整式的乘法完全平方公式

合集下载

同化和顺应在数学中的例子

同化和顺应在数学中的例子

在数学中,“同化”和“顺应”的例子包括以下两种情况:
1.整式的乘法法则与完全平方公式、平方差公式。

根据多项式的乘法法则,学生再学习完全平方公式与平方差公式,符合学生的认知规律。

它们可以根据多项式的运算直接推导出这两个公式,这个过程体现了同化的概念。

2.整式与分式。

在七年级上册,学生学习了“整式”。

“整式”是单项式与多项式的统称。

不管单项式还是多项式,字母都是作为一个被乘积的项存在于代数式中。

这是整式的概念。

但是,在八年级下册,学习的分式的概念却完全不同,分式的定义是由两个整式写成“除以”的形式,并且被除的这个整式中一定含有字母,写成分数的形式则是分式。

那么分式的字母则不是作为被乘的项,而是被除的项。

分式是一个与整式截然不同的概念,因此学习“分式”是一个顺应的过程。

以上信息仅供参考,如有需要建议查阅数学书籍或咨询专业数学教师。

整式的乘法知识点

整式的乘法知识点

整式的乘法知识点1、幂的运算性质:(a ≠0,m 、n 都是正整数)(1)a m ·a n =a m +n 同底数幂相乘,底数不变,指数相加.(2)()n m a = a mn 幂的乘方,底数不变,指数相乘.(3)()n n n b a ab = 积的乘方等于各因式乘方的积. (4)n m a a ÷= a m -n 同底数幂相除,底数不变,指数相减.例(1).在下列运算中,计算正确的是( )(A )326a a a ⋅=(B )235()a a = (C )824a a a ÷=(D )2224()ab a b = (2)()()4352a a -⋅-=____ ___=2.零指数幂的概念:a 0=1(a ≠0)任何一个不等于零的数的零指数幂都等于l . 例:()022017π-=3.负指数幂的概念: a - p =p a 1(a ≠0,p 是正整数) 任何一个不等于零的数的负指数幂,等于这个数的正指数幂的倒数. 例:223-⎛⎫ ⎪⎝⎭= 312-⎛⎫- ⎪⎝⎭=4.单项式的乘法法则:单项式相乘,把系数、同底数幂分别相乘,作为积的因式;对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.例:(1)223123abc abc b a ⋅⋅ (2)4233)2()21(n m n m -⋅-5.单项式与多项式的乘法法则: a(b+c+d)= ab + ac + ad单项式与多项式相乘,用单项式和多项式的每一项分别相乘,再把所得的积相加.例:(1))35(222b a ab ab + (2))32()5(-22n m n n m -+⋅6.多项式与多项式的乘法法则:( a+b)(c+d)= ac + ad + bc + bd多项式与多项式相乘,先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加. 例:(1)1(4)x x --() (2)(2)(1)x y x y +-+7.乘法公式: ①完全平方公式:(a +b )2=a 2+2ab +b 2(a -b )2=a 2-2ab +b 2口诀:首平方、尾平方,乘积的二倍放中央.例:① (2x +5y )2=( )2 + 2×( )×( ) + ( )2=__________________;② 2)2131(-m =( )2 - 2×( )×( ) + ( )2=________________; ③ (-x +y )2 = ( )2 =__________;④ (-m -n )2 = [ ]2 = ( )2_______________;⑤x 2+__ _ +4y 2 = (x +2y )2 ⑥214m ⎛⎫- ⎪⎝⎭ +2n = ( )2 ②平方差公式:(a +b )(a -b )=a 2-b 2口诀:两个数和乘以这两个数的差,等于这两个数的平方差.注意:相同项的平方减相反项的平方例:① (x -4)(x +4) = ( )2 - ( )2 =________;② (3a+2b )(3a -2b ) = ( )2 - ( )2 =_________________;③ (-m +n )( m +n ) = ( )2-( )2 =___________________;④ 11(2)(2)44x y x y ---=( )2-( )2=___________; ⑤(2a +b +3)(2a +b -3) =( )2-( )2=________________ ___= ;⑥(2a —b +3)(2a +b -3)=[ ][ ]=( )2-( )2另一种方法:(2a —b +3)(2a +b -3)==⑦ ( m +n )( m -n )( m 2+n 2 ) =( )( m 2+n 2 ) = ( )2 -( )2 =_______;⑧(x +3y )( ) = 9y 2-x 2③十字相乘:2()()x a x b x ++=+ ( ) x +一次项的系数是a 与b 的 ,常数项是a 与b 的例:()()12x x ++= , ()()23x x --= ,()()57x x +-= , ()()34x x -+=1、若22916x mxy y ++是一个完全平方式,那么m 的值是__________。

