实验系统说明书
CAI系统使用手册

Visual Basic程序设计实验CAI系统使用说明书一、实验模块操作说明当程序安装后,在“开始/程序”中就建立了一个“VB程序设计实验CAI系统”的快捷方式。
通过该快捷方式或接运行该系统文件夹中的“VBCAI.EXE”程序就可的进入该系统。
当然用户也可在桌面上建立“VBCAI.EXE”的快捷方式。
启动后系统的用户界面如图1.1所示:图1.1 程序用户主界面当学生输入学号(学号是给序的学生上机的唯一标识,系统将在指定的工作盘(D:或E:在系统配置文件Config.fg指定)的Vbsy01\文件夹中建立以学号为名建立一文件夹,学生操作后将其程序文件保存到该文件夹中)。
按回车或单击确定,即进入程序的主控模块,如图1.2所示:图1.2 主界面本系统分为两大模块:一是实验模块,主要用于学生在初步入门阶段,循序渐进的学习。
该模块按照VB程序设计课程教学中的顺序,所列了16类VB程序设计中的实验问题(任务)如图1.3所示。
图1.3 选择实验内容单击主界面上的实验-X进入实验模块,如选择“实验四循环结构程序设计”,就会出现该类实验问题的一系列实验题目,界面如图1.4所示。
该模块有“实验目的”、“操作实例”、“实验任务(内容)”(一般有1—7个实验题,具数量是根实验题库中实验任务数而确定的)等。
图1.4 循环结构程序设计实验界面“操作实例”由精心设计的两个以上的上机操作实例组成,每一个实例都列出了比较具体的操作步骤、程序代码及必要的分析和注释说明,力求给读者一个操作示范,使读者通过这些例子能够加深对实验内容的理解和掌握,培养读者实际编程能力。
“实验内容”是读者自己动手上机完成的练习题。
每个实验的题量较多(最多有七题),,教师可根据学生情况,每次实验(2学时)选做二至三题,其余可留作学生课外作业或上机练习。
例如,在图1.4所示的“实验四循环结构程序设计实验界面”中,共有第一题至第七题,是为学生设计的有关循环结构程序设计的上机练习题。
实验室信息管理系统操作手册

实验室信息管理系统操作手册v.0目录.引言 (1)..编写目的 (1).2.适用范围 (1).3.参考档 (1).4.运行环境 (1)2.系统综述 (2)2..系统简介 (2)2...系统目的.. (2)2..2.系统内容 (2)2..3.系统成果 (3)2.2.系统用途 (3)2.3.系统性能 (4)2.4.流程概述 (4)3.操作说明 (5)3..公共操作 (5)3...访问系统的URL地址. (5)3..2.系统登录 (5)3..3.系统主菜单简介 (5)3..4.个人资料管理 (6)3..5.退出登录 (6)3.2.业务流程(业务人员) (7)3.2..客户资料 (7)3.2.2.信息管理 (10)3.2.3.现场管理 (13)3.2.4.检测方案(方案编写) (13)3.2.5.预算管理 (16)3.2.6.合同管理 (18)3.2.7.项目管理 (20)3.2.8.任务管理 (20)3.3.业务流程配置介绍 (21)3.3..分析项目.....................................................错误!未定义书签。
3.3.2.方法标准...................................................错误!未定义书签。
3.3.3.字典表.......................................................错误!未定义书签。
3.3.4.仪器管理...................................................错误!未定义书签。
3.3.5.收费标准...................................................错误!未定义书签。
3.3.6.采样收费...................................................错误!未定义书签。
学校实验室管理系统需求说明书+流程图

学校实验设备管理系统需求说明书成员:王惠群李莎雍洁季剑1.引言1.1.编写目的本需求分析的撰写目的为:对“学校实验设备管理系统”做出较为详细的需求分析,明确软件需求、安排项目规划与进度,以指导开发阶段的各个流程,包括组织软件开发与测试及日后对系统进行的改动,为开发人员、维护人员及用户之间提供共同的协议以保证开发任务顺利并行地开展。
本文档供项目经理、设计人员、开发人员参考。
本文档预期读者为本项目项目经理、设计人员、开发人员、测试人员及项目决策人员等。
A.开发目的:为了能够对学校的教学资源进行更好的管理和调配,迫切需要建立健全我校实验室设备管理系统,以满足我校实验室设备管理人员的需求,更好更系统化的服务于我校广大师生。
B.项目名称:学校实验室设备管理系统C.参与者和使用者:本项目的使用者为学校实验室管理员D.软件关联:本软件运行在普通的XP的环境,同时需要使用数据库软件的协助。
1.2.项目背景随着学校教育水平的迅速发展,教学要求的不断增高,学生的素质的提高,这与我校实验室设备目前由人工管理,管理混乱等现象的之间发生了难以调和的矛盾,为了能够对学校的教学资源进行更好的管理和调配,迫切需要建立健全我校实验室设备管理系统,以满足我校实验室设备管理人员的需求,更好更系统化的服务于我校广大师生。
1.3.定义存储过程是存储在服务器上的由SQL语句和控制流语句组成的一个预编译集合。
触发器属于一种特殊的存储过程,可以在其中包含复杂的SQL语句。
触发器与存储过程的区别在于触发器能够自动执行并且不含有参数。
1.4.参考资料北大青鸟:需求说明书期刊管理需求说明书农信银综合业务系统成员端平台需求说明书1.1(初稿)软件设计文档国家标准软件设计文档国家标准2.任务概述2.1.目标●最大限度的满足实验室管理人员的需求,使其能根据需求对设备信息进行增加、删除、修改、查询等操作,提高管理人员的工作效率。
●能够方便上级及相关机构对我校实验室设备的各类信息进行查询和核对。
虚拟火灾逃生与急救撤离实验系统说明书

Study on Virtual Simulation Experiment System of Fire Escape and Emergency EvacuationWenqi Zeng 1 and Fengtao Hao 2,*1 Teachers’ College of Beijing Union University 2Teachers’ College of Beijing Union University *Corresponding author. Email:ABSTRACTOnce the fire accident happens, it will seriously threaten people's lives. So it is very important to learn how to deal with dangerous situation. However, it is impossible to directly acquire the experience of fire escape and emergency evacuation by repeatedly experiencing the real situation of fire accident. So it is difficult to carry out practical teaching of fire-related knowledge. In this paper, a virtual simulation experiment system is constructed to reproduce the virtual scenes of fire accident and establish the virtual environment for fire escape and evacuation drills. The system provides learners with an intuitive learning method and creates an immersive real experience environment, so as to enhance their ability to cope with emergencies.Keywords: Virtual simulation, Fire evacuation, Experiment teaching, Open sharing.1. THE SIGNIFICANCE OF VIRTUAL SIMULATION EXPERIMENT OF FIRE ESCAPE AND EMERGENCY EVACUATIONOnce the fire accident happens, it will seriously threaten people's life. People need to know how to deal with fire hazards, learn to escape quickly and evacuate in an emergency. However, due to the particularity and danger of fire accidents, it is difficult for the public to gain practical learning experience through personal experience in real life. Therefore, it is of great practical significance to study and apply the corresponding virtual simulation experiment system.The fire environment can be simulated and realized in the experimental system. Fire escape scene is usually difficult to reproduce in real practice, and due to the limitations of space, the on-site escape drills cannot be repeated for many times. What's more, the skills learned in the occasional escape drill may not translate into the right actions in a crisis situation, especially when you face a real fire.Therefore, the self-rescue process of fire escape can be presented through virtual simulation technology, which can solve this problem well. In the virtual simulation system, complex building environments can be constructed, in which people are crowded and it isdifficult to