八上整式的乘法与乘法公式(二类参考)
初二数学八上第十四章整式乘法与因式分解知识点总结复习和常考题型练习

第十四章 整式的乘除与分解因式一、知识框架:二、知识概念:1.基本运算:⑴同底数幂的乘法:m n m n a a a +⨯= ⑵幂的乘方:()nm mn aa = ⑶积的乘方:()nn n ab a b =2.整式的乘法:⑴单项式⨯单项式:系数⨯系数,同字母⨯同字母,不同字母为积的因式. ⑵单项式⨯多项式:用单项式乘以多项式的每个项后相加.⑶多项式⨯多项式:用一个多项式每个项乘以另一个多项式每个项后相加. 3.计算公式:⑴平方差公式:()()22a b a b a b -⨯+=-⑵完全平方公式:()2222a b a ab b +=++;()2222a b a ab b -=-+ 4.整式的除法:⑴同底数幂的除法:m n m n a a a -÷=⑵单项式÷单项式:系数÷系数,同字母÷同字母,不同字母作为商的因式. ⑶多项式÷单项式:用多项式每个项除以单项式后相加. ⑷多项式÷多项式:用竖式.5.因式分解:把一个多项式化成几个整式的积的形式,这种变形叫做把这个式子因式分解.6.因式分解方法:⑴提公因式法:找出最大公因式. ⑵公式法:①平方差公式:()()22a b a b a b -=+- ②完全平方公式:()2222a ab b a b ±+=±③立方和:3322()()a b a b a ab b +=+-+ ④立方差:3322()()a b a b a ab b -=-++ ⑶十字相乘法:()()()2x p q x pq x p x q +++=++ ⑷拆项法 ⑸添项法常考例题精选1.(2015·襄阳中考)下列运算正确的是( ) =3 ·a2=a3C.(-a3)2=a5÷a2=a32.(2015·烟台中考)下列运算中正确的是( ) +2a=5a2 B.(-3a3)2=9a6÷a2=a3 D.(a+2)2=a2+43.(2015·遵义中考)计算(−12ab2)3的结果是( )3 23218184.(2015·沈阳中考)下面的计算一定正确的是( ) +b3=2b6 B.(-3pq)2=-9p2q2·3y5=15y8÷b3=b35.(2015·凉山州中考)下列各式正确的是( )=(−a)2=(−a)3=|−a2|=|a3|6.(2015·长春中考)计算:7a2·5a3= .7.(2015·广州中考)分解因式:x2+xy= .8.(2015·东营中考)分解因式2a2-8b2= .9.(2015·无锡中考)分解因式:2x2-4x= .10.(2015·连云港中考)分解因式:4-x2= .11.(2015·盐城中考)分解因式a2-9= .12.(2015·长沙中考)x2+2x+1= .13.(2015·临沂中考)分解因式4x-x3= .14.(2015·安徽中考)分解因式:x2y-y= .15.(2015·潍坊中考)分解因式:(a+2)(a-2)+3a= .16.(2015·遂宁中考)为庆祝“六·一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛.如图所示,按照下面的规律,摆第(n)个图案,需用火柴棒的根数为.17.(2015·潍坊中考)当n等于1,2,3,…时,由白色小正方形和黑色小正方形组成的图形分别如图所示.则第n个图形中白色小正方形和黑色小正方形的个数总和等于.(用n表示,n是正整数)18.(2015·牡丹江中考)一件商品的进价为a元,将进价提高100%后标价,再按标价打七折销售,则这件商品销售后的利润为元.19.(2015·株洲中考)先化简,再求值:(x-1)(x+1)-x(x-3),其中x=3.1.(2015·徐州)下列运算正确的是( )A.3a2-2a2=1 B.(a2)3=a5C.a2·a4=a6D.(3a)2=6a22.下列计算错误的是( )A.(5-2)0=1 B.28x4y2÷7x3=4xy2C.(4xy2-6x2y+2xy)÷2xy=2y-3x D.(a-5)(a+3)=a2-2a-153.(2015·毕节)下列因式分解正确的是( )A.a4b-6a3b+9a2b=a2b(a2-6a+9) B.x2-x+14=(x-12)2C.x2-2x+4=(x-2)2D.4x2-y2=(4x+y)(4x-y)4.将(2x)n-81分解因式后得(4x2+9)(2x+3)(2x-3),则n等于( ) A.2 B.4 C.6 D.85.