构造判断矩阵讲解(层次分析法)
层次分析法判断矩阵求权值以及一致性检验程序

fun cti on [w,CR]=mycom(A,m,RI)[x,lumda]二eig(A);r二abs(sum(lumda));n二fin d(r==max(r));max_lumda_A=lumda( n,n);max_x_A=x(:,n);w=A/sum(A);CR=(max_lumda_A-m)/(m-1)/RI;end本matlab程序用于层次分析法中计算判断矩阵给出的权值已经进行一致性检验。
其中A为判断矩阵,不同的标度和评定A将不同。
m为A的维数RI为判断矩阵的平均随机一致性指标:根据m的不同值不同。
RI值当CRV0.1时符合一致性检验,判断矩阵构造合理。
下面是层次分析法的简介,以及判断矩阵构造方法。
一•层次分析法的含义层次分析法(The analytic hierarchy process简称AHP,在20世纪70年代中期由美国运筹学家(「L.Saaty正式提出。
它是一种定性和定量相结合的、系统化、层次化的分析方法。
由于它在处理复杂的问题上的实用性和有效性,很快在世界范围得到重视。
它的应用已遍及经济和、能源政策和分配、行为科学、军事指挥、运输、农业、教育、人才、医疗和环境等领域。
二.层次分析法的基本思路与人对一个复杂的决策问题的思维、判断过程大体上是一样的。
层次分析法的原理层次分析法是将决策问题按总目标、各层子目标、评价准则直至具体的备投方案的顺序分解为不同的层次结构,然后得用求解判断矩阵特征向量的办法,求得每一层次的各元素对上一层次某元素的优先权重,最后再加权和的方法递阶归并各备择方案对总目标的最终权重,此最终权重最大者即为最优方案。
这里所谓优先权重”是一种相对的量度,它表明各备择方案在某一特点的评价准则或子目标,标下优越程度的相对量度,以及各子目标对上一层目标而言重要程度的相对量度。
层次分析法比较适合于具有分层交错评价指标的目标系统,而且目标值又难于定量描述的决策问题。
其用法是构造判断矩阵,求出其最大特征值。
运筹学考试分析之层次分析法

运筹学考试分析之层次分析法李斌层次分析法主要是应用线性代数中一致性矩阵的特殊性质,根据各种方案的相对重要性构造判断矩阵,利用特征值来求解优先权数。
理论部分参考线性代数,考试分析直接从案例逐步分析。
例如,讲义P10-6案例分析:第一步:建立模型AHP的比较准则一般应控制在9个以内,因为判断矩阵的相对重要程度用1~9表示,超过9个比较准则不仅难以表示和计算,同时也很难保证矩阵的一致性。
第二步:构造比较矩阵通过以上模型能够构造出1+5=6个判断矩阵。
其中,各准则对总目标的5阶判断矩阵一个,各方案对各准则的3阶判断矩阵共5个。
一般来说,二级AHP总共可以构造m+1个判断矩阵(m=准则个数)。
其中总目标的判断矩阵为m阶,其他各方案判断矩阵为n阶(n=方案个数)。
第三步:计算准则对总目标的优先权数,并做一致性检验1)简单来说,应用方根法求优先权数可总结为:一乘二方根,三加四归一一乘:求矩阵每一行的乘积得Mi;二方根:对每个Mi求m次方根得βi;三加:将所有βi相加求和;四归一:用每个βi除以所有βi的和得αi;组合所有αi得到向量α即可以作为优先权数。
2)求最大特征根λ:其中(Bα)i就是总目标判断矩阵B的每一行与向量α对应相乘,然后除以向量α中的单个数值αi,对所有这些结果求和后除以阶数m得到λ的值。
3)一致性检验根据C.I.的公式,由λ和m可以求出C.I.,然后查表得出R.I.,二者相除得出一致性判据C.R.,当C.R.<0.1时,可以认为判断矩阵具有满意的一致性。
本例中对于总目标判断矩阵B求得一致性判据C.R.=0.046<0.1,说明总目标判断矩阵满足一致性条件。
否则,需要修改总目标判断矩阵后重新计算C.R.直至具有满意的一致性为止。