evacuate and escape in case of fire. The system can guide the experimenters to adapt to the unfamiliar environment quickly, protect their own "safety" and organize evacuation at the same time. Also, relevant experiments can be set up for special experimenters. In addition to fire escape self-rescue, the virtual simulation experiment of emergency evacuation is mainly aimed at some specific occupation, such as teachers, security personnel, building administrators and so on. For example, it is more important and difficult for teachers to organize the students to evacuate than personal safety in a fire accident. However, in a real fire emergency evacuation drill, a large number of people are involved, so repeated training and drills are not allowed.By adopting virtual simulation technology, the fire scene and crowd can be presented virtually, and the virtual environment of escape drill and emergency evacuation can be created, so as to create an immersive teaching and training environment and provide an intuitive and effective learning means for participants. The integration of virtual simulation technology and education can better meet the practical needs of science education curriculum, and it is also a comprehensivetraining of practical ability to deal with emergencies.Proceedings of the 2021 International Conference on Diversified Education and Social Development (DESD 2021)2. TECHNICAL ARCHITECTURE OF VIRTUAL SIMULATION EXPERIMENT SYSTEM FOR FIRE ESCAPE AND EMERGENCY EVACUATIONThe operation of the virtual simulation experiment projects for fire escape and emergency evacuation relies on the support of the open virtual simulation experiment teaching management platform. Based on computer simulation technology, multimedia technology and network technology, the platform adopts service- oriented software architecture, integrates physical simulation, innovative design, intelligent guidance, automatic correction and teaching management. Therefore, it is a great virtual experimental teaching platform with good autonomy, strong interactivity and expansibility.The specific experimental project is seamlessly connected with the management platform through the data interface to ensure that users can access the project through the browser at anytime and anywhere. Besides, various user-oriented functions provided by the platform are utilized to strengthen the open service capability of the experimental project, improve the open service effect and realize independent experiments.The overall architecture of the virtual simulation experiment teaching management platform is as shown in Figure 1.Figure 1 The overall architecture of the system The overall architecture of the experimental system is divided into five layers, each of which provides services for the upper layer to complete the construction of specific virtual experimental teaching environment. The specific functions of each layer are as follows: 2.1. Data LayerThe virtual simulation experiments of fire escape and emergency evacuation involves various types of virtual experiment components and data. The system includes the basic elements library, experimental courses library, typical experiments library, standard answers library, rules library, experimental data and users’ information o f the virtual experiments and so on for the storage and management of the relevant data. 2.2. Support LayerAs the core framework of virtual simulation experiment system, the support layer is the basis for the normal open operation of experimental projects and is responsible for the operation, maintenance and management of the entire system. The supporting platform includes the following functional subsystems: security management, service container, data management, resource management and monitoring, domain management, inter-domain information service, etc.2.3. General Service LayerThe general service layer provides the user interface of the open virtual simulation experiment system and the general support components of the virtual experiment teaching environment, so that users can quickly complete the virtual simulation experiment in the virtual experiment environment. General services include experiment educational administration, experiment teaching management, the theory knowledge learning, experiment resource management, intelligent guidance, interactive communication, automatic correction function, experiment report management, teaching effect evaluation, open and shared modules, etc. The general service layer also provides the relevant integrated interface tools, so that the system can integrate the third-party virtual experiment software to carry out unified management.2.4. Simulation LayerThe simulation layer mainly creates models of experimental equipment, constructs the experiment scene, develops the virtual instrument, and provides the universal emulator. Finally, it provides the formatted output of experimental data