整式知识点汇总总结

整式知识点汇总总结

整式知识点汇总总结一、整式的概念整式是指由有限多个变量与常数所构成的不等式。

整式包括单项式、多项式和零多项式。

1. 单项式:只含有一个变量的系数与幂的乘积组成的代数式。

2. 多项式:由多个单项式相加或相减得到的代数式。

3. 零多项式:系数都为零的多项式。

二、整式的基本运算整式的基本运算包括加法、减法、乘法和除法。

1. 加法和减法:对整式中的同类项进行合并。

2. 乘法:整式的乘法遵循分配律,将每个项逐个与另一个整式的每个项相乘,然后合并同类项。

3. 除法:整式的除法通过多项式除法来进行,即通过长除法来进行整式的除法运算。

三、整式的因式分解因式分解是将一个多项式表示成乘积的形式,其中每个因子都不能再分解为其他整式的乘积。

因式分解可以分为以下几种情况:1. 提取公因式:将多项式中的公因式提取出来。

2. 分组取因式:将多项式中的项进行分组,然后取出公因式。

3. 完全平方法:利用完全平方公式将一个二次三项式分解成平方项的形式。

4. 公式法:利用常见的整式公式进行因式分解,如二次三项式、完全立方公式等。

5. 旁氏定理:利用旁氏定理将一个多项式进行因式分解。

四、整式的乘方整式的乘方是指对一个整式进行多次相乘的运算。

整式的乘方遵循以下规律:1. 同底数相乘:底数相同,指数相加。

2. 同底数相除:底数相同,指数相减。

3. 变底数幂的乘方:底数相乘,指数相乘。

五、整式的合并与展开整式的合并与展开是指对整式进行化简或者展开的运算,主要包括以下几种情况:1. 合并同类项:将多项式中的同类项合并成一个单项式。

2. 展开乘法:将一个多项式进行分配律的展开,即将每个项逐个与另一个整式的每个项相乘,然后合并同类项。

3. 展开乘幂:将一个整式的乘方进行展开,即进行多次分配律的运算。

六、整式的应用整式在数学中有着广泛的应用,主要包括以下几个方面:1. 代数方程的求解:利用整式的知识可以求解代数方程,包括一元一次方程、一元二次方程、一元高次方程等。

人教版八年级数学上册14.整式的乘除与因式分解--复习课件

人教版八年级数学上册14.整式的乘除与因式分解--复习课件
不是完全平方式,不能进行分解
例2 把下列各式分解因式. (1)(a+b)2-4a2 ; (2)1-10x+25x2; (3)(m+n)2-6(m+n)+9
解:(1)(a+b)2-4a2=(a+b)2-(2a)2 =(a+b+2a)(a+b-2a) =(3a+b)(b-a)
(2)1-10x+25x2 =1-10x+(5x)2 =(1-5x)2 (3)(m+n)2-6(m+n)+9=(m+n-3)2.
5, 求(a
1 )2的值. a
(2)若x y2 2, x2 y2 1, 求xy的值.
(3)如果(m n)2 z m2 2mn n2 ,
则z应为多少?
(4)(x 3y 2z)(x 3y 2z)
(5)19992, (6)20012 19992
练习:计算下列各题。
(1)( 1 a6b4c) ((2a3c) 4
1、 205×195 2、 (3x+2) (3x-2) 3、(-x+2y) (-x-2y) 4 、 (x+y+z)(x+y-z)
(2)、完全平方公式
一般的,我们有:
(a b)2 a2 2ab b2;
(a b)2 a2 2ab b2 其中a, b既可以是数, 也可以是代数式.
即: (a b)2 a2 2ab b2
探索与创新题 例4 若9x2+kxy+36y2是完全平方式,则k= —
分析:完全平方式是形如:a2±2ab+b2即两数 的平方和与这两个数乘积的2倍的和(或差).
∵9x2+kxy+36y2=(3x)2+kxy+(6y)2 ∴±kxy=2·3x·6y=36xy ∴k=±36