若m=2100,n=375,则m,n的大小关系是( )A.m>n B.m<n C.m=n D.无法确定6.已知a+b=3,ab=2,则a2+b2的值为( )A.3 B.4 C.5 D.67.计算:(a-b+3)(a+b-3)=( )A.a2+b2-9 B.a2-b2-6b-9C.a2-b2+6b-9 D.a2+b2-2ab+6a+6b+98.在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图甲),把余下的部分拼成一个长方形(如图乙),根据两个图形中阴影部分的面积相等,可以验证( )A .(a +b)2=a 2+2ab +b 2B .(a -b)2=a 2-2ab +b 2C .a 2-b 2=(a +b)(a -b)D .(a +2b)(a -b)=a 2+ab -2b 29.若x 2+mx -15=(x -3)(x +n),则m ,n 的值分别是( ) A .4,3 B .3,4 C .5,2 D .2,510.(2015·日照)观察下列各式及其展开式: (a +b)2=a 2+2ab +b 2(a +b)3=a 3+3a 2b +3ab 2+b 3(a +b)4=a 4+4a 3b +6a 2b 2+4ab 3+b 4(a +b)5=a 5+5a 4b +10a 3b 2+10a 2b 3+5ab 4+b 5 …请你猜想(a +b)10的展开式第三项的系数是( ) A .36 B .45 C .55 D .6611.计算:(x -y)(x 2+xy +y 2)= .12.(2015·孝感)分解因式:(a -b)2-4b 2= .13.若(2x +1)0=(3x -6)0,则x 的取值范围是 .14.已知a m =3,a n =2,则a 2m -3n = .15.若一个正方形的面积为a 2+a +14,则此正方形的周长为 .16.已知实数a ,b 满足a 2-b 2=10,则(a +b)3·(a -b)3的值是 .17.已知△ABC 的三边长为整数a ,b ,c ,且满足a 2+b 2-6a -4b +13=0,则c为.18.观察下列各式,探索发现规律:22-1=1×3;32-1=2×4;42-1=3×5;52-1=4×6;….按此规律,第n个等式为.19.计算:(1)(2015·重庆)y(2x-y)+(x+y)2; (2)(-2a2b3)÷(-6ab2)·(-4a2b).20.用乘方公式计算:(1)982; (2)899×901+1.21.分解因式:(1)18a3-2a;(2)ab(ab-6)+9;(3)m2-n2+2m-2n.22.先化简,再求值:(1)(2015·随州)(2+a)(2-a)+a(a-5b)+3a5b3÷(-a2b)2,其中ab=-1 2;(2)[(x+2y)(x-2y)-(x+4y)2]÷4y,其中x=-5,y=2.23.如图,某市有一块长为(3a+b)米,宽为(2a+b)米的长方形地块,规划部门计划将阴影部分进行绿化,中间修建一座雕像,求绿化的面积是多少平方米?并求出当a=3,b=2时的绿化面积.24.学习了分解因式的知识后,老师提出了这样一个问题:设n为整数,则(n+7)2-(n-3)2的值一定能被20整除吗?若能,请说明理由;若不能,请举出一个反例.25.阅读材料并回答问题:课本中多项式与多项式相乘是利用平面几何图形中的面积来表示的,例如:(2a +b)(a +b)=2a 2+3ab +b 2就可以用如图①②所示的图形的面积来表示.(1)请写出如图③所示的图形的面积表示的代数恒等式;(2)试画出一个几何图形,使它的面积能表示为(a +b)(a +3b)=a 2+4ab +3b 2;(3)请仿照上述方法另写一个含有a ,b 的代数恒等式,并画出与之对应的几何图形.26. 定义2a b a b *=-,则(12)3**= .。
八年级数学上册--整式的乘法与因式分解练习及答案 (2)

