二次根式混合运算教(学)案
二次根式的混合运算数学教案

二次根式的混合运算数学教案标题:初中数学教案——二次根式的混合运算一、教学目标:1. 理解二次根式的基本概念。
2. 掌握二次根式的性质。
3. 学会进行二次根式的加减乘除混合运算。
二、教学重点与难点:重点:二次根式的性质及混合运算法则的理解和应用。
难点:理解并掌握二次根式的混合运算法则。
三、教学过程:1. 导入新课(约15分钟)- 通过回顾上节课内容,引导学生复习平方根的概念,然后引入二次根式的定义。
- 设计一些简单的例子,让学生对二次根式有初步的认识。
2. 新课讲解(约30分钟)- 引导学生学习二次根式的性质,如积的算术平方根、商的算术平方根等。
- 分别介绍二次根式的加法、减法、乘法和除法的运算法则,并通过例题进行讲解。
3. 练习与讨论(约30分钟)- 设计一系列的练习题,让学生运用所学知识进行计算。
- 让学生分组讨论,互相检查答案,教师在旁指导。
4. 小结与作业(约15分钟)- 对本节课的内容进行总结,强调重点和难点。
- 布置作业,包括一些基本的计算题和一些需要思考的应用题。
四、教学反思:- 思考学生的接受程度,分析教学过程中的优点和不足。
- 针对学生的问题,提出改进的教学策略。
五、教学资源:- 教材- 习题集- 计算器- 黑板或电子白板六、教学评估:- 课堂观察:观察学生的学习态度,参与度,以及对知识点的掌握情况。
- 作业反馈:通过批改作业,了解学生对知识点的掌握情况。
- 测试:定期进行小测验或考试,以评估学生的学习效果。
数学教案-二次根式的混合运算(第三课时)

数学教案-二次根式的混合运算(第三课时)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如公文写作、报告体会、演讲致辞、党团资料、合同协议、条据文书、诗词歌赋、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic sample essays, such as official document writing, report experience, speeches, party and group materials, contracts and agreements, articles and documents, poems and songs, teaching materials, essay collections, other sample essays, etc. Learn about the different formats and writing styles of sample essays, so stay tuned!数学教案-二次根式的混合运算(第三课时)一、教学目标 1.掌握二次根式的混合运算. 2.掌握混合运算的应用. 3.通过二次根式的混合运算,培养学生的运算能力. 4.通过混合运算知识拓展,培养学生的探索精神二、教学设计小结、归纳、提高三、重点、难点解决办法 1.教学重点:二次根式的混合运算. 2.教学难点:混合运算的应用.四、课时安排 1课时五、教具学具准备投影仪、胶片、多媒体六、师生互动活动设计复习小结,归纳整理,应用提高,以学生活动为主七、教学过程【例题】例1 化简:(1);(2).解:(1).(2).说明:在计算过程中要注意各个式子的特点,能否约分或消项(第2小题)达到化简的目的,又要善于在规则允许的情况下可变换相邻项的位置,如,结果为-1,继续运算易出现符号上的差错,而把先变为,这样则为1,继续运算可避免错误.例2 解下列方程(组):(1)(2)(3)解:(1).(2)①× ,得③②× ,得④③-④,得把代入①,得解得.∴是原方程组的解.(3)由②,得③①× ,得④③-④,得把代入①,得.∴是原方程组的解.例3 已知,,求的值.解:..,,∴.例4 已知,,求的值.解:,..(二)随堂练习 1.教材中P206中8. 2.解不等式:.解:∴. 3.已知,,求的值.解:3.,或..