初一下册与《整式的乘法》有关的公式

合集下载

北师大版七年级数学下册《整式的乘法》整式的乘除PPT优质课件

北师大版七年级数学下册《整式的乘法》整式的乘除PPT优质课件
所以2n-2-n=1且3m+1+m-6=3.
已知 求 的值.
所以m、n的值分别是m=1,n=2.
解:
所以2m+2=4且3m+2n+2=9.
故 m=1, n=2
ZYT
例2 有一块长为xm,宽为ym的长方形空地,现在要在这块地中规划一块长 xm,宽 ym的长方形空地用于绿化,求绿化的面积和剩下的面积.
3a3 ·2a2=6a5
3x2 ·4x2=12x4
5y3·3y5=15y8
×
×
×
ZYT
计算:(1) 5x3·2x2y ; (2) -3ab·(-4b2) ;(3) 3ab·2a; (4) yz·2y2z2;
(1)5x3·2x2y=(5×2)·(x3·x2)·y=10x5y.(2)-3ab·(-4b2)=[(-3)×(-4)]·a·(b·b2)=12ab3.(3)3ab·2a=(3×2)·(a·a)·b=6a2b.(4)yz·2y2z2=2·(y·y2)·(z·z2)=2y3z3.
解:
ZYT
5.若长方形的宽是a2,长是宽的2倍,则长方形的面积为 _____.【解析】长方形的长是2a2,所以长方形的面积 为a2·2a2=2a4.
2a4
6.一个三角形的一边长为a,这条边上的高的长度是它的 那么这个三角形的面积是_____.【解析】因为三角形的高为 ,所以这个三角形的 面积是
=6a3-12a2+9a-6a3-8a2
=-20a2+9a.
原式=-20×4-9×2=-98.
方法总结:在做乘法计算时,一定要注意单项式的符号和多项式中每一项的符号,不要搞错.
ZYT
先化简再求值:
解:原式=x4-x3+x2-x4+x3-x2+5x

湘教版七年级数学下册第二章--整式的乘法知识点

湘教版七年级数学下册第二章--整式的乘法知识点

湘教版七年级数学下册第二章--整式的乘法知识点(总5页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除七年级下册第二章整式的乘法1.同底数幂相乘,底数不变,指数相加。