八年级数学上册--整式的乘法与因式分解练习及答案一、选择题(每小题3分,共30分)1.下列运算正确的是( )A.(-4x 3)2=16x 6B.a 6÷a 2=a 3C.2x +6x =8x 2D.(x +3)2=x 2+92.2 0152-2 015一定能被( )整除A.2 010B.2 012C.2 013D.2 0143.如图14-1,阴影部分的面积是( )图14-1 A.xy 27B.xy 29C.4xyD.6xy4.(山东滨州中考)把多项式x 2+ax +b 分解因式,得(x +1)(x -3),则a ,b 的值分别是()A.a =2,b =3B.a =-2,b =-3C.a =-2,b =3D.a =2,b =-35.下面是某同学在一次测验中的计算摘录,其中正确的有( )(1)3x 3·(-2x 2)=-6x 5;(2)4a 3b ÷(-2a 2b )=-2a ;(3)(a 3)2=a 5;(4)(-a )3÷(-a )=-a 2.A.1个B.2个C.3个D.4个6.式子(-5a 2+4b 2)( )=25a 4-16b 4中括号内应填( )A.5a 2+4b 2B.5a 2-4b 2C.-5a 2+4b 2D.-5a 2-4b 27.下列等式成立的是( )A.(-a-b )2+(a-b )2=-4abB.(-a-b)2+(a-b)2=a2+b2C.(-a-b)(a-b)=(a-b)2D.(-a-b)(a-b)=b2-a28.若x=1,y=12,则x2+4xy+4y2的值是()A.2B.4C.32D.129.下列因式分解,正确的是()A.x2y2-z2=x2(y+z)(y-z)B.-x2y+4xy-5y=-y(x2+4x+5)C.(x+2)2-9=(x+5)(x-1)D.9-12a+4a2=-(3-2a)210.已知a,b,c分别是△ABC的三边长,且满足2a4+2b4+c4=2a2c2+2b2c2,则△ABC是()A.等腰三角形B.等腰直角三角形C.直角三角形D.等腰三角形或直角三角形二、填空题(每小题4分,共32分)11.将图14-2(1)中阴影部分的小长方形变换到图14-2(2)的位置,你能根据两个图形的面积关系得到的数学公式是 .图14-212.若m2-n2=6,且m-n=3,则m+n=_______.13.如果4x2+ax+9是一个完全平方式,那么a的值为______.14.(四川内江中考)分解因式:ax2-ay2=______.15.已知a+b=5,ab=3,则a2+b2=______.16.(江苏南京中考)分解因式2a(b+c)-3(b+c)的结果是______.17.在我们所学的课本中,多项式与多项式相乘可以用几何图形的面积来表示.例如,(2a+b)(a+b)=2a2+3ab+b2就可以用图14-3(1)来表示.请你根据此方法写出图14-3(2)中图形的面积所表示的代数恒等式: .图14-318.若一个正整数能表示为两个正整数的平方差,则称这个正整数为“智慧数”(如3=22-12,16=52-32,则3和16是智慧数).已知按从小到大的顺序构成如下数列:3,5,7,8,9,11,12,13,15,16,17,19,20,21,23,24,25,…则第2 013个“智慧数”是______.三、解答题(共58分)19.(8分)如图14-4,郑某把一块边长为a m的正方形的土地租给李某种植,他对李某说:“我把你这块地的一边减少5 m,另一边增加5 m,继续租给你,你也没有吃亏,你看如何”.李某一听,觉得自己好像没有吃亏,就答应了.同学们,你们觉得李某有没有吃亏?请说明理由.图14-420.(8分)计算:(1)992-102×98; (2)[x(x2y2-xy)-y(x2-x3y)]÷x2y.21.(10分)(1)(山东济宁中考)先化简,再求值:a(a-2b)+(a+b)2,其中a=-1,b=2; (2)若x2-5x=3,求(x-1)(2x-1)-(x+1)2+1的值.22.(10分)已知化简(x2+px+8)(x2-3x+q)的结果中不含x2项和x3项.(1)求p,q的值.(2)x2-2px+3q是否是完全平方式?如果是,请将其分解因式;如果不是,请说明理由.23.(10分)下面是某同学对多项式(x2-4x+2)(x2-4x+6)+4因式分解的过程.解:设x2-4x=y,则原式=(y+2)(y+6)+4(第一步)=y2+8y+16(第二步)=(y+4)2(第三步)=(x2-4x+4)2(第四步)解答下列问题:(1)该同学第二步到第三步运用了因式分解的方法是()A.提取公因式B.平方差公式C.两数和的完全平方公式D.两数差的完全平方公式(2)该同学因式分解的结果是否彻底?(填“彻底”或“不彻底”).若不彻底,请直接写出因式分解的最后结果.