2018版高考数学复习不等式7.2一元二次不等式及其解法试题理北师大版
数学高考复习一元二次不等式及其解法专项检测(附答案)

数学高考复习一元二次不等式及其解法专项检测(附
答案)
含有一个未知数且未知数的最高次数为2的不等式叫做一元二次不等式,以下是一元二次不等式及其解法专项检测,请考生及时练习。
1.设二次函数f(x)=ax2+bx+c,函数F(x)=f(x)-x的两个零点为m,n(m0的解集;
(2)假定a0,且a0,即a(x+1)(x-2)0.
当a0时,不等式F(x)0的解集为{x|x-1或x当a0时,不等式F(x)0的解集为{x|-10,且00.
f(x)-m0,即f(x)4的解集为{x|x1或xb},
(1)求a,b;
(2)解不等式ax2-(ac+b)x+bc0.
解 (1)由于不等式ax2-3x+64的解集为{x|x1或xb},所以x1=1与x2=b是方程ax2-3x+2=0的两个实数根,且b1.
由根与系数的关系,得解得
(2)由(1)知不等式ax2-(ac+b)x+bc0为x2-(2+c)x+2c0,即(x-2)(x-c)0.
当c2时,不等式(x-2)(x-c)0的解集为{x|22时,不等式的解集为{x|20,
即=(m-2)2-4(m-1)(-1)0,得m20,
所以m1且m0.
(2)在m0且m1的条件下,
由于+==m-2,
所以+=2-
=(m-2)2+2(m-1)2.
得m2-2m0,所以02.
所以m的取值范围是{m|0
一元二次不等式及其解法专项检测及答案的全部内容就是这些,查字典数学网希望考生可以取得优秀的效果。
高考数学一轮复习 第7章 不等式 第2节 一元二次不等式及其解法课件 文

12/8/2021
第二十二页,共五十二页。
4.已知函数 f(x)=x-2+x22+x,2xx,≥x0<,0,解不等式 f(x)>3.
解:由题意xx≥ 2+02,x>3或x-<x02,+2x>3,解得 x>1. 故原不等式的解集为{x|x>1}.
12/8/2021
第二十三页,共五十二页。
三、易错自纠 4.不等式-x2-3x+4>0 的解集为________.(用区间表示) 解析:由-x2-3x+4>0 可知,(x+4)(x-1)<0,解得-4<x<1. 答案:(-4,1)
12/8/2021
第十四页,共五十二页。
5.设二次不等式 ax2+bx+1>0 的解集为x-1<x<13,则 ab 的值为________. 解析:由不等式 ax2+bx+1>0 的解集为x-1<x<13,知 a<0 且 ax2+bx+1=0 的两 根为 x1=-1,x2=13,由根与系数的关系知- -113+ =131a= ,-ba, 所以 a=-3,b=-2,所以 ab=6. 答案:6
12/8/2021
第五页,共五十二页。
2.三个“二次”间的关系
判别式Δ=b2-4ac
Δ>0
Δ=0
二次函数 y=ax2+bx +c(a>0)的图象
一元二次方程 ax2+bx 有两相异实根 x1,
+c=0 (a>0)的根
x2(x1<x2)
有两相等实根 x1=x2 =-2ba
Δ<0 没有实数根
12/8/2021
第七章 不等式
第二节 一元(yī yuán)二次不等式及 其解法
高考数学 一元二次不等式及其解法大全(含练习和答案)

一元二次不等式及其解法1.一元二次不等式(20(0)ax bx c a ++>>)与相应的二次函数(2(0)y ax bx c a =++>)及一元二次方程(20(0)ax bx c a ++=>)的关系(简称三个二次之间的关系)判别式Δ=b 2-4acΔ>0 Δ=0 Δ<0 二次函数y =ax 2+bx +c (a >0)的图象一元二次方程 ax 2+bx +c =0 (a >0)的根有两相异实根1212,()x x x x < 有两相等实根 122b x x a==-没有实数根 ax 2+bx +c >0 (a >0)的解集R ax 2+bx +c <0 (a >0)的解集∅ 注:(1)若0a <时,可以先将二次项系数化为正数,若对应方程有两实根,则可根据“大于取两边,小于取中间”求解集。
