假设检验例子

合集下载

参数估计假设检验练习题

参数估计假设检验练习题

第三章 假设检验例子例1:某糖厂用自动打包机装糖。

已知每袋糖的重量(单位:千克)服从正态分布()2~,X N μσ。

今随机抽查9袋,称出它们的重量并计算得到*48.5, 2.5x s ==。

取显著性水平0.05α=。

在下列两种情形下分别检验()01:50 :50H H μμ=≠22(1) 4 (2)σσ=未知解:()()2*01220.97512~,48.5, 2.5,9,0.05:50 :50(1) 4 (2)(1) 2.251.962.25 1.96X N x s n H H u uu αμσαμμσσ-=====≠======>糖的重量,现在已知显著性水平,在两种情形下检验:未知解:计算检验统计量的观测值 临界值,因为,所以拒绝原假设即不能认为糖的重量50的平均值是千克,即打包机工作不正常。

()()()()2*0120.97512~,48.5, 2.5,9,0.05:50 :50(2) 1.818 2.306 1.8 2.306X N x s n H H t t n t αμσαμμσ-=====≠===-==<糖的重量,现在已知显著性水平,在两种情形下检验:未知解:计算检验统计量的观测值 临界值,因为,所以不能拒绝原假设,即不能认为打包机工作不正常。

例2:在上题中,试在显著性水平0.1α=下检验()2201: 4 :4H H σσ=>()()()()*2201*22202210.948.5, 2.5,9,0.1: 4 :4112.51813.36212.513.362.x s n H H n s n αασσχσχχ-=====>-==-==<显著性水平,解:计算检验统计量的观测值 临界值,因为,所以不能拒绝原假设,即不能认为打包机工作不正常例3:监测站对某条河流每日的溶解氧(DO )质量浓度记录了30个数据,并由此算得 2.52, 2.05x s ==。

已知这条河流的每日DO 质量浓度服从()2,N μσ,试在显著性水平0.05α=下检验()01: 2.7 : 2.7H H μμ=≠。

假设检验在生活中的应用举例

假设检验在生活中的应用举例

假设检验在生活中的应用举例
统计学里的假设检验是一种用来证明或拒绝统计推断的重要方法,在生活中也有广泛的应用。

例如,一些药物的有效性和安全性都是通过假设检验来证明的。

比如,当一种新药在市场上推出时,为了证明它是否有效,药会公司会将这种新药与标准药物进行比较,来检验它们对治疗一种疾病的疗效是否相同。

此外,假设检验在社会研究,经济,教育等方面也有很多应用。

比如,当一位学生上了新教授的课,他可以证明新教授的方法是否比以前老师的教学方法有效,以便更好地应对。

另外,假设检验也可以用来测量新的经济政策或行业实践是否有效。

例如,政府可以使用假设检验来证明一项政策是否可以解决特定问题,还是政府的另一项政策更有效。

从上面可以看出,假设检验在社会、经济、教育以及药物等日常生活中,具有重要意义。

必须强调的是,它不是替代实验和推断的,而是对实验和推断结果的重要辅助工具。

它可以为研究人员提供一种直接和有效的方法来解决疑问。

双样本假设检验例子

双样本假设检验例子

双样本假设检验例子
以下是 7 条关于双样本假设检验的例子:
1. 你说巧不巧,就像比较两组学生的考试成绩一样。

比如咱班和隔壁班这次数学考试平均分,咱就可以用双样本假设检验来瞅瞅,咱班是不是真比隔壁班厉害呢!
2. 哎呀呀,这就好比比较两种不同品牌的手机电池续航能力呀!看看到底是这个品牌牛,还是那个品牌强,双样本假设检验不就能帮忙判断了嘛!
3. 嘿,你想想看,就如同比较两位运动员的训练效果呀。