(3)请你模仿以上方法尝试对多项式(x2-2x)(x2-2x+2)+1进行因式分解.24.(12分)乘法公式的探究及应用.探究问题图14-5(1)是一张长方形纸条,将其剪成长短两条后刚好能拼成图14-5(2).(1)图14-5(1)中长方形纸条的面积可表示为(写成多项式乘法的形式).(2)拼成的图14-5(2)阴影部分的面积可表示为(写成两数平方差的形式).(1) (2)图14-5(3)比较两图阴影部分的面积,可以得到乘法公式:.结论运用(4)运用所得的公式计算:()()y x -+22y x =________; ⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-21322132m m =________. 拓展运用:(5)计算:⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛⨯⨯⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛22222201311201211411311211--···---一、1. A 解析:选项A 中积的乘方等于每个因式分别乘方,再把所得的幂相乘,故A 正确;选项B是同底数幂的除法,结果应为a4,故B错误;选项C是合并同类项,结果应为8x,故C错误;选项D是两数和的平方,结果中遗漏了乘积项6x,故D错误.故选A.2. D 解析:2 0152-2 015=2 015×(2 015-1)=2 015×2 014,所以一定能被2 014整除.故选D.3. D 解析:S阴影=3x·4y-3y(3x-x)=12xy-6xy=6xy.故选D.4. B 解析:∵(x+1)(x-3)=x2-3x+x-3=x2-2x-3,∴x2+ax+b=x2-2x-3,∴a=-2,b=-3.故选B.5. B 解析:(1)是单项式乘单项式,3x3·(-2x2)=-6x5,正确;(2)是单项式除以单项式,4a3b÷(-2a2b)=-2a,正确;(3)是幂的乘方,(a3)2=a6,错误;(4)是同底数的幂相除,(-a)3÷(-a)=(-a)2=a2,错误.故选B.6. D 解析:∵(-5a2+4b2)(-5a2-4b2)=25a4-16b4,∴括号内应填-5a2-4b2.故选D.7. D 解析:∵(-a-b)2+(a-b)2=(a+b)2+(a-b)2=(a2+2ab+b2)+(a2-2ab+b2)=2a2+2b2,∴选项A与选项B错误;∵(-a-b)(a-b)=-(a+b)(a-b)=-(a2-b2)=b2-a2,∴选项C错误,选项D正确.故选D.8. B 解析:x2+4xy+4y2=(x+2y)2=211+22⎛⎫⨯⎪⎝⎭=4.故选B.9. C 解析:A.用平方差公式法,应为x2y2-z2=(xy+z)·(xy-z),故本选项错误;B.用提公因式法,应为-x2y+ 4xy-5y=- y(x2- 4x+5),故本选项错误;C.用平方差公式法,(x+2)2-9=(x+2+3)(x+2-3)=(x+5)(x-1),故本选项正确;D.用完全平方公式法,应为9-12a+4a2=(3-2a)2,故本选项错误.故选C.10. B 解析:∵2a4+2b4+c4=2a2c2+2b2c2,∴4a4-4a2c2+c4+4b4-4b2c2+c4=0,∴(2a2-c2)2+(2b2-c2)2=0,∴2a2-c2=0,2b2-c2=0,∴c=2a,c=2b,∴a=b,且a2+b2=c2,∴△ABC为等腰直角三角形.故选B. 二、11. (a+b)(a-b)=a2-b212. 2 解析:∵m2-n2=(m+n)(m-n)=3(m+n)=6,∴m+n=2.13. ±12 解析:∵(2x±3)2=4x2±12x+9=4x2+a x+9,∴a=±12.14. a(x-y)(x+y)解析:原式=a(x2-y2)=a(x-y)(x+y).15. 19 解析:a2+b2=(a+b)2-2ab=52-2×3=19.16. (b+c)(2a-3)解析:2a(b+c)-3(b+c)=(b+c)(2a-3).17. (a+2b)(2a+b)=2a2+5ab+2b2 解析:根据图形列式(a+2b)(2a+b)=2a2+5ab+2b2.18. 2 687 解析:观察数的变化规律,可知全部“智慧数”从小到大可按每三个数分一组,从第2组开始每组的第一个数都是4的倍数,归纳可得,第n组的第一个数为4n(n≥2).