第四步;在总目标判断矩阵B满足一致性的前提下,重复第三步的方法分别求出各个方案判断矩阵的特征值λi并做一致性检验。
如果方案判断矩阵出现不一致的情况,则需要调整相应的判断矩阵直至所有的方案判断矩阵都具有满意的一致性为止。
层次分析法步骤及案例分析

层次分析法步骤及案例分析层次分析法(AHP)是一种通过对比判断不同因素的重要性来进行决策的方法。
它由匹兹堡大学的数学家托马斯·萨蒙在20世纪70年代初提出,并逐渐应用于各个领域。
本文将介绍层次分析法的步骤,并通过一个实际案例来进行分析。
一、层次分析法的步骤层次分析法主要包括以下几个步骤:1. 确定层次结构:首先,需要明确决策问题的层次结构。
将问题划分为若干个层次,从总目标到具体的子目标,形成一棵树状结构。
例如,在一个购车的决策问题中,总目标可以是“选择一辆适合自己的车”,下面的子目标可以包括“价格”、“外观”、“安全性”等因素。
2. 构造判断矩阵:在每个层次中,需要对不同因素之间的两两比较进行判断。
判断可以基于专家经验、问卷调查或实际数据。
对于两两比较,通常采用一个1到9的比较尺度,其中1表示相等,3表示略微重要,5表示中等重要,7表示强烈重要,9表示绝对重要。
如果因素A相对于因素B的重要性大于1,则B相对于A的重要性是1/A。
3. 计算权重向量:根据判断矩阵中的比较结果,可以计算出每个层次中各个因素的权重向量。
通过对判断矩阵的特征值和特征向量进行计算,可以得到各个因素的权重。
4. 一致性检验:在进行层次分析时,需要检验判断矩阵的一致性。
一致性是指在两两比较中的逻辑关系的一致性。
通常使用一致性指数和一致性比率来判断判断矩阵的一致性程度。
5. 综合评价:通过将各层次中因素的权重向量进行乘积运算,并将结果汇总得到最后的评价结果。
在这一步骤中,可以对不同的决策方案进行排序或进行多目标决策。
二、案例分析为了更好地了解层次分析法的应用,我们来看一个实际案例。
假设某公司需要选择新的供应商,供应商选择的主要考虑因素包括产品质量、交货周期和价格。
我们可以按照以下步骤进行决策:1. 确定层次结构:总目标是选择合适的供应商,下面的子目标是产品质量、交货周期和价格。
2. 构造判断矩阵:对于每个子目标,可以进行两两比较。
层次分析法判断矩阵求权值以及一致性检验程序

function [w,CR]=mycom(A,m,RI)[x,lumda]=eig(A);r=abs(sum(lumda));n=find(r==max(r));max_lumda_A=lumda(n,n);max_x_A=x(:,n);w=A/sum(A);CR=(max_lumda_A-m)/(m-1)/RI;end本matlab程序用于层次分析法中计算判断矩阵给出的权值已经进行一致性检验。
其中A为判断矩阵,不同的标度和评定A将不同。
m为A的维数RI为判断矩阵的平均随机一致性指标:根据m的不同值不同。
当CR<0.1时符合一致性检验,判断矩阵构造合理。
下面是层次分析法的简介,以及判断矩阵构造方法。
一.层次分析法的含义层次分析法(The analytic hierarchy process)简称AHP,在20世纪70年代中期由美国运筹学家托马斯·塞蒂(T.L.Saaty)正式提出。
它是一种定性和定量相结合的、系统化、层次化的分析方法。
由于它在处理复杂的决策问题上的实用性和有效性,很快在世界范围得到重视。
它的应用已遍及经济计划和管理、能源政策和分配、行为科学、军事指挥、运输、农业、教育、人才、医疗和环境等领域。
二.层次分析法的基本思路与人对一个复杂的决策问题的思维、判断过程大体上是一样的。
(1)层次分析法的原理层次分析法是将决策问题按总目标、各层子目标、评价准则直至具体的备投方案的顺序分解为不同的层次结构,然后得用求解判断矩阵特征向量的办法,求得每一层次的各元素对上一层次某元素的优先权重,最后再加权和的方法递阶归并各备择方案对总目标的最终权重,此最终权重最大者即为最优方案。