a n a m=a m+n(m,n是正整数)例:2.幂的乘方,底数不变,指数相乘。

(a n)m=a mn(m,n是正整数)例:3.积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘。

(ab)n=a n b n(m,n是正整数)例:4.单项式与单项式相乘,把它们的系数、同底数幂分别相乘。

例:5.单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加。

a(m+n)=am+an6.多项式与多项式相乘,先用一个多项式的每一项分别乘另一个多项式的每一项,再把所得的积相加。

(a+b)(m+n)=am+an+bm+bn例:7.平方差公式,即两个数的和与这两个数的差的积等于这两个数的平方差。

(a+b)(a-b)=a2-b2 (公式右边:符号相同项的平方-符号相反项的平方) 例:8.完全平方公式口诀:头平方和尾平方,头尾两倍在中央,中间符号是一样。

(a+b)2=a2+2ab+b2 =a2+b2+2ab (a-b)2=a2-2ab+b2=a2+b2-2ab例:9.公式的灵活变形:(a+b)2+(a-b)2=(a2+2ab+b2)+(a2-2ab+b2)=2a2+2b2,(a+b)2-(a-b)2=(a2+2ab+b2)-(a2-2ab+b2)=2ab+2ab=4ab,a2+b2=(a+b)2-2ab,④a2+b2= (a-b)2+2ab,⑤(a+b)2=(a-b)2+4ab,⑥(a-b)2=(a+b)2-4ab01各个击破命题点1幂的运算【例1】若a m+n·a m+1=a6,且m+2n=4,求m,n的值.【思路点拨】已知m+2n=4,只要再找到一个关于m,n的二元一次方程即可组成方程组求解.可根据同底数幂的乘法法则,由等式左右两边a的指数相等即可得到.【解答】【方法归纳】对于乘方结果相等的两个数,如果底数相等,那么指数也相等.1.(徐州中考)下列运算正确的是( )A.3a2-2a2=1 B.(a2)3=a5C.a2·a4=a6D.(3a)2=6a22.若2x=3,4y=2,则2x+2y的值为________.命题点2多项式的乘法【例2】化简:2(x-1)(x+2)-3(3x-2)(2x-3).【解答】【方法归纳】在计算多项式乘法时,要注意不漏项,不重项.多项式与多项式相乘,结果仍是多项式,在合并同类项之前,积的项数等于两个多项式项数的积.3.(佛山中考)若(x+2)(x-1)=x2+mx+n,则m+n=( )A.1 B.-2C.-1 D.24.下列各式中,正确的是( )A.(-x+y)(-x-y)=-x2-y2B.(x2-1)(x-2y2)=x3-2x2y2-x+2y2C.(x+3)(x-7)=x2-4x-4D.(x-3y)(x+3y)=x2-6xy-9y2命题点3适用乘法公式运算的式子的特点【例3】下列多项式乘法中,可用平方差公式计算的是( )A.(2a+b)(2a-3b) B.(x+1)(1+x)C.(x-2y)(x+2y) D.(-x-y)(x+y)【方法归纳】能用平方差公式进行计算的两个多项式,其中一定有完全相同的项,剩下的是互为相反数的项,其结果是相同项的平方减去相反项的平方.5.下列多项式相乘,不能用平方差公式的是( )A.(-2y-x)(x+2y)B.(x-2y)(-x-2y)C.(x-2y)(2y+x)D.(2y-x)(-x-2y)6.下列各式:①(3a-b)2;②(-3a-b)2;③(-3a+b)2;④(3a+b)2,适用两数和的完全平方公式计算的有________(填序号).命题点4利用乘法公式计算【例4】先化简,再求值:(2a-b)(b+2a)-(a-2b)2+5b2.其中a=-1,b=2.【思路点拨】把式子的前两部分分别运用平方差公式和完全平方公式化简.【解答】【方法归纳】运用平方差公式时,要看清两个因式中的相同项和相反数项,其结果是相同项的平方减去相反数项的平方.7.下列等式成立的是( )A.(-a-b)2+(a-b)2=-4abB.(-a-b)2+(a-b)2=a2+b2C.(-a-b)(a-b)=(a-b)2D.(-a-b)(a-b)=b2-a28.若(a2+b2+1)(a2+b2-1)=15,那么a2+b2的值是________.9.计算:(1)(a+b)2-(a-b)2-4ab;(2)[(x+2)(x-2)]2;(3)(a+3)(a-3)(a2-9).命题点5乘法公式的几何背景【例5】(1)如图,请用两种不同的方式表示图中的大正方形的面积;(2)你根据上述结果可以得到一个什么公式?(3)利用这个公式计算:1022.【思路点拨】根据图形可以得到:图形的面积有两种计算方法,一种是根据正方形的面积等于边长的平方计算;另一种方法是图形中两个长方形面积与两个正方形的面积的和,即可得到公式;然后利用公式计算即可.【解答】【方法归纳】根据同一个图形的面积的两种表示,所得到的代数式的值相等,由此可得到对应的代数恒等式.10.将图1中阴影部分的小长方形变换到图2位置,根据两个图形的面积关系可以得到一个关于a、b的恒等式为( )图 1 图2A.(a-b)2=a2-2ab+b2B.(a+b)2=a2+2ab+b2C.(a+b)(a-b)=a2-b2D.a(a-b)=a2-ab11.(枣庄中考)图1是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图2那样拼成一个正方形,则中间空的部分的面积是( )A.2ab B.(a+b)2C.(a-b)2D.a2-b202整合集训一、选择题(每小题3分,共24分)1.(钦州中考)计算(a3)2的结果是( )A.a9B.a6C.a5D.a2.(巴彦淖尔中考)下列运算正确的是( )A.x3·x2=x5B.(x3)2=x5C.(x+1)2=x2+1 D.(2x)2=2x23.如果a2n-1·a n+5=a16,那么n的值为( )A.3 B.4C .5D .64.