因为2 013÷3=671,所以第2 013个“智慧数”是第671组中的第3个数,即为4×671+3=2 687.三、19. 解:李某吃亏了.理由如下:∵(a+5)(a-5)=a2-25<a2,∴李某少种了25 m2地,李某吃亏了.20.解:(1)原式=(100-1)2-(100+2)×(100-2)=(1002-200+1)-(1002-4)=-200+5=-195.(2)原式=[x2y(xy-1)-x2y(1-xy)]÷x2y=2x2y(xy-1)÷x2y=2(xy-1)=2xy-2.21.解:(1)原式=a2-2ab+a2+2ab+b2=2a2+b2.当a=-1,b时,原式=2+2=4.(2)原式=2x2-3x+1-(x2+2x+1)+1=x2-5x+1=3+1=4.22. 解:(1)原式=x4+(-3+p)x3+(q-3p+8)x2+(pq-24)x+8q.∵结果中不含x2项和x3项,∴30,380,pq p-+=⎧⎨-+=⎩解得3,1. pq=⎧⎨=⎩(2)x2-2px+3q不是完全平方式.理由如下:把3,1.pq=⎧⎨=⎩代入x2-2px+3q,得x2-2p x+3q=x2-6x+3.∵x2-6x+9是完全平方式,∴x2-6x+3不是完全平方式.23.解:(1)∵y2+8y+16=(y+4)2,∴运用了两数和的完全平方公式.故选C. 答案:C(2)∵(x2-4x+4)2=[(x-2)2]2=(x-2)4,∴因式分解不彻底.答案:不彻底(x-2)4(3)设x2-2x=y,则原式=y(y+2)+1=y2+2y+1=(y+1)2=(x 2-2x +1)2=[(x -1)2]2=(x -1)4.24. 解:(1)图14-5(1)是一张长方形纸条,将其剪成长短两条后刚好能拼成图14-5(2),长方形的长为a+b ,宽为a-b ,所以图14-5(1)中长方形纸条的面积可表示为(a+b )·(a-b ).(2)图14-5(2)中阴影部分的面积为大正方形的面积减去小正方形的面积,那么图14-5(2)中阴影部分的面积为a 2-b 2.(3)比较两图的阴影部分面积,可以得到的乘法公式为(a+b )(a-b )=a 2-b 2. (4)(2x +y )(2x -y )=(2x )2-y 2=4x 2-y 2,222221212121+3232323221=324114.9449m m m m m m m ⎛⎫⎛⎫⎛⎫⎛⎫---=- ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎡⎤⎛⎫⎛⎫--⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦⎛⎫=--=- ⎪⎝⎭111111-1+1-1+1223341111+11+4201220121111201320131324352011=22334420122013201220141007=.20122013201320153()原式⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⨯⨯⨯⨯-⨯⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫⨯⨯-⨯⨯⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫-⨯+ ⎪ ⎪⎝⎭⎝⎭⨯⨯⨯⨯⨯⨯⨯⨯=⨯。
人教版八年级数学上册第14章 整式的乘法与因式分解2 第2课时 运用完全平方公式因式分解

针对训练 因式分解: (1) -3a2x2 + 24a2x - 48a2; (2) (a2 + 4)2 - 16a2.
有公因式要先 提公因式
解:(1) 原式=-3a2(x2 - 8x + 16)
=-3a2(x - 4)2.
要检查每一个多项
(2) 原式=(a2 + 4)2 - (4a)2
式的因式,看能否 继续分解
=(a2 + 4 + 4a)(a2 + 4 - 4a)
=(a + 2)2(a - 2)2.
例4 简便计算: (1) 1002 - 2×100×99 + 99²; (2) 342 + 34×32 + 162. 解:(1) 原式 = (100 - 99)²
= 1. (2) 原式 = (34 + 16)2
下列各式是不是完全平方式?