for the upper layer.2.5. Application LayerBased on the services provided by the underlying layers, finally the virtual simulation experiment project of fire escape and emergency evacuation is taught and shared in the application layer. The application layer of the framework has good expansibility. Accordingtoteaching needs, teachers can design various typical experimental examples by using various tools provided by the service layer and corresponding equipment models provided by the simulation layer, and finally carry out experimental teaching for schools.3. PRINCIPLE AND PROCESS OF VIRTUAL SIMULATION EXPERIMENT OF FIRE ESCAPE AND EMERGENCY EVACUATIONIn the experiments of fire escape and emergency evacuation virtual simulation, the modern information technology is used to promote the reform of experiment teaching, which applied immersive, problem-based, interactive, autonomous and reflective teaching methods. So as to improve the ability of innovation, active learning and self-reflection for experiment participants.3.1. The Purpose of the Experiments(1) To virtualize the unrealizable real fire environment, intuitively feel the fearfulness and severity of fire, and conduct safety education for the experiment participants.(2) To make the experiment participants experience the danger of fire firsthand and improve their safety awareness.(3) To improve the ability of the experiment participants to respond to fire, rescue themselves and organize evacuation.(4) To make the experiment participants master the use of fire extinguishers and other equipment, so as to reduce the experimental cost.3.2. The Teaching Knowledge Points of the Experiments(1) Personal safety knowledge and fire escape knowledge.(2) Equipment operation knowledge.(3) The design of escape route and the choice of escape method.(4) The design of evacuation plan.(5) Escape skills and evacuation under the condition of not serious fire.(6) High-rise building escape skills and evacuation.(7) Escape skills and evacuation in heavy smoke.(8) Safety education of fire disaster 3.3. The Implementation Process of the ExperimentsOn the simulation platform, the virtual simulation experiment teaching will set up five parts including preview, demonstration, learning, assessment and report.Preview Module: similar to experimental textbooks with experimental purposes, principles, operating steps, precautions, etc. Therefore, it is necessary to preview before conducting experiments.Demonstration Module: including the learning video of the whole process of standard operation, which is convenient for the experiment participants to quickly understand the experimental content as a whole.Learning Module: human-computer interaction can guide the experiment participants to complete the whole experiment step by step with the help of relevant prompts.Assessment Module: conducting the operation test without any prompt and the system will give the score automatically after the assessment.Report Module: After the completion of the assessment, the experimental report should be written, including the experimental purpose, principle, process, conclusion, and evaluation and suggestions for the experiment, and should be submitted to the teacher for review.3.4. Methods and Procedures of the ExperimentsThe simulation training of fire escape and emergency evacuation are constructed through simulation experiments. The experimental project recreates the scene of fire scene by 3d simulation technology and the experiment participants can carry out interactive operation in the whole scene to complete the experiment. The procedures of the experiments areshown in Figure2.Figure 2 Procedures of the Experiments4. FEATURES OF EXPERIMENTAL TEACHINGPROJECTS4.1. Diversified Teaching MethodsThe project follows the experimental teaching idea of teaching orientation, subject integration and innovative practice. Through the implementation of experiential immersion teaching method, the participants can master the escape skills in the event of fire and improve their emergency response ability, organization and coordination ability and comprehensive practice ability in the process of immersive experience, problem discrimination, interactive exercise, autonomous design and reflective evaluation.4.2. Obvious Teaching EffectsThis immersive teaching method can stimulate the learning interest of the experimental participants, deepen the knowledge experience of fire, improve the emergency response ability, and enhance the efficiency and ability of learning. The experimental method can also cultivate the habit of active learning and the ability to find, analyze, solve problems and think creatively. 