水声换能器与基阵的测量
水声阵列基础实验报告(3篇)

第1篇一、实验目的1. 理解水声阵列的基本原理和组成。
2. 掌握水声阵列的布设方法和数据采集技巧。
3. 学习水声信号的接收、处理和分析方法。
4. 培养实验操作能力和数据分析能力。
二、实验原理水声阵列是一种利用水声波进行信息传输和探测的设备。
它由多个水声换能器(接收器和发射器)组成,通过合理布设和信号处理,可以实现对水下目标的探测、定位和通信。
三、实验仪器与设备1. 水声换能器:发射器和接收器。
2. 水声信号处理器:用于信号接收、处理和分析。
3. 实验水池:用于模拟水下环境。
4. 数据采集设备:用于记录实验数据。
四、实验步骤1. 水声阵列布设a. 根据实验需求,确定阵列的形状和尺寸。
b. 将水声换能器按照设计要求布设在水池中。
c. 确保所有换能器之间的距离和角度符合实验要求。
2. 信号发射与接收a. 使用发射器向水池中发射水声信号。
b. 使用接收器接收水声信号。
c. 记录接收到的信号数据。
3. 信号处理与分析a. 对接收到的信号进行滤波、放大等预处理。
b. 使用相关分析方法计算信号之间的时间差和强度差。
c. 根据时间差和强度差计算目标的距离和方位。
4. 实验结果分析a. 分析实验数据,验证水声阵列的探测性能。
b. 对实验结果进行总结和讨论。
五、实验结果与讨论1. 实验结果通过实验,成功布设了水声阵列,并接收到了水声信号。
通过信号处理和分析,得到了目标的距离和方位信息。
2. 讨论a. 实验结果表明,水声阵列可以有效探测水下目标。
b. 实验过程中,信号噪声对探测结果有一定影响。
c. 需要进一步优化水声阵列的布设和信号处理方法,以提高探测精度。
六、实验总结1. 通过本次实验,掌握了水声阵列的基本原理和实验方法。
2. 学会了水声信号的接收、处理和分析技巧。
3. 提高了实验操作能力和数据分析能力。
七、参考文献[1] 张三,李四. 水声阵列技术[M]. 北京:科学出版社,2018.[2] 王五,赵六. 水声信号处理与应用[M]. 北京:国防工业出版社,2019.[3] 李七,刘八. 水声探测技术[M]. 北京:电子工业出版社,2020.第2篇一、实验目的1. 理解水声阵列的基本原理和组成。
水声换能器及基阵 - 绪论

利用低声速、大应变功能材料:Terfenol-D
Material properties
Terfenol-D
Young's modulus(GPa)
30
Maximum strain(106 )
1500-2000
Energy Density( J / m3 )
14000-25000
Wave speed(m/s)
能量所携带的信息(频率、幅度、相位等)重现.
Input electric signal
Output acoustic signal
Vice versa! Transducer is reciprocal.
水声换能器
Projector/transducer/transmitter (Electric signal → Acoustic signal)
ka 1
High power
Broadband
如何解决这些矛盾?从增加振动位移、辐射阻上入手
利用弯张换能器的位移放大效应
Displacement amplification effect of flextensional transducer
lever
压电堆在长轴方向上的振动位移,通过杠杆效应,在椭圆壳短轴方向放大了数倍
Inverse piezoelectric effect
������ = ������������3
������������3 = ������
1 2
������������������
2
=
������������
Voltage→electric field→strain→displacement→vibration in water→sound radiation
声学测量指导书

声学测量实验指导书陈洪娟哈尔滨工程大学水声工程学院2005.4.16第1部分必做实验实验1 声学测量仪器设备认知实验一、实验目的通过本实验掌握声学常用测量仪器的使用方法,并了解声学测量实验应该满足的条件要求和实验室进行实验时的注意事项。
二、实验内容与要求:1、内容单台演示各测量仪器的功能,并连接成测量系统演示水声信号。
2、要求教师操作并讲解,学生提问并试操作。
实验2 水听器自由场电压灵敏度校准一、实验目的通过本实验掌握水听器灵敏度的比较校准方法,并熟悉有关测量仪器的使用。
二、实验原理与方法1.水听器的灵敏度水听器就是水声接收换能器,它是把水下声信号转换为电信号的换能器。
水听器的灵敏度就是水听器的接收灵敏度,通常是指开路电压灵敏度,可分为自由场灵敏度和声压灵敏度。
(1)自由场[电压]灵敏度M在平面波自由声场中,水听器输出端的开路电压oc e 与在声场中引入水听器前存在于水听器声中心位置处的自由场声压f p 的比值,称为水听器的自由场电压灵敏度。
符号为M ,单位是伏每帕V/Pa ,以数学式表示为:f ocp e M = (1)自由场电压灵敏度是相对于平面行波而言的。
如果水听器是无指向性的,则不论平面波从哪个方向传来,灵敏度都是相等的。
如果水听器是有指向性的,则灵敏度随平面波入射方向而变。
因此,在水听器上必须标明正对平面波的入射方向、频率和输出端。
自由场灵敏度M 与其基准值r M 之比值的以10为底的对数乘以20,称为自由场[电压]灵敏度级,符号为M 、单位是分贝,以数学式表示为:M )/lg(20r M M = (2)自由场灵敏度级的基准值r M 为1V/μPa 。
(2)声压灵敏度水听器输出端的开路电压与作用于水听器接收面上的实际声压的比值称为水听器的声压灵敏度,符号为p M 。
当用分贝表示时,称声压灵敏度级,符号为p M 。
如果水听器的最大线性尺寸远小于水中波长,且水听器的机械阻抗远大于水听器在水中的辐射阻抗,则其声压灵敏度[级]等于自由场电压灵敏度[级]。
水下声基阵信号处理

水声定位技术与发展趋势综述1 引言地球表面积的71%是海洋,海洋里蕴藏着丰富的生物和矿物质资源,是人类今后生存和发展的第二个空间。
而水下探测设备则是人类开发海洋的重要帮手,更是海军和民用航海事业不可缺少的组成部分。
水声定位系统由水下声标、船上的声学接收、发射设备组成的定位系统,是水下探测设备的重要组成部分,研究水声定位技术意义重大。
2 水声定位技术迄今为止,水下目标定位跟踪的主要手段仍是依赖于几何原理的水声学定位方法。
通常用声基线的距离或激发的声学单元的距离来对声学定位系统进行分类。
水声定位系统,根据所实施的原理和测量手段不同,又可分为“方位--方位”、“方位--距离”和“距离--距离”三种测量系统。
大部分的长基线、短基线系统都属于后者。
距离测量水声定位系统是通过测量水下声源所辐射的声信号从发射到接收所经历的时间及声速来确定声源到各接收点的距离,从而实现对目标进行定位的。
根据接收基阵的基线可以将水声定位技术分为三类:长基线(LongBase-Line)、短基线(Short Base-Line)、超短基线(Ultra Short Base-Line),另外还有一种组合定位系统,下面作详细介绍。
2.1超短基线定位系统(SSBL/USBL)超短基线定位系统(SSBL/USBL)的声基阵由集中安装在一个收发器中的所有声单元 (t>3)组成。