下列各式中,与(1-a)(-a -1)相等的是( )A .a 2-1B .a 2-2a +1C .a 2-2a -1D .a 2+15.如果(x -2)(x +3)=x 2+px +q ,那么p 、q 的值为( )A .p =5,q =6B .p =-1,q =6C .p =1,q =-6D .p =5,q =-66.(-x +y)( )=x 2-y 2,其中括号内的是( )A .-x -yB .-x +yC .x -yD .x +y7.一个长方体的长、宽、高分别是3a -4、2a 、a ,它的体积等于( )A .3a 3-4a 2B .a 2C .6a 3-8aD .6a 3-8a 28.已知a =814,b =275,c =97,则a ,b ,c 的大小关系是( )A .a >b >cB .a >c >bC .a <b <cD .b >c >a 二、填空题(每小题4分,共16分)9.若a x =2,a y =3,则a 2x +y=________.10.计算:3m 2·(-2mn 2)2=________.11.(福州中考)已知有理数a ,b 满足a +b =2,a -b =5,则(a +b)3·(a -b)3的值是________.12.多项式4x 2+1加上一个单项式后,使它能成为一个整式的完全平方,请写出所有可能的单项式为________. 三、解答题(共60分) 13.(12分)计算:(1)(-2a 2b)3+8(a 2)2·(-a)2·(-b)3; (2)a(a +4b)-(a +2b)(a -2b)-4ab ; (3)(2x -3y +1)(2x +3y -1).14.(8分)已知a +b =1,ab =-6,求下列各式的值.(1)a 2+b 2;(2)a 2-ab +b 2.15.(10分)先化简,再求值:(1)(常州中考)(x +1)2-x(2-x),其中x =2; (2)(南宁中考)(1+x)(1-x)+x(x +2)-1,其中x =12.16.(10分)四个数a 、b 、c 、d 排成2行、2列,两边各加一条竖直线记成⎪⎪⎪⎪⎪⎪ab c d ,定义⎪⎪⎪⎪⎪⎪a b cd =ad -bc ,这个记号就叫做2阶行列式. 例如:⎪⎪⎪⎪⎪⎪1234=1×4-2×3=-2 . 若⎪⎪⎪⎪⎪⎪x +1 x +2x -2 x +1=10,求x 的值.17.(10分)如图,某校有一块长为(3a +b)米,宽为(2a +b)米的长方形地块,学校计划将阴影部分进行绿化,中间将修建一座雕像. (1)用含a 、b 的代数式表示绿化面积并化简; (2)求出当a =5米,b =2米时的绿化面积.18.(10分)小华和小明同时计算一道整式乘法题(2x +a)(3x +b).小华把第一个多项式中的“a”抄成了-a ,得到结果为6x 2+11x -10;小明把第二个多项式中的3x 抄成了x ,得到结果为2x 2-9x +10.(1)你知道式子中a ,b 的值各是多少吗?(2)请你计算出这道题的正确结果.参考答案各个击破【例1】 由已知得a 2m +n +1=a 6,所以2m +n +1=6,即2m +n =5.又因为m +2n =4,所以m =2,n =1.【例2】 原式=2(x 2+2x -x -2)-3(6x 2-9x -4x +6)=-16x 2+41x -22. 【例3】 C【例4】 原式=(4a 2-b 2)-(a 2-4ab +4b 2)+5b 2=3a 2+4ab.当a =-1,b =2时,原式=3×(-1)2+4×(-1)×2=-5.【例5】 (1)方法一:(a +b)2.方法二:a 2+2ab +b 2.(2)(a +b)2=a 2+2ab +b 2.(3)1022=(100+2)2=1002+2×100×2+22=10 404. 题组训练1.C 2.6 3.C 4.B 5.A 6.②④ 7.D 8.49.(1)原式=a 2+2ab +b 2-a 2+2ab -b 2-4ab =0.(2)原式=(x 2-4)2=x 4-8x 2+16.(3)原式=(a 2-9)(a 2-9)=a 4-18a 2+81. 10.C 11.C 整合集训1.B 2.A 3.B 4.A 5.C 6.A 7.D 8.A 9.12 10.12m 4n 411.1 000 12.±4x 或4x 413.(1)原式=-8a 6b 3-8a 6b 3=-16a 6b 3.(2)原式=a 2+4ab -(a 2-4b 2)-4ab =a 2+4ab -a 2+4b 2-4ab =4b 2.(3)原式=[2x -(3y -1)][2x +(3y -1)]=4x 2-(3y -1)2=4x 2-(9y 2-6y +1)=4x 2-9y 2+6y -1.14.(1)原式=(a +b)2-2ab =1+12=13.(2)原式=(a +b)2-3ab =12-3×(-6)=1+18=19.15.(1)原式=x 2+2x +1-2x +x 2=2x 2+1.当x =2时,原式=8+1=9. (2)原式=1-x 2+x 2+2x -1=2x.当x =12时,原式=2×12=1.16.(x +1)2-(x -2)(x +2)=2x +5=10,解得x =2.5. 17.(1)S 阴影=(3a +b)(2a +b)-(a +b)2=6a 2+3ab +2ab +b 2-a 2-2ab -b 2=5a 2+3ab(平方米).(2)当a =5,b =2时,5a 2+3ab =5×25+3×5×2=125+30=155(平方米).18.(1)根据题意,得(2x -a)(3x +b)=6x 2+(2b -3a)x -ab =6x 2+11x -10;(2x +a)(x +b)=2x 2+(a +2b)x +ab =2x 2-9x +10,所以⎩⎪⎨⎪⎧2b -3a =11,a +2b =-9. 解得⎩⎪⎨⎪⎧a =-5,b =-2.(2)正确的算式为:(2x -5)(3x -2)=6x 2-19x +10.。