这里所谓“优先权重”是一种相对的量度,它表明各备择方案在某一特点的评价准则或子目标,标下优越程度的相对量度,以及各子目标对上一层目标而言重要程度的相对量度。
层次分析法比较适合于具有分层交错评价指标的目标系统,而且目标值又难于定量描述的决策问题。
层次分析法判断矩阵求权值以及一致性检验程序

function [w,CR]=mycom(A,m,RI)[x,lumda]=eig(A);r=abs(sum(lumda));n=find(r==max(r));max_lumda_A=lumda(n,n);max_x_A=x(:,n);w=A/sum(A);CR=(max_lumda_A-m)/(m-1)/RI;end本matlab程序用于层次分析法中计算判断矩阵给出的权值已经进行一致性检验。
其中A为判断矩阵,不同的标度和评定A将不同。
m为A的维数RI为判断矩阵的平均随机一致性指标:根据m的不同值不同。
当CR<时符合一致性检验,判断矩阵构造合理。
下面是层次分析法的简介,以及判断矩阵构造方法。
一.层次分析法的含义层次分析法(The analytic hierarchy process)简称AHP,在20世纪70年代中期由美国运筹学家托马斯·塞蒂()正式提出。
它是一种定性和定量相结合的、系统化、层次化的分析方法。
由于它在处理复杂的决策问题上的实用性和有效性,很快在世界范围得到重视。
它的应用已遍及经济计划和管理、能源政策和分配、行为科学、军事指挥、运输、农业、教育、人才、医疗和环境等领域。
二.层次分析法的基本思路与人对一个复杂的决策问题的思维、判断过程大体上是一样的。
(1)层次分析法的原理层次分析法是将决策问题按总目标、各层子目标、评价准则直至具体的备投方案的顺序分解为不同的层次结构,然后得用求解判断矩阵特征向量的办法,求得每一层次的各元素对上一层次某元素的优先权重,最后再加权和的方法递阶归并各备择方案对总目标的最终权重,此最终权重最大者即为最优方案。
这里所谓“优先权重”是一种相对的量度,它表明各备择方案在某一特点的评价准则或子目标,标下优越程度的相对量度,以及各子目标对上一层目标而言重要程度的相对量度。
层次分析法比较适合于具有分层交错评价指标的目标系统,而且目标值又难于定量描述的决策问题。
构造判断矩阵的讲解

构造判断矩阵的讲解层次分析法(Analytic Hierarchy Process,简称AHP)是一种用于处理决策问题的定量方法。
它通过将问题分解为一系列相互关联的准则和备选方案,并使用判断矩阵来定量评估它们之间的相对重要程度,从而帮助决策者进行决策。
一、构造判断矩阵的基本思想判断矩阵是用于量化准则和备选方案之间相对重要程度的工具。
构造判断矩阵的基本思想是通过比较两个元素之间的重要程度,将其转化为一个数值。
这个数值被称为重要性权重。
二、判断矩阵的构建过程1.确定准则和备选方案:首先,需要明确决策问题的准则和备选方案。
准则是衡量备选方案优劣的标准,备选方案是实施决策的可行选择。
2.构建层次结构:将准则和备选方案按照层次结构组织起来。
层次结构由若干层次组成,最顶层是目标层次,下一层是准则层次,最底层是备选方案层次。
3.定义判断矩阵:对于每一对元素,决策者根据其重要程度来填写判断矩阵的元素。
判断矩阵是一个n×n的矩阵,其中n是准则或备选方案的个数。
4.判断矩阵的填写:对于准则层次的判断矩阵,决策者评价不同准则之间的相对重要程度,从1到9进行评分,其中1表示两个准则同等重要,9表示一个准则远远重要于另一个准则。
对于备选方案层次的判断矩阵,决策者评价不同备选方案之间的相对重要程度。
5.判断矩阵的一致性检验:进行一致性检验是为了保证判断矩阵的可靠性。