4.3. Evaluation System4.3.1. Error Correction and FeedbackIn the normative practice of the project, the system will automatically prompt and correct the error when the operation is wrong. The experiment teacher can design the experiment independently, and the system automatically records the experiment process and operation steps throughout the whole process. The experiment participants can look back at their own operation records, prompting them to develop the habit of standardized practice and active thinking.4.3.2. Evaluation and ReflectionIn the assessment link, the system will automatically generate records and scores that can be traced back to the experimental process, so as to evaluate the operation of the experimental participants. The system carries out multi-dimensional assessment on the operation times, operation time, interactive operation points, etc. In addition, the theoretical knowledge of the experimental subjects is assessed through the experimental report, thus forming a comprehensive evaluation system that combines theory with practice, process and summative evaluation.4.4. The Extension and Development of Traditional TeachingSimulation system provides participants with high simulation of the virtual experiment environment, solving a series of problems, such as the risk of fire, lack of real environment, the limited experimental site, etc. which saves the cost of experiment teaching and extends the traditional laboratory with fixed class time to the network virtual laboratory and 24 hours online classroom in the air, so as to use modern information technology to extend the depth and breadth of the experimental content.5. CONCLUSIONThe Virtual Simulation Experiment System of Fire Escape and Emergency Evacuation reproduce the virtual scenes of fire accident and establish the virtual environment for fire escape and evacuation drills. So the system provides learners with an intuitive learning method and creates an immersive real experience environment, so as to enhance their ability to cope with emergencies.REFERENCES[1] Fuquan Zhu, Liping Yang, The Application ofVirtual Reality Technology in Fire Science, in: Science and Technology Innovation Herald, 2018, 15(09), pp:146-149.[2] Dechuang Zhou, Study on Fire ScenarioComputation and Simulation Based on Virtual Reality Platform, in: University of Science and Technology of China, 2009.[3] Weiguo Wang, Construction Consideration andSuggestion of Virtual Simulation Experimental Teaching Center, in: Research and Exploration in Laboratory, 2013, 32(12), pp:5-8 [4] Yunming Zhang, Lei Chen, Fire Fighting andRescue Training System Based on Virtual Reality Technology, in: Fire Science and Technology, 2010, 29 (11) , pp:996-998.[5] Weiguo Wang, Jinhong Hu, Hong Liu, CurrentSituation and Development of Virtual Simulation Experimental Teaching of Overseas Universities, in: Research and Exploration in Laboratory, 2015, 34(05), pp:214-219[6] Ling Jiang, Xiaolu Liu, Yingqi Wang, A briefanalysis in the current development of fire computer simulation technology, in: Fire Science and Technology, 2009, 28 (3) , pp:156-159。
AE2000B1型系统说明书

A E2000B1型过程控制实验系统使用手册系统说明书目录第一章硬件系统 (3)1.1系统主要特点 (4)1.2实验对象组成结构 (5)1.2.1 检测装置 (6)1.2.2 执行装置 (8)1.3控制台组成结构 (9)1.3.1 电源和I/O信号面板 (9)1.3.2 智能调节仪面板 (10)1.3.3 远程数据采集模块ICP-7017、ICP-7024面板 (13)1.3.4 S7200PLC模块面板 (15)1.3.5 流量积算变送仪面板 (21)1.3.6 变频器面板 (22)1.4RS-485接口转换器与通讯电缆 (24)1.4.1 RS-485接口转换器 (24)1.4.2 通讯电缆 (24)第二章软件系统 (25)2.1S7200PLC下位机程序软件 (25)2.1.1 STEP 7-Micro/WIN32软件简介 (25)2.1.2 S7200PLC程序的下载 (27)2.1.3 程序中开放的变量 (29)2.2MCGS组态软件 (31)2.2.1主控窗口 (31)2.2.2 设备窗口 (31)2.2.3 用户窗口 (32)2.2.4 实时数据库 (32)2.2.5 运行策略 (33)第一章硬件系统生产与生活的自动化是人类长久以来所梦寐以求的目标,在18世纪自动控制系统在蒸汽机运行中得到成功的应用以后,自动化技术时代开始了。
随着工业技术的更新,特别是半导体技术、微电子技术、计算机技术和网络技术的发展,自动化仪表已经进入了计算机控制装置时代。
在石油、化工、制药、热工、材料和轻工等行业领域中,以温度、流量、物位、压力和成分为主要被控变量的控制系统都称为“过程控制”系统。
过程控制不仅在传统工业改造中,起到了提高质量,节约原材料和能源,减少环境污染等十分重要的作用,而且已成为新建的规模大、结构复杂的工业生产过程中不可缺少的组成部分。
随着计算机控制装置在控制仪表基础上的发展,自动化控制手段也越来越丰富。
沙拉德(SHARAD)实验的地面系统说明书

Mem.S.A.It.Suppl.V ol.11,57c SAIt2007Memorie dellaSupplementiThe Ground System of the SHAllow RADar(SHARAD)ExperimentG.Alberti1,D.Biccari2,B.Bortone1,C.Caramiello1,C.Catallo3,A.Croce3,S. Dinardo1,E.Flamini4,M.Guelfi3,A.Masdea2,S.Mattei1,R.Orosei5,C.Papa1,G.Pica1,G.Picardi2,G.Salzillo1,M.R.Santovito1,and R.Seu21Consorzio di Ricerca Sistemi di Telesensori Avanzati,Via John Fitzgerald Kennedy5,I-80125Napoli,Italy2Alcatel Alenia Space,Via Saccomuro24,I-00131,Roma,Italy3Universit`a di Roma“La Sapienza”,Dipartimento INFOCOM,Via Eudossiana18,I-00184Roma,Italy4Agenzia Spaziale Italiana,Viale Liegi26,I-00198Roma,Italy5Istituto Nazionale di Astrofisica,Istituto di Astrofisica Spaziale e Fisica Cosmica,Via delFosso del Cavaliere100,I-00133Roma,Italye-mail:****************Abstract.A primary scope of Mars exploration is the research of underground water.Knowledge of water and ice quantity and distribution has enourmous impacts on our under-standing on gelogic,hydrologic and climate evolution of Mars and of its origin.To this aim,high resolution observations of geophysical parameters can address these items expeciallywhen conducted by means of penetrating radar systems orbiting around the planet,due totheir