中山市七中七年级数学下册第2章整式的乘法2.2乘法公式2.2.3运用乘法公式进行计算课件新版湘教版3

中山市七中七年级数学下册第2章整式的乘法2.2乘法公式2.2.3运用乘法公式进行计算课件新版湘教版3

学习目标
(1)会利用合并同类项的方法解一元一次方程,体 会等式变形中的化归思想.
(2)能够从实际问题中列出一元一次方程,进一步 体会方程模型思想的作用及应用价值.
推进新课 知识点1 合并同类项
数学小资料
约公元820年 , 中亚细亚数学家阿尔-花拉子米 写了一本代数书 , 重点论述怎样解方程.这本书的 拉丁文译本取名为【対消与还原]. 〞対消”与〞 还原”是什么意思呢 ?
探究新知
〔1〕(x+1)(x2+1)(x-1); 〔2〕(x+y+1)(x+y-1).
你能用简单的方法计算上面的式子吗?
(x + y + 1)(x + y-1) =[(x + y) + 1][(x + y)-1] = (x + y)2-1 = x2 + 2xy + y2-1
把 x+y 看做一个整体
运用乘法公式计算 : ( a + b + c )2 . 解: ( a + b + c )2
= [(a + b) + c]2 = (a + b)2 + 2c(a + b) + c2 = a2 + 2ab + b2 + 2ac + 2bc + c2 = a2 + b2 + c2 + 2ab + 2ac + 2bc 遇到多项式的乘法时 , 我们要先观察式子的特征 , 看 能否运用乘法公式 , 以到达简化运算的目的.
第一个数为x , 第二个数为 x
9
方程 x xx1701
3
93