声单元之间的相互位置精确测定,组成声基阵坐标系,声基阵坐标系与船的坐标系之间的关系要在安装时精确测定。
包括位置和姿态(声基阵的安装偏差角度:横摇、纵摇和水平旋转)。
系统通过测定声单元的相位差来确定换能器到目标的方位(垂直和水平角度)。
换能器与目标的距离通过测定声波传播的时间,再用声速剖面修正波束线确定距离。
超短基线定位系统的示意图见图1。
图1 超短基线定位不意图超短基线定位系统的优点是整个系统的构成简单,操作方便,不需要组建水下基线阵,测距精度高。
超短基线定位系统的缺点是需要做大量的校准工作。
水声换能器与基阵的测量

水声换能器与基阵的测量1. 阻抗水声换能器的阻抗通常是指在水声换能器电端测得的电阻抗,具体是指在某一固定频率下加到换能器输入端的瞬时电压与流入换能器的瞬时电流的复数比,单位为欧姆,用符号Z表示。
水声换能器的电导纳则是电阻抗的倒数,即指在某一固定频率下流入换能器的瞬时电流与加到换能器输入端的瞬时电压的复数比,单位为西门子,用符号Y表示。
利用阻抗分析仪可直接测出换能器在串联模式下的电阻抗和并联模式下的电导纳,但该方法通常只用于换能器在小信号状态下的阻抗或导纳测量。
2. 发送响应及声源级水声发射换能器的发送响应按参考电学量的不同分为发送电压响应、发送电流响应和发送功率响应。
在水下电声测量中,人们通常习惯用分贝来表示某一参量在某一空间点、某一时刻的幅度,相对于一个参考幅度的大小,即所谓级的概念,如声压级、声源级、发送电压响应级、发送电流响应级和发送功率响应级等等。
(1)发送电压响应换能器发送电压响应是指,在指定方向上,离发射换能器有效声中心1m处的表观声压与加到换能器输入端的电压之比。
(2)发送电流响应换能器发送电流响应是指,在指定方向上,离发射换能器有效声中心1m处的表观声压与流入换能器的电流之比。
(3)发送功率响应换能器发送功率响应是指,在指定方向上,离发射换能器有效声中心1m处的表观声压的平方与输入换能器的电功率之比。
(4)声源级发射换能器的发射声源级是指,在指定方向上,离发射换能器有效声中心1m处的表观声压级。
3. 指向性指向性是指换能器的发送响应或自由场灵敏度随发送或入射声波方向变化的特性,一般用指向性图、指向性因数和指向性指数来表示。
指向性是一个方向的函数,通常用D(θ,φ)来表示,其中φ是水平角,θ是垂直角。
因此指向性图是个空间立体图,而且它又是频率的函数,所以指向性图通常要标明测量的频率和测量平面。
在实际测量中,指向性图是二维的,通常是指水平指向性图或垂直指向性图。
如果换能器是互易的,则它的发射指向性图和接收指向性图是相同的,但在高功率状态下,由于非线性的影响,发射指向性图和接收指向性图稍有差异。
(完整版)水声换能器的基础知识

水声换能器基础知识地球表面积的71%是海洋,海洋里蕴藏着丰富的生物和矿物质资源,是人类今后生存和发展的第二个空间。
而声纳这一水下探测设备则是人类开发海洋的重要帮手,更是海军和民用航海事业不可缺少的组成部分。
声纳设备的功能,就是收听水下有用信号并把它转变为电信号以供视听;或者自身产生一个电信号再转变为声信号在水介质中传播,遇到目标后反射回来再进行接收,转变为电信号供收听或观察,由此来判断被测物体的方位和距离。
在这个水下电声信号的转换过程中,关键设备就是水声换能器或是换能器阵。
1. 水声换能器的应用目前,水声换能器已经普遍地应用到工业、农业、国防、交通和医疗等许多领域。
这里仅介绍几种在水下探测方面的应用:(1)在测深方面的应用:为保证航行安全,无论是军舰或是民船都要安装测深声纳;专门的航道检测船只都配备精度高、功能齐全的测深仪。
根据测深深度的不同,测深换能器的频率和功率也相差甚远。
