属于“统计平均数的平均数计算”,但初学者常常容易犯的错误是乱套公式。
最常见的错误是:选择算术平均数公式计算,即以三个车间的日总产量为权数,对三个车间的劳动效率进行算术平均:(50×800+65×650+70×1050)/(800+650+1050)=155750/2500=62.3另一类错误是采用简单平均公式计算平均产量,即(50+65+75)/3=63.33。
从统计学角度分析平均数的概念

平均数平均数,在统计上指的的是平均指标,用来反映同类社会经济现象在一定时间、地点条件下,总体各单位数量差异抽象化的代表性指标,是反映总体单位数量特征的一般水平的综合指标。
如平均工资、平均收入、平均成本、平均价格等。
平均指标能够反映总体部的一般分布特征,这种特征表现为:一般距离其平均数远的标志值比较少,而距离其平均值近的或接近其平均值的标志值比较多,所以,平均指标反映了总体分布的集中趋势或一般水平。
或者简单地说,平均数就是用来反映总体现象的集中趋势或者一般水平的一种指标.。
平均数是集中量数的代表,也是最常用的一种描述统计指标,它反映了数据的代表性,也即可以通过平均数对数据的集中性或代表性有一个直观的了解。
其次,平均数也是常用的一种统计量,许多推断统计方法都是基于平均数进行的。
目前大多数统计方法中,平均数都占有最重要的位置,无论是要掌握某个总体的状况,还是要比较不同总体的差异等,都涉及到平均数。
平均数在统计分析及统计研究中应用十分广泛。
具体来讲,表现在几个方面:(一)运用平均数可以科学地对两个总体的水平进行对比。
比如我国的GDP 总量在2010年已经超过日本,跃居全世界第二。
如果单以GDP总量来对比,说我国的经济水平超过日本,是不科学的,因为这样的对比不具有可比性,两个国家的规模是不一样,在进行对比时,用人均GDP来进行对比就消除了规模的大小对水平的影响。
(二)运用平均数可以反映现象总体的发展变化趋势,比如利用历年我国职工年平均工资,可以说明职工年平均工资的变动趋势等。
(三)利用平均数用来分析现象之间的依存关系。
比如将耕地按施肥量分组,计算单位面积产量,可以分析施肥量与单位面积产量之间的依存关系。
(四)平均指标是统计推断的基础。
例如,在农业产品产量的抽样调查中,利用样本的平均亩产量,推断全部播种面积总产量,利用部分居民的年平均收入推断全部居民的总收入等。
’平均数又称为统计指标,是统计学中的一部分,定义为反映现象总体各单位某一数量标志值的典型水平、一般水平和代表性水平。
从统计学角度分析平均数的概念

计算公式为: Xh=
,调和平均数与算术平均数的原
理相同。
(2)加权调和平均数是各个标志值倒数的加权算术平均数的倒数,其计算公式
为: =
,m 为总体各组标志总量。
调和平均数与算术平均数在计算上是相通的,但各自适合不同的资料。
3、几何平均数
几何平均数是 n 个单位的标志值的连乘积的 n 次方根.它是一种具有特殊用
途的平均数,适用于计算标志值的连乘积等于总比率或总速度的现象的平均比率
或平均速度.计算形式有简单几何平均数和加权几何平均数。适用于资料偏态分
布,少数数据过分偏大,(各观察值间呈等比关系 ),原始数据进行对数变换后
权数比重。权数比重是指作为权数的各组单位数占总体单位数的比重。分为绝对
权数和相对权数两种,绝对权数表现为次数、频数、单位数;即公式 x =
/ 中的 ;相对权数表现为频率、比重;即公式 x =
/=
中的 / 。在计算加权算术平均数时,还会遇到权数的选择问题。选择权数的
原则是,务必使各组的标志值与其组数乘积等于各组的标志总量,并且具有实际
态平均数是反映不同时间而同一空间围总体某一数量标志一般水平的平均指标。
算数平均数
数值平均数 调和平均数
几何平均数
静态平均数
中位数
平均数
位置平均数
众数
动态平均数:平均发展水平
一、数值平均数
1、算数平均数
页脚.
算数平均数是总体标志总量与总体单位总量对比的结果。算数平均数是分析 社会经济现象一般水平和典型特征的最基本、最常用的一种平均指标。它也是平 均指标中最重要的一种。由于依据的资料不同,计算方法有所不同,可分为简单 算术平均数和加权算术平均数。 基本公式: 算数平均数 = 总体标志总量/总体单位总量 (1)简单算术平均数
平均数的三种计算方法