intrinsic capabilities to detect underground water/ice.In this framework,SHARAD(SHAllow RADar)on-board NASA’s Mars Reconnaissance Orbiter(MRO)assumes a keyrole within Mars exploration activities.SHARAD is a wideband radar sounder transmittingat a centre frequency of20MHz within15-25MHz spectral range.SHARAD has beenlaunched on August’05and will start its nominal observation phase from November’06.To guarantee its operations,commands and data analysis and processing,the SHARADGround Data System(GDS)has been designed and developped.SHARADA GDS is aground system equipped with ad-hoc sw tools to allow instrument operations and data pro-cessing during the two-year mission duration.The present paper is focused on SHARADGDS description of its architecture and of instrument planning,commanding and data pro-cessing sofwtare tools.Key words.Space vehicles:instruments–Techniques:radar astronomy–Planets andsatellites:individual:MarsSend offprint requests to:G.Alberti 1.SHARAD Instrument OverviewThe SHAllow RADar(SHARAD)experiment (Seu et al.2004)is a sub-surface sounding58Alberti et al.:SHARAD Ground Systemradar provided by the Italian Space Agency (ASI)as a facility instrument to NASA’s2005 Mars Reconnaissance Orbiter(MRO)(Graf et al.2005).SHARAD is a wideband radar sounder transmitting at a centre frequency of 20MHz.The bandwidth of the radar pulse is equal to10MHz.The transmitted waveform is a chirp,a long pulse that is linearly modulated in frequency. The chirp allows a resolution that depends on the bandwidth of the pulse rather than on its duration,but requires processing of the re-ceived signal:with a bandwidth B,the approx-imate time resolution of the output pulse,af-ter processing,is1/B.The10MHz bandwidth of the transmitted pulse provides a theoretical range resolution of15m in free space propa-gation.Horizontal resolution is300-1000m along-track,and is achieved by means of a conven-tional focused synthetic aperture processing, compensating for the spacecraft radial and tan-gential velocities and a possible average slope of the observed surface.Horizontal resolution across-track is1500-8000m,depending on spacecraft altitude and terrain roughness.In Tab.1,SHARAD main characteristics are summarized.The primary objective of the SHARAD in-vestigation is to map,in selected locales,di-electric interfaces to depths of up to one kilo-meter in the Martian subsurface and to inter-pret these interfaces in terms of the occurrence and distribution of expected materials,includ-ing rock,regolith,water,and ice.SHARAD can be operated in different Operational(or Measurement)Modes.An op-erational mode corresponds to an action that the instrument may perform under the guid-ance of OST entries.Each OST entry speci-fies details for the transition to,and the execu-tion of,a given Operational Mode.Telemetry is always generated during Operational Modes and monitoring is active.In case of other er-ror or anomalies during Operational Modes processing,an automatic transition is per-formed to Safe/Idle State.Two main op-erational modes are envisaged,Subsurface Sounding(SS)Mode and Receive Only(RO) Mode.Subsurface Sounding Mode is the main measurement mode for SHARAD.In this Mode the instrument shall perform scientific measurements by transmitting radar pulses and collecting,processing and formatting received echoes.Pulse repetition interval and duration are variable depending on parameters specified in each OST entry.A variable Science Data rate will be produced in this Mode depending on the specific processing parameters.Receive Only Mode is used to perform pas-sive measurements mainly during the on-orbit phase,but can also be used to check the per-formances of the instrument during the cruise phase(even with the antenna folded).No trans-missions will be performed.A variable Science Data rate will be produced in this Mode de-pending on the specific processing parameters.2.SHARAD GDS DescriptionThe SHARAD Ground Data System(GDS)is the element of the Internet-distributed architec-ture defined for controlling and monitoring the instrument,and for receiving and processing the downlinked Science Data.From a network point of view,SHARAD GDS exchanges data fromt/to JPL/NASA and ASI rmation on S/C orientation and trajectory and on MRO payloads activities as well as S/C and instrument telemetries,are re-trieved from MRO ground data system(GDS) sited at JPL,while planning and command-ingfiles are sent to MRO GDS.On the other hand,processed datafiles are delivered to the ASI Data Center(ASDC)of the Italian Space Agency.Relationship between the entities di-rectly involved with the SHARAD GDS is per-formed entirely via the Internet public net-work.All communications are performed via file exchanges and/or via E-mail messages.From a functional point of view SHARAD GDS has to fulfil the following main activities:–Planning and commanding,aimed atflight instrument operation definition taking into