(1)a2 - 4a + 4; 是 (3)4b2 + 4b - 1; 不是
(2)1 + 4a²; 不是 (4)a2 + ab + b2; 不是
(5)x2 + x + 0.25. 是
分析:(2)因为它只有两项. (3)4b²与 -1 的符号不统一. (4)因为 ab 不是 a 与 b 的积的 2 倍.
a2 ± 2ab + b2 = (a ± b)²
首2
+ 尾2 (首±尾)2
±2×首×尾
两个数的平方和加上 (或减去) 这两个数积 的 2 倍,等于这两个 数的和 (或差) 的平方.
对照 a²± 2ab + b²= (a ± b)²,填空: 1. x²+ 4x + 4 = ( x )²+ 2·(x )·( 2 ) + ( 2 )²= ( x + 2 )²; 2. m²- 6m + 9 = ( m )²- 2·(m)·( 3) + ( 3)²= (m - 3 )²; 3. a²+ 4ab + 4b²= ( a )²+ 2·( a ) ·( 2b ) + ( 2b)²= (a + 2b)².
人教版八年级上册数学《整式的乘法》整式的乘法与因式分解说课复习(第4课时整式的除法)

(3) 原式=9x2·4x2 =(9×4)(x2·x2)=36x4;
(4)原式=-8a3·9a2 =[(-8)×9](a3·a2)=-72a5
小试牛刀
2、下面计算结果对不对?如果不对,应当怎样改正?
(1)3a3 ·2a2=6a6 (
×)
(2) 2x2 ·3x2=6x4 (
)
(3)3x2 ·4x2=12x2 ( × )
m8 m8
2.计算:
=
m0
= 1______
≠2
3.若(a-2)0=1,则a ________
单项式与单项式相除的法则
∵
4a 2 x 3 3ab 2 12a 3 b 2 x 3
∴ 12a b x 3ab
3
2
3
2
这相当于
12a b x 3ab
=
12a 3 b 2 x 3 3ab 2
=abc5+2
(同底数幂的乘法)
=abc7.
根据以上计算,想一想如何计算单项式乘以单项式?
合作探究
单项式与单项式的乘法法则:
单项式与单项式相乘,把它们的系数、同底数幂分别相乘,对于
只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.
温馨提示:(1)系数相乘;
(2)相同字母的幂相乘;
(3)其余字母连同它的指数不变,作为积的因式.
除
以这个单项式,再 把所得的商 相加 .
温馨提示:把多项式除以单项式问题转化为单项式除以单
项式问题来解决.
例8 计算:
2
(3)12a 6a 3a 3a
3
3a
12a
6a 2
解:原式=
人教版八年级数学上册14.整式的乘除与因式分解--复习课件

例2 把下列各式分解因式. (1)(a+b)2-4a2 ; (2)1-10x+25x2; (3)(m+n)2-6(m+n)+9
解:(1)(a+b)2-4a2=(a+b)2-(2a)2 =(a+b+2a)(a+b-2a) =(3a+b)(b-a)
(2)1-10x+25x2 =1-10x+(5x)2 =(1-5x)2 (3)(m+n)2-6(m+n)+9=(m+n-3)2.
5, 求(a
1 )2的值. a
(2)若x y2 2, x2 y2 1, 求xy的值.
(3)如果(m n)2 z m2 2mn n2 ,
则z应为多少?
(4)(x 3y 2z)(x 3y 2z)
(5)19992, (6)20012 19992
练习:计算下列各题。
(1)( 1 a6b4c) ((2a3c) 4
1、 205×195 2、 (3x+2) (3x-2) 3、(-x+2y) (-x-2y) 4 、 (x+y+z)(x+y-z)
(2)、完全平方公式
一般的,我们有:
(a b)2 a2 2ab b2;
(a b)2 a2 2ab b2 其中a, b既可以是数, 也可以是代数式.
即: (a b)2 a2 2ab b2
探索与创新题 例4 若9x2+kxy+36y2是完全平方式,则k= —
分析:完全平方式是形如:a2±2ab+b2即两数 的平方和与这两个数乘积的2倍的和(或差).
∵9x2+kxy+36y2=(3x)2+kxy+(6y)2 ∴±kxy=2·3x·6y=36xy ∴k=±36
人教版八年级数学上册第14章2 乘法公式

知2-练
例 3 计算: (1)(x+7y)2; (2)(-4a+5b)2; (3)(-2m-n)2; (4)(2x+3y)(-2x-3y).
解题秘方:确定公式中的“a”和“b”,利用完全平方 公式进行计算.