看谁在经过一段时间训练后提升更大,这时候双样本假设检验就派上用场啦!
4. 哇塞,这不就像是比较两家餐厅做同一道菜的口味嘛!一家说自己做的最好吃,另一家也不甘示弱,那用双样本假设检验来比比看嘛,到底谁在吹牛!
5. 咦,这不类似于比较两种减肥方法的效果嘛!一种说能快速掉秤,另一种说更健康有效,那还不赶紧用双样本假设检验来瞧瞧到底咋回事!
6. 哟呵,这跟比较两个城市的空气质量不是差不多嘛!到底哪个城市空气更好呢,双样本假设检验就能给咱个答案呀!
7. 哈哈,就好像比较两种感冒药的疗效呀!一种药说吃了立马见效,另一种药也说自己效果超好,那咱就用双样本假设检验来验证一下呗!
我觉得双样本假设检验真的超级实用啊,可以帮我们在很多不同的情况下去比较和判断,做出更准确的决策呢!。

第三章假设检验例子

第三章假设检验例子

试问,在显著性水平
25%下,能否认为每匹布上的疵点数服从泊松分布。
例:一位环保工程师要考察某条河流的污染情况。 他收集了河流与某个居民点的距离 X (单位:公里) 及河流该处的生化需氧量 Y (单位: 104 mL / L )的 15 对数据如下表:
xi yi 65 2 9 18 20 25 28 50
显著性水平 =0.1 下,对总体 X 是否服从二项分 布 B 2, 0.5 作 2 拟合优度检验,其中 X 表示两 个孩子的家庭中男孩个数,并对结论作直观解释。
例:某厂在全面质量管理工作中,抽查了 50 匹布, 记录下它们的疵点数:
疵点数 频数 0 1 2 3 4
21 18 7 3 1
更新设备后,从新生产的产品中随机抽取 100 个,
测得平均重量 x 12.5 克 , 如果方差不变,问更新 设备后,产品的平均重量是否有显著变化 X ~ N , 2 , 今从一批产品中抽查 10 根测其折断力,算得
均未知,试问在显著性水平 5%下,能否认为距离与 生化需氧量无关?
例:为了考察某地区 50 岁以上的成年人吸烟 习惯与患肺癌之间的关系,调查了 112 名对象, 得列联表如下:
人数 吸烟 不吸烟 n j
患肺癌 未患肺癌 18 12 4 78
ni
,试问在
n 112
显著性水平 1%下,能否认为吸烟习惯与患肺癌无关?
例:为了检查一颗骰子是否均匀,把这颗骰子掷了 100 次,得结果如下表:
出现点数 频数 1 2 3 4 5 6
14 15 13 20 18 20
试在显著性水平
=0.05 下作 2 拟合优度检验。
例:为了检验某厂生产的灯泡的使用寿命是否服从 指数分布,随机地抽查了 150 只灯泡,测得它们的 平均使用寿命 x 200 小时 ,把这 150 个数据 分组整理后如下表:

第四章 假设检验(1)

第四章 假设检验(1)
第四章 假设检验
§4.1
关于总体未知分布或对已知分布总体中未知 参数的假设称为统计假设,简称假设;
对样本进行考察,从而决定假设是否成立的 方法称为假设检验,简称检验;
例1:罐装可乐的标准容量是250毫升
生产流水线上罐装可 乐不断地封装,然后装箱 外运. 怎么知道这批罐装 可乐的容量是否合格呢? 通常的办法是每隔一段时间进行抽样检查.
例2(医疗领域)为了检验某种新疗法是否比传统 疗法更有效,对40名患者进行实验。把病人分 成两组,每组20人,第一组采用新疗法,第二 组采用传统疗法。从治疗结果表中,我们能否 认为新疗法比传统疗法更有效?即第一组的康 复人数比第二组多的原因是因为新疗法效果更 好,还是由随机因素引起的?
疗法 新疗法 传统疗法 康复 12 9 未康复 8 11
假设检验中的两类错误 小概率事件不管多小都可能发生,再加上 样本的随机性,它们可能会影响检验结果。 实际情况
决定
拒绝H0 接受H0 以真为假(弃真) 以假为真(取伪)
H0为真 第一类错误 正确
H0不真 正确 第二类错误
P(拒绝H 0 | H 0为真) P(接受H 0 | H 0为假)
2 2 0 2 2 0
2.检验统计量