account S/C constraint(in terms of bit rate,data volume,power budget)orbital information and Mars surface characteris-tic.This functionality will be provided by Planning Tool and Commanding Tool.Alberti et al.:SHARAD Ground System59 Table1.SHARAD main characteristicsParameter ValueVertical resolution15mHorizontal resolution300-100m along ground track,1500-8000m across ground trackDepth of penetration100’s of meters,up to≈1kmAntenna efficiency>10%Center frequency20MHzRadiated peak power10WPulse length85µsPulse bandwidth10MHzPulse repetition frequency335,350,387.6,670,700,775Hz–Instrument checking,devoted to verify the health status of the instrument;from a en-gineering point of view(Monitoring Tool), and from instrument performance point of view(Quick Look Tool).–Data processing,devoted to a scientific product ly,two levels of processing and PDS generation are envis-aged.–Archiving,devoted to data storing and ex-traction into/from GDS Repository.–External entities data exchange,aimed at data retrieving and submission from/to ex-ternal entities.–Supervision,aimed at GDS status check, either HW and SW,and mission status check.Starting from the functional activities and following a top-down approach,the GDS ar-chitecture has been design in order to be com-posed of the following main subsystems:–Data Archive Subsystem,composed by the necessary resources,procedures,events and sw to execute mission data archiving, browsing,and administration tasks.–I/O Manager Subsystem,composed by the necessary resource,procedures, events and sw to execute data/file retriev-ing/submission from/to external entities management.–Mission Operation Subsystems,composed by the uplink/downlink subsystems,pro-cessing subsystems and supervisor subsys-tems.The uplink/downlink subsystems consist of all resources,procedures and events about uplink/downlink phase are managed by these S/Ss and by the following dedicated sw tools::–Planning tool(PLN)–Commanding tool(CMD)–Monitoring and L1A tool(MON)The processing subsystems consist of all resources,procedures and events about moni-toring,to process scientific and engineering in-strument data are managed by these S/Ss and by the following dedicated sw tools:–Quick-Look tool(QLK)–Processing“Level1B”tool(L1B)–Processing“Level2”tool(L2P)The supervisor subsystems consist of all the information about mission status and SGS status are collected and visualized by these S/Ss,and particularly by the following dedi-cated tools–System supervisor(SSP)–Mission supervisor(MSP)The SHARAD GDS architecture is de-picted in Fig.1.The architecture builds a dis-tributed application in order to match all user requirements and operate according to external and internal interfaces constraints.60Alberti et al.:SHARAD GroundSystemFig.1.SHARAD Ground Data System architecture2.1.Planning ToolThe GDS Planning Tool is a software that an-alyze the feasibility of scientific requests for SHARAD instrument operations,optimize the radar utilization for scientific purposes,and consequently define the mission plan for the SHARAD instrument.This tool is used to plan and schedule SHARAD operations all along the mission.Planning Tool main function is to generate a Payload Target File (PTF)in which are sequen-tially reported all instrument proposed opera-tion modes.SHARAD activities are planned taking into account spacecraft position and trajectory,other MRO payloads activities and on-board resources,Mars surface characteristics and sci-entific targets (Fig.2).PTF is compared with other instruments re-quest and then,after some iteration if neces-sary for conflicts solving,it is integrated with all instrument requests to form the Integrated Payload Target File (IPTF).Finally Payload Operations Support (POST)produces conflict-free IPTF to be used in the weekly planning.The Planning Tool makes use of Graphical Use Interfaces (GUIs)to show s /c tracks,tar-gets position and Mars surface characteristics,as well as planned timelines.On the basis of specific user needs,the Planning Tool allows also manual modification to be done.The tool generates as output the timeline file.This plan is submitted to MRO GDS at JPL and,when approved,the MRO GDS up-links to the spacecraft the binary file that con-tains the plans of all MRO payloads.Planning Tool has been designed follow-ing a Client /Server architecture in which client side implements basically the graphical user interface services managing the interaction be-tween user and the rest of S /S and system,Alberti et al.:SHARAD Ground System61while the Server side implements all services dedicated to extract and process data.Client/Server architecture makes Planning functionalities accessible from remote sites through VPN connections reducing computa-tional overload on the client and dataflow through the network.manding ToolOnce the payload observation plan has been approved,the uplink phase is characterized by the generation of command sequences