通过计算判断矩阵的最大特征值和一致性指标,确定判断矩阵是否通过一致性检验。
三、判断矩阵的数学原理判断矩阵是根据相对重要程度进行填写的。
根据AHP的原理,假设第i个准则对于第j个准则的相对重要程度为A(i,j),那么相对重要程度满足以下两个条件:1.A(i,j)=1/A(j,i):即准则i相对于准则j的重要程度与准则j相对于准则i的重要程度互为倒数。
2.A(i,j)×A(j,k)=A(i,k):即准则i相对于准则j的重要程度与准则j相对于准则k的重要程度的乘积等于准则i相对于准则k的重要程度。
层次分析法-判断矩阵的构造-德尔菲法

德尔菲法实施注意事项
① 由于专家组成成员之间存在身份和地位上的差别以及其他社会原因, 有可能使其中一些人因不愿批评或否定其他人的观点而放弃自己的合理主张。 要防止这类问题的出现,必须避免专家们面对面的集体讨论,而是由专家单 独提出意见。 ② 对专家的挑选应基于其对企业内外部情况的了解程度。专家可以是第 一线的管理人员,也可以是企业高层管理人员和外请专家。例如,在估计未 来企业对劳动力需求时,企业可以挑选人事、计划、市场、生产及销售部门 的经理作为专家。 其他注意事项: (1) 为专家提供充分的信息,使其有足够的根据做出判断。例如,为 专家提供所收集的有关企业人员安排及经营趋势的历史资料和统计分析结果 等等。 (2) 所提问的问题应是专家能够回答的问题。 (3) 允许专家粗略的估计数字,不要求精确。但可以要求专家说明预 计数字的准确程度。 (4) 尽可能将过程简化,不问与预测无关的问题。 (5) 保证所有专家能够从同一角度去理解员工分类和其他有关定义。 (6) 向专家讲明预测对企业和下属单位的意义,以争取他们对德尔菲 法的支持。
中位数预测: 用中位数计算,可将第三次判断按预测值高低 排列如下: 最低销售量: 300 370 400 500 550 最可能销售量: 410 500 600 700 750 最高销售量: 600 610 650 750 800 900 1250 最高销售量的中位数为第四项的数字,即750。 将可最能销售量、最低销售量和最高销售量分 别按0.50、0.20和0.30的概率加权平均,则预测平 均销售量为: 600*0.5+400*0.2+750*0.3=695
德尔菲法
德尔菲法,又名专家意见法,是依据系统的程序,采用 匿名发表意见的方式,即团队成员之间不得互相讨论,不发 生横向联系,只能与调查人员发生关系,以反覆的填写问卷, 以集结问卷填写人的共识及搜集各方意见,可用来构造团队沟 通流程,应对复杂任务难题的管理技术。 德尔菲法是在20世纪 40年代由O.赫尔姆和N.达尔克首创,经过T.J.戈尔登和兰德 公司进一步发展而成的。德尔菲这一名称起源于古希腊有关太阳神阿 波罗的神话。传说中阿波罗具有预见未来的能力。因此,这种预测方 法被命名为德尔菲法。1946年,兰德公司为避免集体讨论存在的屈 从于权威或盲目服从多数的缺陷,首次用这种方法用来进行定性预测, 采用匿名发表意见的方式,即专家之间不得互用这种方法用来进行预 测,20世纪中期,当美国政府执意发动朝鲜战争的时候,兰德公司 又提交了一份预测报告,预告这场战争必败。政府完全没有采纳,结 果一败涂地,从此以后该方法被迅速广泛的采用。 德尔菲是古希腊地名。相传太阳神阿波罗(Apollo)在德尔菲杀死了一 条巨蟒,成了德尔菲主人。在德尔菲有座阿波罗神殿,是一个预卜未 来的神谕之地,于是人们就借用此名,作为这种方法的名字。 德尔 菲法最初产生于科技领域,后来逐渐被应用于任何领域的预测,如军 事预测、人口预测、医疗保健预测、经营和需求预测、教育预测等。 此外,还用来进行评价、决策、管理沟通和规划工作。
层次分析法(详解)

层次分析法(详解)AHP(AnalyticHierarchyProce)层次分析法是美国运筹学家T。