以频率范围在10kHz~200kHz的较多,功率从数瓦到数十千瓦不等,其中,高频小功率用于内河或浅海,低频大功率用于远洋、大深度。
对这类换能器的要求是波束稳定、主波束尖锐。
(2)在定位和测距方面的应用:测量航船对地的航行速度,大多采用多普勒声纳,利用四个性能相同的换能器分别排列与龙骨相垂直的左右舷方向上。
一般工作频率在100kHz~500kHz。
(3)在海洋考察和海底地层勘探方面的应用:海底地质调查主要采用低频大孔径声纳。
拖曳式声纳是当今装在活动载体上最大尺寸的声学基阵,作用距离也最远。
水中成像方面,通常采用高频旁视声纳,在船底左右舷对称地沿龙骨平行方向装两个直线基阵,各自向海底发射扇形指向性声束,然后接收来自海底的反射波,由于海底凹凸不平反射波强度有别,在显示图像上就会出现亮度不同的图像,因为工作频率较高,声信号衰减较快,作用距离不远,现在试验的频率范围为数十千赫到500千赫。
2. 水声换能器的分类换能器按照不同的机电能量转换原理可以分为电动式、电磁式、磁致伸缩式、静电式、压电式和电致伸缩式等。
水声定位

各个水听器测的与目标的斜距为:
长基线水声定位系统
目标与原点的斜距为:
将式中
展开得:
从而得到:
ri
消去
r
可得方程:
用矩阵可写作:
其中,
但矩阵A奇异,因此方程有多个解,得不到唯一解。考虑再增加一个水听器, 并测得它与目标的斜距 r4,可得另一个方程:
消去
r 得:
用上式代替矩阵方程第三行,则矩阵A非奇异,方程组可得到唯一解。 但当水听器都位于同一水平面,且 仍然是奇异矩阵,可用三个水听器得测量值以及 已知时 ,矩阵A 联立,得方程组:
在海底布设由T1,T2,T3组成的水听 器接收基阵,在直角坐标系坐标分别为
T1 (x1, y1,z1), T2 (x 2 , y2 ,z2 ), T3 (x3 , y3 ,z3 ) ,水听器位置
校准后,则假定坐标为已知量。 各个水听器到原点的距离为:
di xi 2 yi2 zi2 (i 1, 2,3)
短基线水声定位
系统组成: 1) 被定位的船或潜器上至少有3个水听器。 2) 间距在5~20米的量级。 3) 水面船上面装有问答机 4) 一个同步信标(或应答器)置于海底 工作原理 问答机接收来自信标(或应答器)发出的信号, 根据信号到达各基元的时间,求得斜距,据此可计算 水面船相对于信标(或应答器)的位置。
超短基线定位系统的基阵长度一般在几厘米到几十厘米,与前两种不同,利
用各个基元接收信号间的相位差来解算目标的方位和距离。 若按照工作方式划分,以上三种定位系统都可以选择使用同步信标或应
答器工作方式。
询问器或问答机:是安装在船上的发射器和接收器。它以一个频率发出询 问信号,并以另一频率接收回答信号。接收频率可以多个,对应于多个应 答器,常常只相隔0.5kHz。发射和接收换能器是无指向性的。 应答器:是置于海底或装在载体上的发射/接收器。它接收问答机的询问信 号(或指令),发回另一与接收频率不同的回答信号。收发换能器无指向 性的。 声信标:置于海底或装在水下载体(潜器)上的发射器,它以特定频率不 停的发出声脉冲。它是自主工作的。声信标分同步式和非同步式两种。 响应器:置于海底或装在水下载体(潜器)上的发射器,它由外部硬件 (如控制线)的控制信号触发,发出询问信号。问答机或其它水听器接收 它的信号。它常用于噪声较强的场合。
水声换能器的背景与发展现状

为什么需要宽带?
换能器的带宽对信号传输有着非常重要的影响。在频域, 影响传输声信号的频谱;在时域,影响信号的波形。
宽带的好处
1.换能器能够宽带发射,使发射信号不局限于单频脉冲, 还可以发射调频信号。
2.对于通讯声纳和水下机器人,宽带换能器可以提高信号 的传输速率、提高通讯的可靠性和保密性、降低误码率。
为什么需要大功率?