2
(n 1) S
2

2 0
~ (n 1)
2
2 3. P{12 / 2 (n 1) 2 / 2 ( n 1)} 1
得拒绝域是 (0,
2 1 / 2
(n 1)) ( / 2 (n 1), )
期望已知,关于方差的假设检验
双侧检验:
1.提出假设: H 0 : , H 1 :
2 2 0 2

假设检验的经典案例

假设检验的经典案例

假设检验的经典案例那我给你讲个超有趣的假设检验案例吧。

比如说,有个老板觉得他厂里新换的那批机器生产的产品质量更好。

原来那批旧机器生产的产品平均重量是500克,他就想验证这个想法对不对。

这就是假设检验的开始啦。

首先他提出了两个假设,原假设就像是保守派的想法:“新机器生产的产品平均重量和旧机器一样,还是500克”,用专业点的话就是H0:μ = 500。

那另一个假设呢,就是他心里希望的那个:“新机器生产的产品平均重量不是500克”,也就是H1:μ≠ 500。

然后呢,他就从新机器生产的产品里随机抽了一些样品,比如说抽了50个。

然后把这些样品的重量都测出来,再计算出这些样品的平均重量,还得算出样本的标准差。

假如算出来这50个样品的平均重量是505克,样本标准差是10克。

接下来就是用统计的魔法啦。

通过一些数学公式(咱就不细究那些复杂公式啦)算出一个检验统计量的值。

如果这个值落在一个很特别的区间里,就像这个产品重量的例子,如果按照统计学的标准,这个值落在了拒绝原假设的区间里。

那就相当于有足够的证据说:“老板啊,你猜得没错,新机器生产的产品平均重量和旧机器不一样呢。

”如果这个值落在了接受原假设的区间里,那就是说:“老板啊,你可能想多啦,新机器生产的产品平均重量和旧机器没区别。

”再给你讲个关于减肥的假设检验例子。

有个人说他吃了一种新的减肥药很有效果。

那原假设就是:“吃这个减肥药没效果,体重不变”,假设体重原来150斤,那H0:μ = 150。

备择假设就是:“吃这个减肥药有效果,体重变了”,H1:μ≠150。

然后他每天称体重,记录了一个月的数据。

算出这一个月体重的平均值和标准差。

要是最后计算出来的结果显示这个平均值和150斤差得还挺多,而且达到了可以拒绝原假设的程度,那就是这个减肥药可能真的有用。

要是没达到那个标准,那就可能这个减肥药就是个噱头,没起啥作用。

假设检验求拒绝域的例题

假设检验求拒绝域的例题

假设检验求拒绝域的例题假设检验是统计学中常用的一种方法,用于判断某个假设是否成立。

在进行假设检验时,我们需要确定一个拒绝域,如果样本观测值落在拒绝域内,则拒绝原假设;反之,如果样本观测值落在拒绝域外,则接受原假设。

下面我将给出一个例题来说明如何求解拒绝域。

假设有一家电子公司声称他们生产的电视机平均寿命超过5年,现在我们想要进行假设检验来验证这个说法。

我们采集了一组样本数据,包括10台电视机的寿命(以年为单位),数据如下:4.9,5.2, 5.5, 5.3, 5.8, 4.7, 5.1, 5.4, 5.6, 5.0。