整式乘除知识点

整式乘除知识点

整式乘除知识点在数学的学习中,整式乘除是一个重要的部分,它不仅是后续学习代数运算的基础,也在解决实际问题中有着广泛的应用。

下面就让我们一起来深入了解整式乘除的相关知识点。

一、整式的乘法(一)单项式乘以单项式法则:把它们的系数、相同字母的幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。

例如:3x²y × 5xy³= 15x³y⁴(二)单项式乘以多项式法则:用单项式去乘多项式的每一项,再把所得的积相加。

例如:2x(3x² 5x + 1) = 6x³ 10x²+ 2x(三)多项式乘以多项式法则:先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。

例如:(x + 2)(x 3) = x² 3x + 2x 6 = x² x 6二、整式的除法(一)单项式除以单项式法则:把系数、同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式。

例如:18x⁴y³z² ÷ 3x²y²z = 6x²yz(二)多项式除以单项式法则:先把这个多项式的每一项分别除以这个单项式,然后把所得的商相加。

例如:(9x³y 18x²y²+ 3xy³) ÷ 3xy = 3x² 6xy + y²三、乘法公式(一)平方差公式(a + b)(a b) = a² b²例如:(3x + 2)(3x 2) = 9x² 4(二)完全平方公式(a + b)²= a²+ 2ab + b²(a b)²= a² 2ab + b²例如:(x + 5)²= x²+ 10x + 25四、整式乘除的应用(一)几何图形中的应用在求解长方形、正方形等图形的面积和周长时,经常会用到整式的乘除。

整式的乘除知识点整理

整式的乘除知识点整理

一、知识点归纳: (一)幂的四种运算:1、同底数幂的乘法:⑴语言叙述:同底数幂相乘,底数不变,指数相加; ⑵字母表示:a m ·a n = a m+n ;(m ,n 都是整数) ;⑶逆运用:a m+n = a m ·a n2、幂的乘方:⑴语言叙述:幂的乘方,底数不变,指数相乘; ⑵字母表示:(a m ) n = a mn ;(m ,n 都是整数); ⑶逆运用:a mn =(a m )n =(a n )m ;3、积的乘方:⑴语言叙述:积的乘方,等于每个因式乘方的积; ⑵字母表示:(ab)n = a n b n ;(n 是整数); ⑶逆运用:a n b n = (a b)n ;4、同底数幂的除法:⑴语言叙述:同底数幂相除,底数不变,指数相减;⑵字母表示:a m ÷a n = a m-n ;(a≠0,m 、n 都是整数); ⑶逆运用:a m-n = a m ÷a n .(二)整式的乘法:1、单项式乘以单项式:⑴语言叙述:单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。

⑵实质:分三类乘:⑴系数乘系数;⑵同底数幂相乘;⑶单独一类字母,则连同它的指数照抄; 2、单项式乘以多项式:⑴语言叙述:单项式与多项式相乘,就是根据分配律用单项式去乘多项式中的每一项,再把所得的积相加。

⑵字母表示:c)=ma +mb +mc ;(注意各项之间的符号!) 3、多项式乘以多项式:(1)语言叙述:多项式与多项式相乘,先用一个多项式的每一项去乘另一个多项式的每一项,再把所得的积相加;(2)字母表示:=mn +mb +an +ab ;(注意各项之间的符号!) 注意点:⑴在未合并同类项之前,积的项数等于两个多项式项数的积。