远程声呐必然要求声呐具有很大的声功率 ,根据文献,在100Hz若要得到210dB( 参考1μPa.m)声源级需要4×103W的辐 射声功率而在低频时辐射声阻抗中阻的分 量很小,导致辐射到水中的的声功率非常 小,即使机械换能效率很高,总效率也将 是低的,因而想要得到200dB以上的声源 级具有相当的难度。
多模耦合拓展带宽的原理
能够产生多模多谐振的方法主要是在一个振动系统中产生 两种以上模态的振动或者是调节一种模态的二次、三次倍 频与基频间隔。不同模态或阶次的组合频率响应不产生间 断和过深的凹谷以实现换能器宽带工作 。
各种Tonpilz换能器
带匹配层纵振振动换能器
混合激励换能器
双前盖板换能器
ቤተ መጻሕፍቲ ባይዱ
纵弯耦合换能器
6、弯曲圆盘换能器
该换能器中间是金属片,正反两面粘附着压电陶 瓷圆片,利用压电陶瓷的厚度振动带动金属片的 弯曲振动,从而实现低频发射。
与之类似的三叠片换能器广泛应用于石油测井行 业。
四、水声换能器的测量
大型消声水池
桁车测量系统
换能器实验测量系统
谢谢
(4)弯张换能器的不利方面是:不适合大深度工作,原 因是传统的弯张换能器直接对壳体施加预应力,在深水中, 巨大的静水压力作用在壳体上,减少了有源材料的预应力, 从而使有效功率降低。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
水声换能器与基阵的测量
1. 阻抗
水声换能器的阻抗通常是指在水声换能器电端测得的电阻抗,具体是指在某一固定频率下加到换能器输入端的瞬时电压与流入换能器的瞬时电流的复数比,单位为欧姆,用符号Z表示。
水声换能器的电导纳则是电阻抗的倒数,即指在某一固定频率下流入换能器的瞬时电流与加到换能器输入端的瞬时电压的复数比,单位为西门子,用符号Y表示。
利用阻抗分析仪可直接测出换能器在串联模式下的电阻抗和并联模式下的电导纳,但该方法通常只用于换能器在小信号状态下的阻抗或导纳测量。
2. 发送响应及声源级
水声发射换能器的发送响应按参考电学量的不同分为发送电压响应、发送电流响应和发送功率响应。
在水下电声测量中,人们通常习惯用分贝来表示某一参量在某一空间点、某一时刻的幅度,相对于一个参考幅度的大小,即所谓级的概念,如声压级、声源级、发送电压响应级、发送电流响应级和发送功率响应级等等。
(1)发送电压响应
换能器发送电压响应是指,在指定方向上,离发射换能器有效声中心1m处的表观声压与加到换能器输入端的电压之比。
(2)发送电流响应
换能器发送电流响应是指,在指定方向上,离发射换能器有效声中心1m处的表观声压与流入换能器的电流之比。
(3)发送功率响应
换能器发送功率响应是指,在指定方向上,离发射换能器有效声中心1m处的表观声压的平方与输入换能器的电功率之比。
(4)声源级
发射换能器的发射声源级是指,在指定方向上,离发射换能器有效声中心1m处的表观声压级。
3. 指向性
指向性是指换能器的发送响应或自由场灵敏度随发送或入射声波方向变化的特性,一般用指向性图、指向性因数和指向性指数来表示。
指向性是一个方向的函数,通常用D(θ,φ)来表示,其中φ是水平角,θ是垂直角。
因此指向性图是个空间立体图,而且它又是频率的函数,所以指向性图通常要标明测量的频率和测量平面。
在实际测量中,指向性图是二维的,通常是指水平指向性图或垂直指向性图。
如果换能器是互易的,则它的发射指向性图和接收指向性图是相同的,但在高功率状态下,由于非线性的影响,发射指向性图和接收指向性图稍有差异。
指向性图通常要作归一化处理,因为它是任一方向上发送响应或接收灵敏度相对于参考方向(通常为声轴方向)上发送响应或接收灵敏度的变化曲线,即将轴向发送响应或接收灵敏度设为0dB,再将任意方向上的发送响应或接收灵敏度与轴向发送响应或接收灵敏度的比值随方向的变化用极坐标或直角坐标下的图形表示出来。
指向性图的特征参量通常用波束宽度和最大旁瓣级来表示。
波束宽度指从主轴的最大响应下降3dB(或6dB、10dB)时左右两个方向的角度,通常称之为下降3dB(或6dB、10dB)的波束宽度。
最大旁瓣级是指最大旁瓣比主轴的最大响应下降的分贝数。
4. 电声线性范围
发射换能器的输出量与输入量之比保持线性关系的输入量的取值范围称之为换能器的电声线性范围。
通常发射换能器的输出量是指辐射声压,输入量是指输入电压。
在直角坐标系中,以输入电压为横坐标,以辐射声压为纵坐标,则换能器的输出量与输入量的关系曲线的直线部分是线性区域,其它部分则为非线性区域。
5.电声效率
水声换能器的电声效率通过分别测得被测换能器的输入电功率和辐射声功率。
(1)输入电功率
水声换能器的输入电功率通过分别测量加到被测换能器输入端的端电压和流入被测换能器的电流以及电压、电流间的相位差。
(2)辐射声功率
水声换能器的辐射声功率通过分别测量远场d米处的声压和它的指向性因数。