七年级数学下册第2章整式的乘法2.2乘法公式2.2.3运用乘法公式进行计算习题课件新版湘教版

七年级数学下册第2章整式的乘法2.2乘法公式2.2.3运用乘法公式进行计算习题课件新版湘教版
2.2.3 运用乘法公式进行计算
一、平方差公式 1.公式表示:(a+b)(a-b)=_a_2_-_b_2 . 2.说明:字母a,b不仅可以代表单个的数或字母,也可代表一个 单项式或一个_多__项__式__. 3.特征:左边两个多项式相乘,在这两个多项式中,一部分项 _完__全__相__同__,另一部分项互为相反数.右边等于_完__全__相__同__的__项__的 平方减去_互__为__相__反__数__的__项__的平方.
4.计算:(1)592=_____.(2)712=_____. 【解析】(1)592=(60-1)2=3 600-120+1=3 481. (2)712=(70+1)2=4 900+140+1=5 041. 答案:(1)3 481 (2)5 041
乘法公式的综合运用 【例2】(6分)计算:(m-2n+3t)(m+2n-3t). 【规范解答】原式=[m-(2n-3t)][m+(2n-3t)] ……………………………………………………………………1分 =m2-(2n-3t)2 ……………………………………………………4 分 =m2-(4n212nt+9t2) ……………………………………………5分 =m2-4n2+12nt-9t2. ……………………………………………6
【规律总结】 完全平方公式适用的前提是两项式的平方,故在利用完全平
方公式时,有时需把一项拆成两项的和或差,有时需把某几项 结合在一起,当作一项,只有把题目变形,具备完全平方公式 的特征时,才可使用.
【跟踪训练】 1.(2012·白银中考)如图,边长为(m+3)的正方形纸片,剪出一 个边长为m的正方形之后,剩余部分可剪拼成一个长方形(不重 叠无缝隙),若拼成的长方形一边长为3,则另一边长是( )

七年级数学下册第2章整式的乘法2.2乘法公式教学课件新版湘教版

七年级数学下册第2章整式的乘法2.2乘法公式教学课件新版湘教版

3.计算: (1)202×198;
(2)49.8×50.2.
答案:(1)39996;(2)2499.96.
我思 我进步
通过本节课,你有什么收获? 你还存在哪些疑问,和同伴 交流。
2.2.2 完全平方公式
思考
计算下列各式,你能发现什么规律: ( a+1 )2=( a+1 )( a+1 )=a2+a+a+12=a2+2·a·1+12, ( a+2 )2=( a+2 )( a+2 )=a2+2a+2a+22=a2+2·a·2+22, ( a+3 )2=( a+3 )( a+3 )=a2+3a+3a+32=a2+2·a·3+32, ( a+4 )2=( a+4 )( a+4 )=a2+4a+4a+42=a2+2·a·4+42. 我们用多项式乘法来推导一般情况: ( a+b )2=( a+b )=a2+ab+ab+b2=a2+2ab+b2.
(2)1982.
解:(1)1042=( 100+4 )2 (2)1982=( 200-2 )2
= 1002+2×100×4+42
= 2002-2×200×2+22
= 10000+800+16
= 40000-800+16
= 10816.
= 39204.
练习
1.运用完全平方公式计算: (1)( -2a+3 )2; (3)( -x2-4y )2;

七下第九章整式乘法与因式分解知识点归纳小结

七下第九章整式乘法与因式分解知识点归纳小结

七下第九章整式乘法与因式分解知识点归纳小结知识点归纳:一、幂的运算:1、同底数幂的乘法法则:n m n m a a a +=∙(n m ,都是正整数)同底数幂相乘,底数不变,指数相加。

注意底数可以是多项式或单项式。

如:532)()()(b a b a b a +=+∙+2、幂的乘方法则:mn n m a a =)((n m ,都是正整数)幂的乘方,底数不变,指数相乘。

如:10253)3(=-幂的乘方法则可以逆用:即m n n m mn a a a )()(== 如:23326)4()4(4==3、积的乘方法则:n n n b a ab =)((n 是正整数)。