L。
Saaty教授于二十世纪70年代提出的一种实用的多方案或多目标的决策方法,是一种定性与定量相结合的决策分析方法。
常被运用于多目标、多准则、多要素、多层次的非结构化的复杂决策问题,特别是战略决策问题,具有十分广泛的实用性。
用AHP分析问题大体要经过以下五个步骤:1、建立层次结构模型将决策的目标、考虑的因素(决策准则)和决策对象按它们之间的相互关系分为最高层、中间层和最低层,绘出层次结构图。
2、构造判断矩阵在确定各层次各因素之间的权重时,如果只是定性的结果,则常常不容易被别人接受,因而Saaty等人提出:一致矩阵法,即:不把所有因素放在一起比较,而是两两相互比较。
对比时采用相对尺度,以尽可能减少性质不同因素相互比较的困难,以提高准确度。
3、层次单排序所谓层次单排序是指,对于上一层因素而言,本层次各因素的重要性的排序。
4、判断矩阵的一致性检验所谓一致性是指判断思维的逻辑一致性。
如当甲比丙是强烈重要,而乙比丙是稍微重要时,显然甲一定比乙重要。
这就是判断思维的逻辑一致性,否则判断就会有矛盾。
5、层次总排序确定层所有因素对于总目标相对重要性的排序权值过程,称为层次总排序。
这一过程是从最高层到最底层依次进行的。
对于最高层而言,其层次单排序的结果也就是总排序的结果。
系统性,将对象视作系统,按照分解、比较、判断、综合的思维方式进行决策,系统分析(与机理分析、测试分析并列);实用性,定性与定量相结合,能处理传统的优化方法不能解决的问题;简洁性,计算简便,结果明确,便于决策者直接了解和掌握。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
0.268
0.587
1.769
归一化 0.324 w Aw 0.974
0.089
0.268
1 (1.769 + 0.974 + 0.268) 3.009
3 0.587 0.324 0.089
得到排序结果:w=(0.588,0.322,0.090)T, max=3.009
2. 层次单排序及其一致性检验
定理:n 阶正互反阵A的最大特征根 n, 当且仅当 =n
时A为一致阵
由于λ 连续的依赖于aij ,则λ 比n 大的越多,A 的不 一致性越严重。用最大特征值对应的特征向量作为 被比较因素对上层某因素影响程度的权向量,其不 一致程度越大,引起的判断误差越大。因而可以用 λ-n 数值的大小来衡量 A 的不一致程度。
小石块W1小石块W2
设想: 把一块单位重量的石头砸成n块小石块
… 小石块Wn
利用判断矩阵计算各因素C对目标层Z的权重(权系数)
a.
将A的每一列向量归一化得:w~ij
aij
n
/ aij
b. c.
对将w~w~i i归j 按一行化求wi和 得w~i:/ wn~iw~i ,
n j 1
w
w~ij (
w1
构造判断矩阵
在确定各层次各因素之间的权重时,如果只是定性的 结果,则常常不容易被别人接受,因而Santy等人提出: 一致矩阵法,即: 1. 不把所有因素放在一起比较,而是两两相互比较 2. 对此时采用相对尺度,以尽可能减少性质不同的诸 因 判素断相矩互阵比是较表的示困本难层,所以有提因高素准针确对度上。一层某一个因素的 相对重要性的比较。判断矩阵的元素aij用Santy的1—9标 度方法给出。
定义一致性指标: CI n
n 1
CI=0,有完全的一致性
CI接近于0,有满意的一致性
CI 越大,不一致越严重
为衡量CI 的大小,引入随机一致性指标 RI。方法为
随机构造500个成对比较矩阵 A1, A2 , , A500
的线性组合: z n
w1 x1
+
w2 x2
+L
+ wn xn
其中 wi 0, wi .1 则 w , w ,..., w 叫各因素对于目
标Z的权重, i1
1
2
n
w ( w1 , w2 ,..., wn ) T 叫权向量.