to be executed by mands are consti-tuted either by single radar operational modes and radar parameters necessary to execute its onboard processing(Seu et al.2004).In fact, the Commanding Tool generates two differ-ent kinds offiles:one for operational modes (Operational Sequence Tablefiles),where the approved timeline is traslated into instrument commands sequences,and one for param-eters(Parameters Tablefiles).To generate Parameters Tablefiles,the tool basically esti-mates polynomial coefficients of sixth and sev-enth order polynomials approximating Mars surface topography and terrain slope trends over the area to beflown to allow radar to esti-mate its distance from Mars surface.These commandsfiles are submitted to MRO GDS that checks and uplinks them to S/C. Commanding Tool uses GUI interfaces to show results and allow users to manually modify commanding sequences and instrument param-eters.As for Planning Tool,Commanding Tool has been designed following a Client/Server archi-tecture in which client side implements basi-cally the graphical user interface services man-aging the interaction between user and the rest of S/S and system,while the Server side im-plements all services dedicated to extract and process data.2.3.Monitoring/L1A ToolAfter commands uplink,SHARAD begins data acquisition.Collected data are sent to the spacecraft and then transmitted to ground as telemetryfiles.The Telemetryfiles are col-lected from MRO GDS that makes them avail-able to the GDS.Two kinds of TM are foreseen:house-keeping(HK)TM,subdivided in S/C HK and SHARAD HK,and scientific TM.The HK TM contains information about instrument status, in terms of voltages,currents and other en-gineering parameters.The scientific TM are characterized by scientific contents related to the signals transmitted/received by SHARAD. During this phase(named Downlink phase), GDS performs a set of check on TM data.A first check is related to the instrument health assessment:critical engineering parameters are monitored and their incorrect behavior(for ex-ample,voltage values out of range)is high-lighted.Other checks regard the syntactic and se-mantic integrity of TMfiles,in term of cor-rupted or missing packets,and the coherence between commands really executed and com-mands generated during uplink phase.Then, the tool packs them into PDS Level1A(L1A) datafiles(Hughes et al.2004).Level1A data consist of the instrument telemetry correlated with the auxiliary information needed to locate observations in space and time and to process data further.2.4.Quick Look ToolThe Quick Look Tool is a GDS software specifically designed to perform SHARAD in-strument performance analysis and an overall instrument monitoring.The tool can process L1A data products either when the instrument is operated in Receive-Only operative mode and in Sub-Surface operative mode.In case of Receive-Only operative mode,the Quick Look Tool evaluates power spectral density of the signal in order to give noise level estimation.In case of Sub-Surface operative mode,the tool performs a quick range compression process-ing and evaluates echo SNR.Monitoring SNR parameter,in fact,gives an idea on instrument current performance wrt the expected one.Processed data can be visualised and plot-ted to allow data verification and comparison.62Alberti et al.:SHARAD GroundSystemFig.2.Planning Tool GUI -MRO spacecraft ground tracks and targets2.5.Level 1B ToolThe Level 1B Tool is the GDS sofwtare devoted to basically accomplish Range and Doppler processing in order to produce radar-grams of Mars sub-surface.It generates as out-put PDS Level 1B data files.SHARAD is quite di fferent from a clas-sic SAR,because Doppler bandwidth and cen-troid are stricly dependent on surface scatter-ing.In particular Doppler bandwidth is a di-rect conseguence of surface roughness,while surface slope a ffects tightly Doppler centroid.This has lead to design the tool in order to perform an accurate Doppler parameters esti-mation (centroid and bandwidth)before start-ing processing chain.Moreover,realignment of each range line before Doppler parameters estimation and range Doppler processing has been faced to remove very high variability of receiving window position.The Chirp Scaling Algorithm has been adopted to perform data processing.Depending on Doppler bandwidth of the received signal,this algorithm can pro-vide a maximum full resolution of 300meters by compesating range migration e ffects.Since a 55dB in signal dynamic is re-quested,each source of distortion (Mars iono-sphere,on board noise)is compensated by the tool.2.6.Level 2ToolThe Level 2Tool is devoted to calibrate L1B products and to provide additional informa-tions to scientists.Image calibration is per-formed by means of radar equation using instrument parameters data either measured on ground test and \or during commission-ing /calibration er can select multi looking option in order to obtain a degradated resolution image that exibhits improved signal to clutter ratio.Tool is able to interface with MOLA topographic products in order to re-trieve statistical parameters needed for simu-lating surface expected returns.This provides useful information to scientists to correctly in-terpretate real scientific data.ReferencesGraf,J.E.et al.2005,Acta Astronautica,57,566Hughes,J.S.et al.2004,Bulletin of the AAS,36,1097Seu,R.et al.2004,Planetary and Space Science,52,157。