2.简单的分式不等式(1)()0()f x g x >⇔______________; (2)()0()f xg x <⇔____________ (3)()0()f x g x ≥⇔ ___________ (4)()0()f x g x ≤⇔_____________ 3.二次不等式恒成立的条件(1)ax 2+bx +c >0 (a ≠0)对一切x ∈R 恒成立的充要条件是___________ (2)ax 2+bx +c <0 (a ≠0)对一切x ∈R 恒成立的充要条件是___________1.(人教A 版教材习题改编)不等式2x 2-x -1>0的解集是( )A .(-12,1) B .(1,+∞)C .(-∞,1)∪(2,+∞)D .(-∞,-12)∪(1,+∞)2.不等式x -12x +1≤0的解集为( )A .(-12,1]B .{x |x ≥1或x <-12}C .[-12,1]D .{x |x ≥1或x ≤-12} 3.(2012·福建高考)已知关于x 的不等式x 2-ax +2a >0在R 上恒成立,则实数a 的取值范围是________.4.一元二次不等式ax 2+bx +2>0的解集是(-12,13),则a +b 的值是________.(一)考向1 一元二次不等式的解法例1 求下列不等式的解集(1)22730x x ++> (2)3+2x -x 2≥0;(3)2830x x -+-> (4)213502x x -+-> (5)22320x x -+-< (6)2xx -1≤1解一元二次不等式的步骤: (1)把二次项系数化为正数;(2)先考虑因式分解法,再考虑求根公式法或配方法或判别式法; (3)写出不等式的解集. 变式训练1 解下列不等式:(1)2310x x -+≤ (2)23520x x +-> (3)22530x x --+> (4)29610x x -+-<(5)3012x x+≤- (6)-1≤x 2+2x -1≤2;(二)考向2 三个二次的关系例2 已知关于x 的不等式x 2+ax +b <0的解集(-1,2),试求关于x 的不等式ax 2+x +b <0的解集. 【思路点拨】 不等式解集的端点值是相应方程的根.(1)给出一元二次不等式的解集,则可知二次项系数的符号和相应一元二次方程的两根.(2)三个二次的关系体现了数形结合,以及函数与方程的思想方法.变式训练2 若关于x的不等式axx-1<1的解集是{x|x<1或x>2},求实数a的取值范围.(三)考向3含参数的一元二次不等式的解法例3求不等式12x2-ax>a2(a∈R)的解集.【思路点拨】先求方程12x2-ax=a2的根,讨论根的大小,确定不等式的解集.解含参数的一元二次不等式的步骤(1)二次项若含有参数应讨论参数是等于0,小于0,还是大于0,然后将不等式转化为二次项系数为正的形式.(2)判断方程实根的个数,讨论判别式Δ与0的关系.(3)确定方程无实根时可直接写出解集,确定方程有两个相异实根时,要讨论两实根的大小关系,从而确定解集形式.变式训练3 解关于x的不等式x2-(a+1)x+a<0.(四)考向4 不等式恒成立问题例4 若不等式mx 2-mx -1<0对一切实数x 恒成立,求实数m 的取值范围.【思路点拨】分m =0与m ≠0两种情况讨论,当m ≠0时,用判别式法求解.1.不等式ax 2+bx +c >0的解是全体实数(或恒成立)的条件是当a =0时,b =0,c >0;当a ≠0时,⎩⎪⎨⎪⎧a >0,Δ<0;不等式ax 2+bx +c <0的解是全体实数(或恒成立)的条件是当a =0时,b =0,c <0;当a ≠0时,⎩⎪⎨⎪⎧a <0,Δ<0.2.解决恒成立问题一定要搞清谁是主元,谁是参数,一般地,知道谁的范围,谁就是主元,求谁的范围,谁就是参数.变式训练4 对任意a ∈[-1,1]不等式x 2+(a -4)x +4-2a >0恒成立,则实数x 的取值范围是________.一个过程解一元二次不等式的一般过程是:一看(看二次项系数的符号),二算(计算判别式,判断方程根的情况),三写(写出不等式的解集).