积的乘方,等于各因数乘方的积。

如:(523)2z y x -=5101555253532)()()2(z y x z y x -=∙∙∙-4、同底数幂的除法法则:n m n m a a a -=÷(n m a ,,0≠都是正整数,且)n m同底数幂相除,底数不变,指数相减。

如:3334)()()(b a ab ab ab ==÷5、多项式按字母的升(降)幂排列:1223223--+-y xy y x x按x 的升幂排列: 按x 的降幂排列:按y 的升幂排列: 按y 的降幂排列:例.已知x 2+x -1=0,求x 3+2x 2+3的值.二、单项式、多项式的乘法运算:6、单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。

如:=∙-xy z y x 3232 )2()3(22xy xy -⋅= ? 2232)()(b a b a ⋅-=?7、单项式乘以多项式,就是用单项式去乘多项式的每一项,再把所得的积相加,即mc mb ma c b a m ++=++)((c b a m ,,,都是单项式)。

如:)(3)32(2y x y y x x +--= 。

8、多项式与多项式相乘,用多项式的每一项乘以另一个多项式的每一项,再把所的的积相加。

七年级下册数学整式的乘除

七年级下册数学整式的乘除

七年级下册数学整式的乘除整式的乘法:包括(单项式)与(单项式)相乘;(单项式)与(多项式)相乘;(多项式)与(多项式)相乘。

单项式与单项式相乘的运算法则:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。

整式乘除法法则:1、同底数的幂相乘:法则:同底数的幂相乘,底数不变,指数相加。

数学符号表示:a m .a n =a m+n (其中m 、n 为正整数)2、幂的乘方:法则:幂的乘方,底数不变,指数相乘。

数学符号表示:(a m )n =a mn (其中m 、n 为正整数)3、积的乘方:法则:积的乘方,先把积中各因式分别乘方,再把所得的幂相乘。

(即等于积中各因式乘方的积。

)数学符号表示:(ab )n =a n b n (其中n 为正整数)4、同底数的幂除法:法则:同底数的幂相除,底数不变,指数相减。

数学符号表示:a m ÷a n =n -m a (其中m 、n 为正整数,a ≠0)5、单项式与单项式相乘:把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。

6、单项式与多项式相乘:就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。

7、多项式与多项式相乘:先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。

疑难点解析:例题:1.(1)2--)(a a ⋅注意:①a -的指数是1,不是0;②由同底数幂相乘的法则知,能运用它的前提必须是“同底”,注意最后结果中的底数不能带负号,如3)(x -不是最后结果,应写成3x -才是最后结果。

例题:2.)()(232x x x -⋅⋅-注意:区别2)(x -与)(2x -的不同,222)(x x x =⋅-,而221x x ⋅-=-对应练习:n x -与n x )(-的关系正确的是( )A .相等B .互为相反数C .当n 为奇数时它们互为相反数,当n 为偶数时它们相等D .当n 为奇数时它们相等,当n 为偶数时它们互为相反数例题:3.已知3,2==n n y x ,求n y x 22)(的值。

整式的乘法(复习)——多多、乘法公式

整式的乘法(复习)——多多、乘法公式

整式的乘法(复习)——多×多 乘法公式【知识点复习】【乘法公式的使用技巧】(一)、套用:这是最初的公式运用阶段,在这个环节中,应弄清乘法公式的来龙去脉,准确地掌握其特征,为辨认和运用公式打下基础。