我们的原假设(H0)是,电视机的平均寿命不超过5年,即μ ≤ 5。

备择假设(H1)是,电视机的平均寿命超过5年,即μ > 5。

接下来,我们需要确定拒绝域。

在这个例子中,我们可以使用t 分布进行假设检验。

根据样本数据计算得到样本均值为5.29,样本标准差为0.37。

首先,我们需要确定显著性水平(α),通常取0.05或0.01。

假设我们选择α = 0.05。

接下来,根据样本数据和假设,我们可以计算出 t 统计量的值。

t 统计量的计算公式为:t = (样本均值假设值) / (样本标准差/ √n)。

其中,n为样本容量。

在这个例子中,假设值为5,样本均值为5.29,样本标准差为0.37,样本容量为10。

代入公式计算得到:t = (5.29 5) / (0.37 / √10) ≈ 1.96。

接下来,根据 t 分布表,查找临界值。

对于单侧检验,我们需要找到右侧临界值。

在 t 分布表中,自由度为 n-1 = 9,对应的临界值为t0.05(9) ≈ 1.833。

由于 t 统计量的值1.96大于临界值1.833,落在拒绝域内,因此我们拒绝原假设,即有足够的证据表明这家电子公司声称的电视机平均寿命超过5年是正确的。

在这个例子中,拒绝域是 t > 1.833,即如果 t 统计量的值大于1.833,则拒绝原假设。

假设检验例题 (5)

假设检验例题 (5)

假设检验例题引言假设检验是统计学中常用的一种推断方法,用于判断一个统计推断的结论是否可靠。

通常,假设检验的过程包括假设的设定、对样本数据的收集和分析、推断的结论以及结果的解释。

本文将通过一个具体的例子,详细介绍假设检验的步骤和方法。

例题背景假设某家电公司声称他们生产的电视机平均使用寿命超过5年。

我们对该公司的50台电视进行了检测,并记录下每台电视使用的寿命。

现在我们的任务是根据样本数据,判断该公司声称的平均使用寿命是否可信。

假设的设定在进行假设检验之前,我们需要先设定原假设(H0)和备择假设(H1)。

原假设通常是我们需要验证的观点,备择假设则是对原假设的否定。

对于本例,我们的原假设是:该家电公司生产的电视机平均使用寿命超过5年。

备择假设是:该家电公司生产的电视机平均使用寿命不超过5年。

数据收集与分析现在我们已经有了50台电视机的使用寿命数据,下面是样本数据的统计信息:•样本均值(x̄): 5.2年•样本标准差(s): 0.8年接下来,我们需要选择一个适当的假设检验方法。

根据样本数量和总体标准差是否已知,我们可以选择使用t检验或者z检验。

由于总体标准差未知,我们将选择使用t检验。

在进行t检验前,我们还需要设定显著性水平(α),它表示我们能够接受原假设的风险。

常用的显著性水平有0.05和0.01。

在本例中,我们选择α为0.05,意味着我们能够接受5%的错误率。

推断的结论现在我们可以进行假设检验了。

根据样本数据和设定的假设,我们可以计算出t值。

根据t值和t分布的临界值,我们可以判断是否拒绝原假设。

首先,我们计算出t值的公式如下:t值公式t值公式其中,x̄表示样本均值,μ表示总体均值,s表示样本标准差,n表示样本数量。

我们将通过计算得到的t值与t分布的临界值进行比较。

根据t检验的临界值表,当自由度为49(即n-1=50-1)时,对应的双侧检验的临界值约为2.01。

假设计算得到的t值为3.0,显著性水平为0.05。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例2: 在一项新广告活动的跟踪调查中,在被调查 的400人中有240人会记起广告的标语,试求会 记起广告标语占总体比率的95%置信度的估计区 间。
假设检验: 1:某橡胶厂生产汽车轮胎,根据历史资料统计结 果,平均里程为25000公里,标准差为1900公里。 现采用一种新的工艺制作流程,从新批量的轮胎 中随机抽取400个作实验,求得样本平均里程为 25300公里,试按5%的显著性水平判断新批量 轮胎的平均耐用里程与以前生产的轮胎的耐用里 程有没有显著的差异,或者它们属于同一总体的 假设是否成立。
参数估计: 例1: 麦当劳餐馆在7星期内抽查49位顾客的消费额(元)如 下,求在概率90%的保证下,顾客平均消费额度估计区 间。 15 、24、38、26、30、42、18 30、25、26、34、44、20、35 24、26、34、48、18、28、46 19、30、36、42、24、32、45 36、21、47、26、28、31、42 45、36、24、28、27、32、36 47、53、22、24、3者满意其产品 的质量,一家市场调查公司受委托调查该公司此 项声明是否属实,随机抽样调查625位消费者, 表示满意该公司产品质量者有500人,试问在 0.05的显著性水平下,该公司的声明是否属实。
相关文档
最新文档