两点联想不等式ax 2+bx +c >0(或ax 2+bx +c <0)(a ≠0)的求解,善于联想:(1)二次函数y =ax 2+bx +c 的图象与x 轴的交点,(2)方程ax 2+bx +c =0(a ≠0)的根,运用好“三个二次”间的关系.三个防范1.二次项系数中含有参数时,参数的符号影响不等式的解集;不要忘了二次项系数是否为零的情况.2.解含参数的一元二次不等式,可先考虑因式分解,再对根的大小进行分类讨论;若不能因式分解,则可对判别式进行分类讨论,分类要不重不漏.3.不同参数范围的解集切莫取并集,应分类表述.课时训练1.设集合M={}2230x x x --<,N=12log 0,x x M N ⎧⎫<⋂⎨⎬⎩⎭则等于 ( )A .-(1,1) B.(1,3) C.(0,1) D.(-1,0)2.在R 上定义运算:(1)x y x y ⊗⊗=-,若不等式()()1x a x a -⊗+<对任意实数x 成立,则 ( )A 、11a -<<B 、02a <<C 、1322a -<<D 、3122a -<<3.“|x -1|<2成立”是“x (x -3)<0成立”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件4.定义02x x <>或运算a b ad bc c d ⎛⎫=- ⎪⎝⎭,则不等式1011x x ⎛⎫<< ⎪⎝⎭的解集为() A .(1,1)- B. (1,0)(0,1)-⋃C. (1)(1-⋃D.5.设A ={x ∈Z ||x -2|≤5},则A 中最小元素为( )A .2B .-3C .7D .06、不等式20x ax b --<的解集为{}223,10x x bx ax <<-->则的解集为( )A 、{}23x x <<B 、1132x x ⎧⎫<<⎨⎬⎩⎭C 、1123x x ⎧⎫-<<-⎨⎬⎩⎭D 、{}32x x -<<-7.设x ∈R ,则“x >12”是“2x 2+x -1>0”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件8.不等式102xx-≥+的解集为 ( ) A.[]2,1- B. (]2,1- C. ()(),21,-∞-⋃+∞ D. (](),21,-∞-⋃+∞ 9. “关于x 的不等式x 2-2ax +a >0的解集为R ”是“0≤a ≤1”( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件 10.不等式22530x x --≥成立的一个必要不充分条件是 ( )A .0x ≥ B. 02x x <>或 C. 12x <- D. 132x x ≤-≥或 11.不等式22253x x a a -+≥-对任意实数x 恒成立,则实数a 的取值范围为 ( )A .[]1,4- B. [)(,2)5,-∞-⋃+∞ C. (][),14,-∞-⋃+∞ D. []2,5-12、若函数222,0(),0x x x f x x ax x ⎧-≥=⎨-+<⎩是奇函数,则满足()f x a x >的的取值范围是________13.若不等式2(1)0x a x a --+≤的解集是[-4,3]的子集,则a 的取值范围是________14.已知不等式|x -2|>1的解集与不等式x 2+ax +b >0的解集相等,则a +b 的值为________.15. 设命题p :2x 2-3x +1≤0; 命题q :x 2-(2a +1)x +a (a +1)≤0, 若命题p 是命题q 的必要不充分条件,则实数a 的取值范围是________. 16.不等式ax 2+4x +a >1-2x 2对一切x ∈R 恒成立,则实数a 的取值范围是________.一元二次不等式及其解法答案1、D 【解析】 ∵2x 2-x -1=(x -1)(2x +1)>0, ∴x >1或x <-12.故原不等式的解集为(-∞,-12)∪(1,+∞).2、A 【解析】 原不等式等价于(1)(21)0210x x x -+≤⎧⎨+≠⎩.