例1. 计算:(二)、连用:连续使用同一公式或连用两个以上公式解题。

例2. 计算:例3. 计算:(三)、逆用:学习公式不能只会正向运用,有时还需要将公式左、右两边交换位置,得出公式的逆向形式,并运用其解决问题。

(因式分解)例4. 计算:(四)、变用: 题目变形后运用公式解题。

例5. 计算:(五)、活用: 把公式本身适当变形后再用于解题。

这里以完全平方公式为例,经过变形或重新组合,可得如下几个比较有用的派生公式:()()()()()()2222221.22.23.4.a b ab a b ab a b a b a b a b +-=-+=++-=+--==++×))((n m b a 多:多(1)平方差公式:=+)-)((b a b a (2)完全平方公式:①=+2)(b a②=2)-(b a(3)“pq 型”(补充公式):=++))((q x p x【跟踪练习】 计算:(1)(-2x -y)(2x -y)(2)19982-1998·3994+199722222211111(3)(1)(1)(1)(1)(1)234910---⋅⋅⋅--(4)化简:(2+1)(22+1)(24+1)(28+1)+1.(5)计算:(2x -3y -1)(-2x -3y +5)(6)已知a +b=9,ab=14,求2a 2+2b 2【乘法公式与几何图形的面积】1、请你观察图中的图形,依据图形面积的关系,不需要添加辅助线,便可得到一个你非常熟悉的公式,这个公式是______________。

2、(1)有若干块长方形和正方形硬纸片如图1所示.用若干块这样的硬纸片拼成一个新的长方形,如图2.①用两种不同的方法,计算图2中长方形的面积;②我们知道:同一个长方形的面积是确定的数值.由此,你可以得出的一个等式为:(2)有若干块长方形和正方形硬纸片如图3所示.请你用拼图等方法推出一个完全平方公式,画出你的拼图并说明推出的过程.3、图①是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后按图②的形状拼成一个正方形.(1)图②中的阴影部分的面积为:(2)观察图②,三个代数式(m+n)2,(m-n)2,mn之间的等量关系是:(3)若x+y=-6,xy=5,则x-y=(4)观察图③,你能得到怎样的代数恒等式呢?【能力提高】 1、计算;(1)、22()()33m n m n -+-- (2)、2211(3)(3)22y x x y +-(3)、2222(2)(2)x y y x ---(4)、223()32x y -- (3)、(4)(3)x x +-(4)、(23)(23)x y x y +--+(5)、2()()()2a b a b a b a b ++-+-(6)、(a+2)(a 2+4)(a 4+16)(a -2)(7)、(8)、[(x +2y )(x -2y )+4(x -y )2-6x ]6x .(9)、22222(2)(2)(2)(2)x x y x y x y x y -+-+-+(10)、222(3)4(3)(3)3(3)a a a a +-+-+- 2、化简求值:(1)先化简,再求值:2(32)(32)5(1)(21)x x x x x +-----,其中13x =-.(2)先化简,再求值:2(1)(2)x x x ++-,其中243x =.(3)已知1582=+x x ,求2)12()1(4)2)(2(++---+x x x x x 的值.3、求值:(1)已知a -b =1 ,a 2+b 2=25 ,求ab 的值; (2)已知,21=-x x 求221xx +的值; (3)已知,16)(2=+y x 4)(2=y x - ,求xy 的值; (4)如果a 2+b 2-2a +4b +5=0 ,求a 、b 的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初一下册与《整式的乘法》有关的公式
一、幂的运算法则:
1、同底数幂相乘:a n a m=a n+m (m、n都是正整数)
2、幂的乘方:(a n)m=a nm(m、n都是正整数)
3、积的乘方:(ab)n=a n b n (m是正整数)
同底数幂相除:底数不变,指数相减(底数不能为0)
二、整式的乘法:
1、单项式和单项式相乘:把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。

2、单项式与多项式相乘:根据乘法的分配律用单项式去乘多项式的每一式,再把所得的积相加。

3、多项式与多项式相乘:先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加。

三、乘法公式:
1、平方差公式:a2−b2=(a+b)(a−b)
2、完全平方公式:(a±b)2=a2±2ab+b2
(拓展):(a3±b3)=(a±b)(a2±ab+b2)
(a±b)3=a³+3a²b+3ab²+b³
四、整式的除法
1、单项式相除:把系数,同底数幂分别相除后,作为商的因式,对于只在被除数里含有的字母,则连同它的一个指数一起作为商的一个因式。

2、多项式除以单项式:先把多项式的每一项分别除以单项式,然后把所得的积相加。

相关文档
最新文档