∴. 4.已知,,求:的值.解 4.. 5.已知,求的值.解 5... 6.不求方根的值比较与的大小.解6.∵∴∴(三)总结、扩展根据已知条件,求一个代数的值,要注意条件或代数式的化简,有时条件和要求的代数式都需要化简,当把条件化简后,代数式的化简要朝着条件化简的结果去化简.(四)布置作业教材中P207B组1、3和补充作业.补充作业: 1.已知,求的值. 2.已知,,求的值.(五)板书设计标题 1.例题……3.例题…… 2.练习题 4.练习题八、背景知识与课外阅读二次根式的混和运算方法和顺序 1.方法(1)应用二次根式乘法、除法和加减法运算法则.(2)在实数范围内运算律仍适用.(3)二次根式的乘法,与多项式的乘法相类似,遇运用多项式乘法公式时,也可以运用乘法公式. 2.顺序先乘方、后乘除,最后加减,有括号的先算括号内的数.。
2022年北师大版数学八上《二次根式的混合运算》精品教案

2.7 二次根式第3课时二次根式的综合运算复习引入1、什么样的二次根式叫做最简二次根式?〔由学生答复〕可以化简为.继续提问:,可以化简吗?,可以化简吗?这就是本节课研究的内容——二次根式的加减法.2、复习整式的加减运算:计算:〔1〕;〔2〕;〔3〕。
小结:整式的加减法,实质上就是去括号和合并同类项的运算。
自主探究〔一〕探究新知问题中的化简 1、2、点拨:如果把二次根式当成x、y,不就转化为上面的问题了吗?〔学生在教师的指导下完成〕解: 1、2、小结:〔1〕如果几个二次根式的被开方数相同,那么可以直接根据分配律进行加减运算。
〔2〕如果所给的二次根式不是最简二次根式,应该先化简,再进行加减运算。
定义:几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式就叫做同类二次根式。
3、例题解析例1 :以下各式中,哪些是同类二次根式?,,,,,,解:略例2 计算解:例3 计算解:二次根式加减法的法那么:二次根式相加减,先把各个二次根式化成最简二次根式,再把同类二次根式进行合并,合并方法为系数相加减,根式不变。
〔可比照整式的加减法那么〕例4 计算:〔1〕解:〔2〕解:〔二〕随堂练习:课本练习1、2题计算:〔1〕;〔2〕;〔3〕〔三〕总结、扩展1、同类二次根式的定义2、二次根式的加减法与整式的加减法进行比拟,强调注意的问题〔四〕布置作业:课本习题7.2 A组1、2题B组1题〔五〕板书设计标题1.复习题5.例题〔1〕、〔2〕、2.整式的加减例题〔3〕、〔4〕3.例题〔1〕、〔2〕6.练习题4.同类二次根式7.小结〔六〕达标训练:六、教学反思本节课开始时,首先由一个要在一块长方形木板上截出两块面积不等的正方形,引导学生得出两个二次根式求和的运算。
从而提出问题:如何进行二次根式的加减运算?这样通过问题指向本课研究的重点,激发学生的学习兴趣和强烈的求知欲望。
本节课是二次根式加减法,目的是探索二次根式加减法运算法那么,在设计本课时教案时,着重从以下几点考虑:1.先通过对实际问题的解决来引入二次根式的加减运算,再由学生自主讨论并总结二次根式的加减运算法那么。
人教版初中数学八年级下册16.3.2《二次根式的混合运算》教案

最后,关注学生的个体差异,对于学习有困难的学生,给予更多的关心和指导。在课后,我会主动询问他们是否理解课堂内容,针对他们的疑问进行解答,帮助他们克服学习难点。
4.培养学生的抽象思维能力:通过二次根式的混合运算,让学生从具体实例中抽象出数学规律,提升学生的数学抽象思维水平。
三、教学难点与重点
1.教学重点
a.掌握二次根式的乘除法则:\(\sqrt{a} \times \sqrt{b} = \sqrt{ab}\)(a≥0,b≥0)和\(\frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}}\)(a≥0,b>0);
c.了解二次根式的乘方运算:\((\sqrt{a})^n = \sqrt{a^n}\)(n为正整数);
举例:通过\((\sqrt{2})^2\)和\((\sqrt{3})^3\)等例题,强调乘方运算的规则。