实验室管理系统项目需求分析说明书

实验室管理系统项目需求分析说明书实验室管理系统项目需求分析说明书一、引言随着科技的发展和信息化步伐的加快,实验室管理逐渐向高效、智能、自动化的方向转变。
实验室管理系统应运而生,它旨在提高实验室管理效率、简化实验流程、降低管理成本,并为科研人员提供更好的实验环境。
本文将对实验室管理系统的需求进行分析和说明。
二、项目概述实验室管理系统包括实验室设备管理、实验器材管理、实验人员管理、实验报告生成等功能。
该系统将实现实验室管理的全面信息化,提高实验室管理水平,满足科研人员对实验数据获取、分析、处理的需求。
三、需求分析1、实验室设备管理:系统应具备实验室设备的基本信息管理、设备借出与归还管理、设备维修与保养等功能。
2、实验器材管理:系统应实现实验器材的采购、库存管理、使用与归还等环节的信息化管理。
3、实验人员管理:系统应对实验人员的信息进行记录和管理,包括个人资料、职务、所属单位等,方便实验室管理人员对实验人员情况进行掌握。
4、实验报告生成:系统应根据实验数据,自动生成实验报告,提高实验效率。
四、技术选型根据实验室管理系统的业务和技术需求,我们将采用以下技术进行系统开发:1、前端技术:HTML5、CSS3、JavaScript等,用于构建用户友好的界面。
2、后端技术:Python、Java等,用于实现系统逻辑和数据处理。
3、数据库技术:MySQL、MongoDB等,用于存储和管理数据。
五、项目组织我们将成立由项目经理、前端开发、后端开发、数据库管理组成的项目团队,共同负责该项目的开发和管理。
在项目实施过程中,团队成员将按照各自的职责进行分工合作,确保项目按时完成。
六、风险管理为确保项目的顺利进行,我们将采取以下措施防范风险:1、制定详细的项目计划,并在实施过程中进行监控和调整,确保项目按计划进行。
2、对项目中的关键环节进行重点跟踪,及时发现和解决问题。
3、建立有效的沟通机制,确保项目团队成员之间的信息交流畅通,及时处理可能出现的问题。
TDS一1数字电路实验系统使用说明书

TDS一1数字电路实验系统使用说明书清华同方股份有限公司教学仪器设备公司数字逻辑与数字系统是大学电子类专业的一门重要课程。
由于电子技术发展很快,新器件、新工艺层出不穷。
可编程逻辑器件(PLD)使同一个器件完成不同逻辑功能成为现实,通用性使其应用越来越广泛。
复杂可编程逻辑器件CPLD和现场可编程门阵列FPGA规模越来越大几万门的器件已经很多。
一个CPLD器件或者FPGA器件能够代替许多中、小规模TTL器件。
它们很大程度上把设计和制作印刷板变成为对可编程器件设计和编程。
在系统可编程逻辑ISP陵术突破了PLD器件必须首先编程,然后再安装到印制电路板上的限制。
ISP器件能够先安装后编程,在系统中对设计进行修改和升级。
ISP降低了对专门编程器的需求,使用者甚至不需要专门编程器。
这使得对PLD器件编程变得比较容易。
这些技术对数字系统设计影响很大,理所当然反映到了各种有关数字电路和数字逻辑的教材中。
为了跟上新技术的发展,使教学设备与教材相适应,清华同方股份有限公司开发出TDS--1数字电路实验系统。
它专为数字逻辑和数字电路教学实验设计,是一种通用的实验设备。
在这个实验设备上,既能够使用中小规模器件做简单数字电路实验,为数字电路实验打下良好基础;又可以用PLD、CPLD或ISPLD器件做较为复杂的数字系统实验,学会初步的数字系统设计。
I TDS一1数字电路实验系统性能使用TDs一1数字电路实验系统能够进行从简单数字电路到较复杂数字系统的各种实验,涵盖了数字逻辑和数字系统课程的实验内容。
TDS—I数字电路实验系统主要性能如下:I.任PC windows卜运仃的Synario免费版编程软件。
这是Data I/O公司设计的一个优秀通川电子设计工具软件,它提供了ABEL.HDL设计,原理图设计,ABEL.HDL和原理图混合设计等三种设计方式,使数字电路设计变得十分灵活方便。
2.两个44芯PLCC方形插座、MACH下载电缆及插座、Lattice下载电缆及插座,供CPLD和ISP器件实验使用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验系统使用说明
1、单片机系统板说明
单片机系统板实物图
功能说明:
(1)串行口:与计算机连接,对单片机进行编程的通信接口,如果要对单片机进行程序下载,就必须把图示中串行口开关拨到“ON”端。
(2)系统板右侧单片机端口:共24排针。
最上面的一排是“GND”,第二排是“VCC”,最下面的一排是“VCC”,倒数第二排是“GND”,中间的20排是单片机的40个引脚;40个引脚顺序排布与芯片上的引脚排布位置相同,即左侧一列对应单片机芯片左侧的引脚,右侧一列对应单片机芯片右侧的引脚。
(3)系统板电源:与提供的电源相连,为整个系统板供电。
(4)电源开关:按下接通电源,抬起关断电源;在下载程序时要求给单片机上电时,使用该键。
(5)复位按键:单片机的复位按键,单片机的复位电路中包含手动复位和上电复位。
(6)系统板左侧单片机端口:与系统板右侧单片机端口相同,共24排针。
最上面的一排是“GND”,第二排是“VCC”,最下面的一排是“VCC”,倒数第二排
是“GND”,中间的20排是单片机的40个引脚;40个引脚顺序排布与芯片上的引脚排布位置相同,即左侧一列对应单片机芯片左侧的引脚,右侧一列对应单片机芯片右侧的引脚。
(7)系统板串行口开关:下载时一定要将拨断开关拨到“ON”端;当要对串行口进行编程时,则一定要将拨断开关拨到“ON”的相反端
使用时一定注意系统板的左、右侧单片机端口要插对应的模块,不能乱插。
插在左侧端口的模块不能插在右侧,同样,插在右侧端口的模块不能插在左侧。
2、单片机动态显示模块说明
单片机动态显示模块实物图
(1)动态显示模块与单片机接口:只能与单片机系统板的右侧端口(电源指示灯侧)连接,同时电源和控制信号由单片机系统板提供。
(2)动态显示的控制端:共4对插针。
每个插针控制一个数码管的电源,应用动态显示时,要用短路套短接插针,不用时可以拔下来。
动态显示的段选信号占用单片机P0口,位选信号占用单片机P2口的高四位。
(3)八个LED的控制端:共8对插针,分别控制8个LED与单片机的端口连接。
LED的控制端占用单片机P3口。
(4)独立式按键:4个独立式按键,分别占用单片机P2口的低四位。
模块电路图如动态显示模块电路图所示。
单片机静态显示模块实物图
(1)静态显示模块与单片机接口:只能与单片机系统板的右侧端口(电源指示灯侧)连接,同时电源和控制信号由单片机系统板提供。
(2)静态显示的控制端:共4对插针。
每个插针控制一个数码管的电源,
应用静态显示时,要用短路套短接插针,不用时可以拔下来。
静态态显示控制信号占用单片机串行口和P1.6、P1.7口。
(3)静态显示数据时钟选择端口:共两列插针KA1和KA2,每列有三个插针。
KA1中间的插针是静态显示数据线,用短路套将其与下面的插针短接,就是占用单片机串行口P3.0,用短路套将其与上面的插针短接,则占用单片机P1.6口。
KA2中间的插针是静态显示时钟线,用短路套将其与下面的插针短接,就是占用单片机串行口P3.1,用短路套将其与上面的插针短接,则占用单片机P1.7口。
(4)四个LED的控制端:共4对插针。
每个插针控制一个LED的控制信号,应用LED时,要用短路套短接插针,不用时可以拔下来。
LED控制信号占
矩阵按键模块实物图
(1)矩阵按键模块与单片机接口:只能与单片机系统板的左侧端口(红色拨断开关侧)连接,同时电源和控制信号由单片机系统板提供。
(2)4×4矩阵按键:矩阵按键的列信号线占用单片机P3口的低四位,矩阵按键的行信号线占用单片机P3口的高四位。
(3)中断的按键输入端口:共两对插针INT0和INT1。
要使用该按键对单片机进行输入时将插针INT0和INT1两对插针用短路套短接,中断的按键输入占用P3.2 (INT0)和P3.3(INT1)。
(4)八个LED的控制端:LED控制信号占用单片机P1口。
模块电路图如静态显示模块电路图所示。
1234、多功能模块与单片机接口、DAC0832地址选择端
、74HC595电源控制端
、NE555个接口控制端(INT0、5、NE555电源控制端
6、NE555输出波形调节电位器
、八位拨断开关
74LS165电源控制端
DAC0832电源控制端
多功能模块实物图
(1)多功能模块与单片机接口:只能与单片机系统板的左侧端口(红色拨断开关侧)连接,同时电源和控制信号由单片机系统板提供。
(2)DAC0832的地址选择端:DAC0832的地址选择,将下面两个插针用短路套连接时,DAC0832的CS端连接到P2.7;将上面两个插针用短路套连接时,DAC0832的CS端连接到P1.5。
电路图见多功能模块电路图(1)。
(3)74HC595的电源控制端:当使用74HC595芯片时必须将该插针用短路套短接,74HC595控制该实验板下方的8个LED,电路图见多功能模块电路图(1)。
(4)NE555与单片机三个接口控制端:该接口包括将NE555与单片机的T0、INT0和INT1引脚相连,使用模块上NE555电路时必须将三个插针用短路套短接。
电路图见多功能模块电路图(2)。
(5)NE555电源控制端:当使用NE555芯片功能时,必须将该插针用短路套短接。
电路图见多功能模块电路图(2)。
(6)NE555输出波形调节电位器:调节该电位器改变NE555芯片输出的占空比。
电路图见多功能模块电路图(2)。
(7)八位拨断开关:该八位拨断开关将高低电平传送给74LS165的并入接口。
(8)74LS165的电源控制端:当使用74LS165芯片时必须将该插针用短路套短接,74LS165的输入由八位拨断开关控制,电路图见多功能模块电路图(1)。
(9)DAC0832电源控制端:当使用DAC0832芯片功能时,必须将该插针用短路套短接。
电路图见多功能模块电路图(1)。
(10)AD转换输入电位器:电位器的输入为0—5V可调,使用时要将AD 转换输入与单片机接口控制端的插针用短路套短接。
(11)AD转换输入与单片机接口控制端:当使用AD转换输入功能时,必须将该插针用短路套短接,短接后电位器的滑动端与单片机的P1.0引脚连接。
电路图见多功能模块电路图(1)。
(12)DA转换输出与单片机AD转换接口控制端:如果将该插针用短路套短接,则将DAC0832的输出端与单片机P1.1引脚连接,不用时可以不连接。
模块电路图如多功能模块电路图所示。