平均数的三种计算方法
平均数是一种常用的统计指标,用于表示一组数据的集中趋势。
在计算平均数时,有三种常用的方法:算术平均数、加权平均数和几何平均数。
首先是算术平均数,也称为简单平均数。
它是通过将一组数据中的所有数值相加,然后除以数据的个数来计算得出的。
算术平均数适用于各个数据的重要性相同或没有明显的差异的情况。
例如,计算一组学生的平均年龄时,每个学生的年龄都被视为同等重要,可以使用算术平均数。
其次是加权平均数。
与算术平均数不同,加权平均数考虑了每个数据的权重,即对不同数据赋予不同的重要性。
在计算加权平均数时,需要给每个数据设置一个权重,然后将每个数据与其对应的权重相乘,再将乘积相加,最后除以权重的总和。
加权平均数适用于不同数据在整体中的重要性有所不同的情况。
例如,在计算一组学生的综合评分时,不同科目的成绩可能有不同的权重,可以使用加权平均数来反映这种权重分配。
最后是几何平均数。
几何平均数是指一组正数的乘积的N次根,其中N为数据的个数。
与算术平均数和加权平均数不同,几何平均数更适用于涉及比例和比率的计算。
例如,在计算一组连续年度的增长率时,
可以使用几何平均数来反映增长的整体趋势。
综上所述,算术平均数、加权平均数和几何平均数是计算平均数常用的三种方法。
根据数据的特点和应用场景的不同,可以选择合适的平均数计算方法来更准确地描述数据的集中趋势。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平均数
教学内容:苏教版课程标准实验教科书三年级(下册)第92~94页。
教学目标:
1.使学生在具体的情境中认识平均数,理解平均数的含义,了解平均数的特点和作用,会计算简单数据的平均数(结果是整数)。
2.使学生能运用平均数的知识解释简单的生活现象和解决简单的实际问题,进一步积累分析和处理数据的方法,发展统计观念。
3.使学生进一步体会数学与生活的密切联系,体验运用数学知识解决问题的乐趣,培养学生善于观察、勤于思考、勇于探索的良好学习习惯。
教学过程:
一、情景导入
创设情景:三年级一班各小组的男、女生进行套圈比赛,每人套15个圈。
下面的统计图表示他们每人套中的个数。
1.出示第一小组套圈成绩统计图:提问:从图上你看到了什么?
男生3人,每人都套中4个;女生3人,每人都套中6个。
提问:男生套得准一些还是女生套得准一些?你是怎么比的?
方法一:男生每人套中的个数同样多,女生每人套中的个数也同样多,只要比一个男生的和一个女生套中的个数。
方法二:男、女生人数相等,也可以比男、女生套中的总数。
2.出示第二小组套圈成绩统计图:男生3人,每人都套中6个;女生4人,每人都套中5个。
提问:男生套得准一些还是女生套得准一些?现在你又是怎么比的?(男生每人套中的个数同样多,女生每人套中的个数也同样多,还是比一个男生的和一个女生套中的个数。
)追问:为什么不比男、女生套中的总数?(因为男、女生人数不相等,比总数不公平。
)3.出示第三组套圈成绩统计图:男生3人,分别套中7、9、5个;女生4人,分别套中10、4、7、3个。
提问:这一组是男生套得准一些还是女生套得准一些?你会比吗?(男、女人数不相等,比总数不公平;男、女生每人套中的个数不相同,比一个人的个数也不好比。
必须另外想办法。
由此引出平均数,揭示课题。
)
二、学习新知
1.出示第三组男生的套圈成绩统计图。
(1)你会把男生每人套中个数“匀一匀”,使每个数变得同样多吗?
根据学生回答,在原图旁复制一张统计图,演示“移多补少”的过程。
说明:像这样,从多的里面移一些补给少的,使每个数变得一样多,这一过程我们叫它“移多补少”(板书)。
(2)看图说一说:男生平均每人套中了几个?
(3)追问:这里的“7”是指每个男生真的都套中了7个吗?
通过讨论,使学生明确:这里的“7”并不是指每个男生真的都套中了7个,它是把男生每人套中的个数进行“移多补少”处理后得到的结果,它表示的是这一组男生套圈成绩的整体水平。
2.观察第三组女生的套圈成绩统计图。
(1)把女生每人套中的个数也来“匀一匀”。
让学生观察图中数据,口述“移多补少”的过程。
教师课件演示。
(2)看图说一说:女生平均每人套中了几个?
(3)追问:这里的“6”是指每个女生真的都套中了6个吗?
通过讨论,使学生进一步明确:这里的“6”也不是指每个女生真的都套中了6个,它是把女生每人套中的个数进行“移多补少”处理后得到的结果,它表示的是这一组女生套圈成绩的整体水平。
3.同时出示男、女生套圈成绩的统计图。
(1)启发:刚才我们用“移多补少”的方法分别求出了男、女生套圈成绩的平均数,想一想,还有没有别的方法也能求出他们的平均数?
根据学生回答,板书算式:
7+9+5=21(个) 10+4+7+3=24(个)
21÷3=7(个)24÷4=6(个)(板书)(2)让学生对照算式解释自己的算法。
揭示求平均数的第二种方法:“求和平分”。
(3)结合统计图帮助学生进一步理解“求和平分”的算理。
(4)解决问题:这一组是男生套得准一些还是女生套得准一些?解决这个问题是谁帮了我们的忙?
三、变式练习
1.做“想想做做”第1题。
(1)估一估他们的平均身高是多少厘米。
怎么估的?
(2)算一算他们的平均身高是多少厘米。
(3)还知道哪些?
2.一个小组6位同学的平均体重是34千克,6号是这个小组的一员,她的体重只有28千克,可能吗?
3.全班男生的平均身高是145厘米,女生的平均身高是143 厘米,就是说全班所有的男生都比女生高,这样理解对吗?
五、全课总结(略)
六、拓展延伸(机动)
组织学生讨论练习九第1题。