(1)(x+7y)2;
知2-练
解:(x+7y)2=x2+2·x·(7y)+(7y)2 =x2+14xy+49y2;
知2-练
解:原式=4y2-4y+1; 原式=9a2+12ab+4b2; 原式=x2-4xy+4y2; 原式=4x2y2+4xy+1.
2
例4
计算:(1)9992;(2)
30
1 3
.
知2-练
解题秘方:将原数转化成符合完全平方公式的形式,再 利用完全平方公式展开计算即可.
(1)9992;
知2-练
解:9992=(1 000-1)2=1 0002-2×1 000×1+12
增项变化 (a-b+c)(a-b-c)=(a-b)2-c2
连用公式 (a+b)(a-b)(a2+b2)=(a2-b2)(a2+b2)=a4-b4
特别解读
知1-讲
公式的特征:
1. 等号左边是两个二项式相乘,这两个二项式中有一项完
全相同,另一项互为相反数.
2. 等号右边是乘式中两项的平方差,即相同项的平方减去
=1 000 000-2 000+1=998 001;
2
(2)
30
1 3
.
2
2
2
30
1 3
=
30+
1 3
=302+2×30×13+
1 3
=900+20+
19=920 19.
4-1. 运用完全平方公式进行简便计算:
八年级数学整式乘除与乘法公式

3、有一块长方形耕地ABCD ,其长为a 米,宽为b 米,现要在该耕地上种植两块防风带,如图的阴影部分,其中横向防风带为长方形,纵向防风带为平行四边形,则剩余耕地面积为 。
知识梳理二 平方差公式平方差公式:()()22a b a b a b +-=-,即“两数和乘两数差,等于两数平方差”。
【注】平方差公式中的a 、b 既可以是具体的数,也可以是单项式、多项式,即a 、b 可以是任意一个整式。
【拓展】平方差公式的变形①位置变化 ()()()()22b a b a a b a b a b +-+=+-=-②符号变化 ()()()2222a b a b b a b a ﹣--=﹣-=-③系数变化 ()()()()222232323294a b a b a b a b +-=-=-④指数变化 ()()()()2223232346a b a b a b a b +-=-=-⑤增项变化 ()()()22222a b c a b c a b c +--+=--⑥增因式变化 ()()()()()()()2222222a b a b a b a b a b a b a b ⎡⎤⎣⎦﹣+﹣-+-=﹣--=- ⑦连用公式变化 ()()()()()22222244a b a b a b a b a b a b +-+=-+=-⑧逆用公式变化()()22a b a b a b -=+-【例题精讲二】考点一:平方差公式的直接运用【例题1】计算:(1)()()4334a b b a +- (2)()()5115x x ﹣+﹣-3、已知2x -y =10,求代数式()()()22224x y x y y x y y ⎡⎤÷⎣⎦+--+-的值。
【方法总结】化简求值问题常见的两种类型:①先化简,然后将各字母的值代入求值;②先化简,再采用整体代入的方法求值。
1、要使()()2316x ax x ⋅++﹣的展开式中不含4x 项,则a = 。
整式的乘法乘法公式

先算乘方,再算乘除,最后算 加减;
运用分配律
将括号内的代数式展开,并运用 分配律进行计算;
合并同类项
将同类项进行合并,得到最简结果 。
整式乘法公式的计算技巧
熟记公式
熟练掌握整式乘法公式,如平 方差公式、完全平方公式等;
化简代数式
在计算过程中,尽量化简代数 式,减少计算量;
灵活运用运算法则
整式乘法公式是一种简化的运算方法,适用于任何两个整式 的乘法运算。
整式乘法公式的特点
1
整式乘法公式具有普遍适用性,适用于任何两 个整式的乘法运算。
2
整式乘法公式可以简化复杂的计算过程,提高 运算效率。
3
整式乘法公式有助于培养学生的数学思维能力 和符号意识。
整式乘法公式的历史与发展
01
整式乘法公式是数学运算中的基本工具,有着悠久的历史和广 泛的应用。
2023
《整式的乘法乘法公式》
contents
目录
• 整式乘法公式概述 • 整式乘法公式的形式与证明 • 整式乘法公式的计算方法与技巧 • 整式乘法公式的应用实例
01
整式乘法公式概述
整式乘法公式的定义
整式乘法公式定义:整式乘法公式是单项式与单项式相乘, 把他们的系数,相同字母的幂分别相乘,其余字母连同他的 指数不变,作为积的因式的运算。
交换律公式
$(a+b)(c+d)=(a+b)(c+d)$
整式乘法公式的证明方法