⑵多项式的每一项都包含它前面的符号,确定乘积中每一项的符号时应用“同号得正,异号得负”。

⑶运算结果中如果有同类项,则要 合并同类项(三)乘法公式: 1、平方差公式:(1)语言叙述:两数和与这两数差的积,等于这两个数的平方差。

六年级整式知识点总结

六年级整式知识点总结

六年级整式知识点总结整式是数学中的一个重要概念,是培养学生逻辑思维和数学推理能力的重要内容。

在六年级的数学学习过程中,我们接触了各种各样的整式知识点,下面就对这些知识点进行一个总结。

1. 整式的定义:整式是由常数、变量和它们的积、商、正、负、指数和幂等有理数次加、减的和。

2. 整式的基本运算:(1) 加法和减法:将同类项合并,并保持同类项的次数不变。

(2) 乘法:运用分配律进行拆分、合并和化简。

(3) 除法:运用乘法的逆运算进行分解和化简。

3. 整式的化简:整式的化简就是将多项式通过合并同类项、拆分因式、运用分配律等方法,简化为最简形式。

4. 整式的因式分解:(1) 提取公因式法:将整式中的公因子提取出来。

(2) 公式法:利用代数公式进行因式分解。

(3) 分组分解法:将整式中的项进行分组,然后利用公因式提取法进行因式分解。

(4) 完全平方公式法:利用完全平方公式将整式分解。

(5) 公式法:利用二次根式公式将整式分解。

5. 整式的乘法公式:(1) 两个一次整式的乘法:$(a + b)(c + d) = ac + ad + bc + bd$(2) 两个二次整式的乘法:$(a + b)(c + d) = ac + (ad + bc) + bd$(3) 一个一次整式和一个二次整式的乘法:$(a + b)(c + dx) = ac + adx + bc + bdx$(4) 平方差公式:$(a + b)(a - b) = a^2 - b^2$6. 整式的除法公式:(1) 整式除以一次整式:按照多项式的长除法进行计算。

(2) 整式除以二次整式:运用因式分解的方法进行计算。

7. 整式的应用:整式在数学中有广泛的应用,特别是在代数方程的解法、几何问题的求解以及物理问题的建模等方面都具有重要作用。

以上就是六年级整式的知识点总结。

通过学习和掌握这些知识,我们能够更好地理解和运用整式,为以后的学习打下坚实的基础。

希望同学们能够认真学习,不断巩固和提高自己的数学能力。

整式的乘法运算

整式的乘法运算

整式的乘法运算整式的乘法运算是代数学中的一种重要的运算方式。

整式是由常数、字母以及它们的乘积组成的式子。

整式的乘法运算是指将两个整式相乘,从而得到一个新的整式。

在整式的乘法运算中,我们需要掌握以下几个基本的规则:一、常数的乘法:常数与常数相乘的结果仍然是常数。

例如,2乘以3等于6。

二、字母的乘法:字母与字母相乘的结果仍然是字母,并且按照字母表顺序排列。

例如,a乘以b等于ab。

三、常数与字母的乘法:常数与字母相乘的结果仍然是字母,并且乘积的值等于常数与字母的乘积。

例如,2乘以a等于2a。

四、字母的指数幂:字母的指数幂是将字母连续乘以自身指数次数。

例如,a的2次幂等于aa,简记为a²。

五、整式的乘法:整式的乘法是将两个整式的每一项相乘,然后将结果相加。

例如,(2a + 3b)乘以(4a - 5b)等于8a² - 10ab + 12ab - 15b²,简记为8a² + 2ab - 15b²。

除了以上的基本规则外,我们还需要掌握一下常见的整式的乘法公式:一、二次方的乘法公式:(a + b)² = a² + 2ab + b²。

例如:(2x + 3y)² = (2x)² + 2(2x)(3y) + (3y)² = 4x² + 12xy + 9y²。

二、差的乘法公式:(a - b)² = a² - 2ab + b²。

例如:(2x - 3y)² = (2x)² - 2(2x)(3y) + (3y)² = 4x² - 12xy + 9y²。

三、平方差公式:a² - b² = (a + b)(a - b)。

例如:4x² - 9y² = (2x + 3y)(2x - 3y)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档