2.教学难点
a.理解并运用二次根式乘除法则进行简化时的步骤和方法;
难点解析:学生在进行\(\sqrt{18} \times \sqrt{2}\)等计算时,可能会忽略先简化根号内的乘积,直接相乘,导致计算复杂。教师需强调先简化根号内的乘积,再进行乘法运算。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了二次根式混合运算的基本概念、运算法则和实际应用。同时,我们也通过实践活动和小组讨论加深了对这一知识点的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
八年级数学上册《二次根式的混合运算》教案、教学设计

(3)将实际问题转化为二次根式混合运算问题,并解决实际问题。
(二)教学设想
1.教学方法:
(1)采用情境教学法,创设生活情境,引导学生从实际问题中抽象出二次根式混合运算问题;
(2)运用启发式教学法,引导学生通过自主探究、合作交流,发现并总结二次根式的性质和运算法则;
(3)布置课后作业,巩固所学知识。
3.情感教育:鼓励学生在课后继续探索二次根式的奥秘,培养他们热爱数学、主动学习的情感态度。
五、作业布置
为了巩固本节课所学知识,检验学生的学习效果,特布置以下作业:
1.基础题:完成课本第chapter页练习题1、2、3,直接运用二次根式的运算法则进行计算。
2.提高题:完成课本第chapter页练习题4、5,涉及混合运算,需要运用二次根式的性质进行简化。
(2)关注学生的学习情感,营造轻松愉快的学习氛围,减轻学生的心理压力;
(3)关注学生的学习方法,引导学生运用合理的学习策略,提高学习效率。
四、教学内容与过生活中的问题作为导入,如“某学校举办运动会,跳远比赛的成绩为4.8米和6.4米,试比较两个成绩的大小。”引导学生思考如何进行比较。
4.在解决问题的过程中,体验数学的简洁美、逻辑美,培养良好的审美情趣。
在教学过程中,教师应关注学生的学习情况,及时调整教学方法,使学生在掌握知识的同时,提高思维能力,培养良好的情感态度与价值观。
二、学情分析
八年级的学生已经具备了一定的数学基础,对二次根式的概念和简单运算有初步的了解。在此基础上,他们对本章节的二次根式混合运算学习有以下特点:
3.示例:通过具体的例题,示范如何运用性质和运算法则进行二次根式的混合运算。
八年级下册数学教案《二次根式的混合运算》

八年级下册数学教案《二次根式的混合运算》学情分析本节课是在学生已经学习了二次根式的三个重要概念(最简二次根式、同类二次根式、分母有理化)和二次根式的有关运算(二次根式的乘法、二次根式的除法、二次根式的加减法)基础上,将加、减、乘、除、乘方、开方运算综合在一起的混合运算的学习。
教学目的1、掌握二次根式的混合运算的运算法则。
2、会运用二次根式的混合运算法则进行有关的运算。
教学重点二次根式的混合运算的运算法则。
教学难点运用法则进行计算。
教学方法讲授法、讨论法、练习法教学过程一、复习引入1、单项式与多项式、多项式与多项式的乘法法则分别是什么?m(a+b+c)= ma + mb + mc(m+n)(a+b)= ma + mb + na + nb2、多项式与单项式的除法法则是什么?(ma+mb+mc)÷m = a+b+c思考:若把字母a,b,c,m都用二次根式代替(每个同学任选一组),然后对比归纳,你们发现了什么?二次根式的加、减、乘、除混合运算与整式运算一样,体现在:运算律、运算顺序、乘法法则仍然适用。
二、讲授新课1、二次根式的混合运算及应用计算:(1)(√8 + √3)×√6 = 2√2 ×√6 + √18= 2√12 + 3√2= 2 × 2√3 + 3√2= 4√3 + 3√2(2)(4√2 - 3√6)÷ 2√2 = 4√2 ÷ 2√2 - 3√6÷2√2= 2 - 3/2√32、利用乘法公式进行二次根式的运算(1)整式乘法运算中的乘法公式有哪些?平方差公式:(a+b)(a-b)= a2 - b2完全平方公式:(a+b)2 = a2 + 2ab + b2(2)整式的乘法公式对于二次根式的运算也适用吗?二次根式运算类比整式运算同样适用。