分配律公式的证明
根据乘法分配律,可以得出$(a+b)(c+d)=ac+ad+bc+bd$。
结合律公式的证明
根据乘法结合律,可以得出$(a+b)(a+b)=a^2+2ab+b^2$。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级上数学《整式的乘法与乘法公式》测试题 (100分)
班级__________ 姓名______________ 一、选择题(每小题3分,共30分) 1.下列计算中正确的是( )
A .5
3
2
2a b a =+ B .4
4
a a a =÷ C .8
4
2
a a a =⋅ D .()
63
2
a a -=-
2.下面是某同学在一次测验中的计算摘录,其中正确的个数有( ) ① (
)5
2
3
623x
x x -=-⋅; ② (
)
a b a b a 2242
3
-=-÷;
③ ()
52
3
a a =; ④ ()()23
a a a -=-÷-
A .1个
B .2个
C .3个
D .4个 3. 若()()b ax x x x ++=+-2
32,则a, b 的值分别为( )
A .a=5, b=6
B .a=1, b= -6
C .a=1, b=6
D .a=5, b= -6 4.()(
)2
2
a
ax x a x ++-的计算结果是( )
A .3
232a ax x -+ B .3
3
a x - C .3
2
3
2a x a x -+ D .3
2
2
3
22a a ax x -++ 5.已知210x y -=,则24y x -的值为 ( )
A .10
B .20
C .-10
D .-20 6.下列多项式乘法中可以用平方差公式计算的是( ) A.))((b a b a -+- B.)2)(2(x x ++ C.)3
1
)(31(x y y x -
+ D.)1)(2(+-x x 7. 我们约定1010a
b
a b ⊗=⨯,如2
3
5
23101010⊗=⨯=,那么48⊗为 ( ) A. 32 B.32
10 C. 12
10 D. 10
12 8.若153=x
,53=y
,则y x -3
等于( )
A. 5
B. 3
C. 15
D. 10 9. 1
3+m a
可写成( )
A. (a 3)m+1
B. (a m )3+1
C. a ·a 3m
D. (a m )2m+1 10. 如(x+m)与(x+3)的乘积中不含x 的一次项,则m 的值为( )
A. –3
B. 3
C. 0
D. 1
二、填空题(每空3分,共18分) 11.计算:(
)3
2
23xy
y x -•= .
12. 计算:(
)3
2
253)2(ab
ab a --= ,
13. 计算:53
4
515a b c a b -÷= 14. 计算:342
23
()()a b ab ÷=
15. 计算:()
()
2015
2014
2013
15.132-÷⨯⎪
⎭
⎫
⎝⎛-=_ ,
16.已知31=+
a a ,则221
a
a +的值是 。
三、解答题:(共52分)
17. 计算题(每小题4分,共24分)
(1) ()()y x y x 2325-+ (2))3
2
)(32(n m n m --+- (3) ()()1122
-+--x x x x x (4)2)2
33
2(y x --
(5)()()[
]
()xy y x y x 2222
2-÷--+ (6) (m+2n+1)(m-2n-1)
18. 先化简,再求值:(每小题5分,共10分) (1) (
)()()b a b a b b ab b a -+-÷--3
222,其中a= 0.5,b= -1
(2) ()()()m n n m n m 2232
+-+--, 其中m= -2, n=2
1
-
19. (6分)已知a+b=5,ab=3,求2
2
b a +的值。
20.(6分)对于任意的正整数n ,代数式n(n+7)-(n+3)(n-2)的值是否总能被6整除,请说明理由。
21.(6分)观察下列算式:
① 1432312
-=-=-⨯ ② 1983422-=-=-⨯ ③ 116154532-=-=-⨯
(1) 请你按照三个算式的规律写出:(2分)
第④个算式:______________________________ 第⑤个算式:______________________________
(2) 把这个规律用字母n的式子表示出来:_________________________________(n≥1) 并说明其正确性。
(4分)。