注意, X1,X2,… ,Xn中有的不是基数变量, 而有可能是序数变量如舒适程度或积极性 之类。
较矩阵有问题
层次单排序和一致性检验
对判断矩阵求其相对应的特征向量W,即
BW=λmax W
其中W的分量(W1,W2,···,Wn)就是对应于n个要素的相 对重要度,即权重系数。
计算权重 系数的方 法
和积法
方根法
(1)和积法 ① 将判断矩阵的每一列元素做归一化处理:
n
b ij bij / bkj.........( i, j 1,2,..., n) k 1
bij=bik/bjk
为了考察AHP决策分析方法得出的结果是否基本合理,需要对判断矩阵进行一 致性检验。
目标层
O(选择旅游地)
准则层
C1 景色
C2 费用
C3 居住
C4 饮食
C5 旅途
设要比较各准则C1,C2,… , Cn对目标O的重要性
Ci : C j aij A (aij )nn , aij 0, a ji
平均随机一致性指标
阶数 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 RI 0 0 0.58 0.9 1.12 1.24 1.32 1.41 1.45 1.49 1.52 1.54 1.56 1.58 1.59
基本概念
什么是权重(权系数)?
在决策问题中,通常要把变量Z表示成变量 x1,x2,… ,xn
,
w2
i 1
,...,
wn
)
T,即为近似特征根(权向量)
i1
d. 计算
1 n ( Aw) i n i1 wi
,作为最大特征根的近似值。
1 例: A 1/ 2
2 1
6 4
列向量 归一化
0.6 0.3
0.615 0.308
0.545 0.364
按行求和
1.760 0.972
1/ 6 1/ 4 1
0.1 0.077 0.091
心理学家认为成对比较的因素不宜超过9个,即每层 不要超过9个因素。
建立判断矩阵
例如:如果C为购一台满意的设备,P1为功能强,P2为价格低,P3为维修容易。通 过对P1,P2和P3的两两比较后做出的判断矩阵P如下:
P1
P2
P3
P1 1
1/3
2
P2 3
1
5
P3 1/2
1/5
1
功能强 价格低 易维修
衡量判断矩阵质量的标准是矩阵中的判断是 否有满意的一致性,如果判断矩阵存在如下 关系,则称判断矩阵具有完全一致性。
对应于判断矩阵最大特征根λmax的特征向量, 经归一化(使向量中各元素之和等于1)后记为W。
W的元素为同一层次因素对于上一层次因素某因 素相对重要性的排序权值,这一过程称为层次单排 序。
能否确认层次单排序,需要进行一致性检验,所 谓一致性检验是指对A确定不一致的允许范围。 定理:n 阶C2
C1
C2
1 1/ 2
2
1
游 地
C3 C4
A 1/ 4
1/ 3
1/ 7 1/ 5
C5
1/ 3 1/ 5
C3
C4
C5
ij
4 3 3 A~成对比较阵
7
5
5
1 1/ 2 1/ 3 A是正互反阵
2 3
1 1
1
1
稍加分析就发 现上述成对比
要由A确定C1,… , Cn对O的权向量
② 将归一化的判断矩阵按行相加:
n
wi bij.........( i 1,2,..., n) j1
③ 对向量wi (w1, w2,..., wn) T归一化:
n
wi wi / w j.........( i 1,2,..., n) j 1
所得的 w (w1, w2,...,wn)T即为所求得特征向量,亦即
判断矩阵的层次单排序结果(即权重系数)
层次单排序和一致性检验
(二)一致性检验
定义 一致性指标C.I.为:
CI max n
n 1
一般情况下,若C.I. ≤0.10,就认为判断矩阵具有一致性。据此而计算的值 是可以接受的。
显然,随着n的增加判断误差就会增加,因此判断一致性时应考虑到n的影响,使 用随机性一致性比值C.R. =C.I./ R.I.,其中R.I.为平均随机一致性指标。下表给出 了500样本判断矩阵计算的平均随机一致性指标检验值。