3、计算:(1)(√2 + 3)(√2 - 5 )解:原式 = (√2)2+ 3√2 - 5√2 - 15= 2 - 2√2 - 15= -13 - 2√2(2)(√5 + √3)(√5 - √3 )解:原式 = (√5)2 - (√3)2= 5 - 3= 24、求代数式的值。
2023八年级数学上册第二章实数7二次根式第3课时二次根式的混合运算教案(新版)北师大版

1.教材:确保每位学生都提前准备好北师大版《数学》八年级上册教材,翻到第二章实数7二次根式相关内容,以便课堂上随时翻阅和标注。
2.辅助材料:
-准备与二次根式混合运算相关的教学图片,如含有二次根式的实际应用题目图片,以直观展示数学在生活中的运用。
-制作动态图表,展示二次根式乘除运算的过程,帮助学生理解运算规则。
-设计课堂小测验,测试学生对二次根式混合运算规则的理解程度和运算能力,根据测试结果调整教学策略,针对性地进行辅导。
-利用课堂反馈表,让学生自我评价学习效果,反思学习过程,促进学生的自我管理和自我提升。
2.作业评价:
-对学生的课后作业进行认真批改,点评作业中的亮点和不足,及时反馈学生的学习效果,帮助学生明确自己的学习进步和需要改进的地方。
简要回顾本节课学习的二次根式混合运算内容,强调重点和难点。肯定学生的表现,鼓励他们继续努力。
布置作业:
根据本节课学习的内容,布置适量的课后作业,巩固学习效果。提醒学生注意作业要求和时间安排,确保作业质量。
学生学习效果
1.知识与技能:
-学生能够理解并掌握二次根式混合运算的规则,包括二次根式的乘除法运算,以及与整数、分数的混合运算。
-学生通过对比、归纳等学习方法,加深了对二次根式混合运算规则的理解,提高了逻辑思维能力和数学素养。
3.情感态度与价值观:
-学生在学习过程中,逐渐消除了对二次根式混合运算的恐惧和畏难情绪,增强了自信心和耐心。
-学生认识到数学与现实生活的紧密联系,培养了学以致用的意识,增强了学习数学的兴趣和动力。
-学生通过拓展知识的学习,拓宽了知识视野,激发了探索学科前沿的兴趣,培养了创新精神和探索意识。
核心素养数学学习后,已具备了一定的数学基础和逻辑思维能力。在本章节的学习中,他们在知识层面,对二次根式的概念和基本性质有初步了解,但混合运算的掌握程度参差不齐。在能力方面,学生的运算能力和问题解决能力有待提高,特别是将二次根式与整数、分数结合进行混合运算时,需要加强练习以提升熟练度和准确性。
八年级数学下册《二次根式的混合运算》教案、教学设计

3.创设情境,激发学生的学习兴趣,鼓励学生积极参与课堂力,提高解题效率,增强学生自信心。
在此基础上,教师应充分了解学生的需求,调整教学策略,使学生在本章节的学习中取得更好的效果。
(四)课堂练习
1.教学内容:通过课堂练习,巩固二次根式混合运算知识。
教学过程:
-设计不同难度的练习题,让学生独立完成。
-教师巡回指导,解答学生疑问,纠正错误。
-选取部分学生的作业进行展示,让学生互评,教师总结。
-针对共性问题,进行讲解,帮助学生巩固知识。
(五)总结归纳
1.教学内容:对本节课所学内容进行总结,梳理知识体系。
(二)教学设想
1.采用情境教学法,导入实际问题时,让学生感受到数学知识在实际生活中的应用,提高学生的学习兴趣。
2.采用问题驱动法,引导学生通过自主探究、合作交流,发现并理解二次根式混合运算的法则。
3.教学过程中,注重分层教学,针对不同水平的学生设计不同难度的题目,使每位学生都能在原有基础上得到提高。
(三)情感态度与价值观
1.培养学生严谨、细致的学习态度,提高数学学习的自信心;
2.培养学生合作交流、互相帮助的精神,增强团队意识;
3.激发学生对数学美的追求,培养学生的审美情趣;
4.引导学生认识到数学在现实生活中的应用价值,提高学生的数学素养。
在教学过程中,教师应关注学生的学习情况,及时调整教学方法,使学生在掌握知识的同时,提高能力,培养良好的情感态度与价值观。
教学过程:
-利用多媒体展示一个实际情景:小华家有一块长方形的菜地,长是2√3米,宽是√5米,他想计算菜地的面积。
-提问:同学们,你们知道这块菜地的面积是多少吗?我们可以用二次根式来表示它的面积,那么如何进行计算呢?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
16.3《二次根式的混合运算》教案
五蛟初中王瑜
一、教学目标
知识与技能
在有理数的混合运算及整式的混合运算的基础上,使学生了解二次根式的混合运算与以前所学知识的关系,在比较中求得方法,并能熟练地进行二次根式的混合运算。
过程与方法
1、对二次根式的混合运算与整式的混合运算及数的混合运算作比较,要注意运算的顺序及运算律在计算过程中的作用。
2、通过引导,在多解中进行比较,寻求有效快捷的计算方法。
情感态度、价值观
通过独立思考与小组讨论,培养良好的学习态度,并且注意培养学生的类比思想。
二、重难点分析
重点:是二次根式的加、减、乘、除、乘方、开方的混合运算。
它是以二次根式的概念和性质为基础,同时又紧密地联系着整式、分式的运算,也可以说它是运算问题在初中阶段一次总结性,提高性综合学习;二次根式的运算和有理化的方法与技巧,能够进一步开拓学生的解题思路,提高学生的解题能力。
难点:有关两个二次根式的和与这两个二次根式的差的积;两个二次根式的和或差的平方,联想乘法公式,与多项式的乘法相类似,二次根式的和相乘,适用乘法公式时,运用乘法公式解决相关计算题。
三、教学过程分析
多项式与多项式相乘的法则是,先用一个多项式的每一项乘以另一个多项式的每项,再把所得的积相加。
用式子表示为
(a+b)(m+n)=am+an+bm+bn,其中a,b,m,n都是单项式。
完全平方式是;
在实数围,整式中的乘法法则及乘法公式仍然适用,运用乘法法则及乘法公式可以进行二次根式的混合运算。
引入新课。
(二)合作探究
例6
+
)
)(1(⨯
18
8
解法一:
解法二:
由此可得出整式中的运算律也适用于二次根式 .
试一试 :
(三)、例题精讲
例2 计算:
.
解:略.
()127362
-⨯()323368⎛⎫- ⎪ ⎪⎝⎭()()
348273-÷123(25)
+-()()(2)53(53)
+-()23325+()()
叫个别学生先说自己的收获,然后教师总结
四、教学反思
1、导入时间太长,后面由于赶时间,给学生留下做题时间太少。
2、讲解速度较快,未能很好的关注到后进生。
3、课堂上学生由于忙于做题,课堂气氛显得很沉闷。
4、学生计算能力较差,计算速度慢。
5、在教学设计中,仍然存在着对学情分析不足,主要是过高估计学生的学习能力,一方面本节课设计的题过多,另一方面对以前学过的知识的复习工作做的不够,导致后续的新知识的学习遇到不少麻烦。
如对在整式乘法中,单项式与多项式相乘的法则是什么?多项式与多项式的乘法法则是什么?什么是完全平方式?分别用式子表示出来。
考虑到以前已经学过,自以为学生不存在困难,就没有重点分析,结果导致不少学生运用乘法公式做相关计算题时中出错严重。
6、在教学过程中,我的教学理念还没有及时更新,创新意识还不够。
7、在促进学生探索求知和有效学习方面还存在明显不足。
新的教学理念要求教师在课堂教学中注意引导学生探究学习,在我的课堂教学中,经常为了完成教学任务而忽视这方面的引导。
在本章中,其实有许多容可以进行这方面的尝试。
如判断二次根式中字母的取值围、选取有理化因式、选择不同的运算途径等都可以让学生进行探究和归纳。
在二次根式的运算中我就直接告诉学生:加减运算时
利用公式,乘除时利用公式,结果大部分学生并不接受。
若能让学生在探究的基础上归纳出方法,学习的效果会提高很多,学习的能力也会不断提高。
8、在学生的学习方面,也有值得反思的地方我班的学生在老师指导下学习数学方面的积极性并不差,但自主学习方面还存在着不足。
遇到困难有畏难情绪、对老师的依赖性太强、作业只求完成率而不讲质量、学习的竞争意识和自我要求明显缺乏。
9、对学生学习数学还是做不到放手,总是大包大揽,总是说让学生合作探究,结果真正落实不够。