∴原不等式的解集为(-12,1].3、(0,8) 【解析】 ∵x 2-ax +2a >0在R 上恒成立, ∴Δ=a 2-4×2a <0,∴0<a <8.4、-14 【解析】 由已知得方程ax 2+bx +2=0的两根为-12,13.则⎩⎨⎧-b a =-12+132a =(-12)×13解得⎩⎪⎨⎪⎧a =-12,b =-2, ∴a +b =-14.典例分析:例1:(1)原不等式可化为(3)(21)0x x ++> 故原不等式的解集为132x x x ⎧⎫<->-⎨⎬⎩⎭或(2)原不等式化为x 2-2x -3≤0, 即(x -3)(x +1)≤0, 故原不等式的解集为{x |-1≤x ≤3}. (3)原不等式可化为2830x x -+<284(1)(3)520∆=-⨯-⨯-=>212830413413x x x x ∴-+-===方程有两个实根,故原不等式的解集为{}413413x x << (4)原不等式可化为26100x x -+≤ 26411040∆=-⨯⨯=-<∴原不等式的解集为∅(5)原不等式可化为22620x x -+> 2(6)42270∆=--⨯⨯=-<∴故原不等式的解集为R(6) ∵2x x -1≤1⇔2xx -1-1≤0 ⇔x +1x -1≤0 ⇔(1)(1)01110x x x x ≤⎧⇔-≤<⎨-≠⎩-+∴原不等式的解集为[-1,1).变式训练1 (1)9450∆=-=> 12353522x x ∴==对应的方程有两实数根 ∴原不等式的解集为35352x ⎧-+⎪≤≤⎨⎪⎪⎩⎭(2)原不等式可化为(31)(2)0x x -+> ∴原不等式的解集为123x x x ⎧⎫<->⎨⎬⎩⎭或(3)∵-2x 2-5x +3>0, ∴2x 2+5x -3<0,∴(2x -1)(x +3)<0, ∴原不等式的解集为{x |-3<x <12}.(4)原不等式可化为2(31)0x -> ∴原不等式的解集为13x x ⎧⎫≠⎨⎬⎩⎭(5)原不等式可化为(3)(12)0120x x x +-≤⎧⎨-≠⎩ (3)(21)0120x x x +-≥⎧⎨-≠⎩则 13212x x x ⎧≤-≥⎪⎪∴⎨⎪≠⎪⎩或∴原不等式的解集为132x x x ⎧⎫≤->⎨⎬⎩⎭或(6)这是一个双向不等式,可转化为不等式组⎩⎪⎨⎪⎧x 2+2x -1≥-1,x 2+2x -1≤2,即⎩⎪⎨⎪⎧x 2+2x ≥0, ①x 2+2x -3≤0. ② 由①得x ≥0或x ≤-2; 由②得-3≤x ≤1. 故得所求不等式的解集为{x |-3≤x ≤-2或0≤x ≤1}.例2 由于x 2+ax +b <0的解集是(-1,2),所以⎩⎪⎨⎪⎧1-a +b =0,4+2a +b =0,解得⎩⎪⎨⎪⎧a =-1,b =-2.故不等式即为-x 2+x -2<0, ∵⎩⎪⎨⎪⎧-1<0,Δ=1-8=-7<0∴不等式ax 2+x +b <0的解集为R .,变式训练2 解: axx -1<1⇔(a -1)x +1x -1<0⇔[(a -1)x +1](x -1)<0,由原不等式的解集是{x |x <1或x >2}, 知⎩⎪⎨⎪⎧a -1<0,-1a -1=2⇒a =12. ∴实数a 的取值范围是{12}. 例3 ∵12x 2-ax >a 2, ∴12x 2-ax -a 2>0,即(4x +a )(3x -a )>0,令(4x +a )(3x -a )=0, 得:x 1=-a 4,x 2=a3.①a >0时,-a 4<a 3,解集为{x |x <-a 4或x >a3};②a =0时,x 2>0,解集为{x |x ∈R 且x ≠0};③a <0时,-a 4>a 3,解集为{x |x <a 3或x >-a4}.综上所述:当a >0时,不等式的解集为{x |x <-a 4或x >a3};当a =0时,不等式的解集为{x |x ∈R 且x ≠0};当a <0时,不等式的解集为{x |x <a3或x >-变式训练3 【解】 原不等式可化为(x -a )(x -1)<0.当a >1时,原不等式的解集为(1,a ); 当a =1时,原不等式的解集为空集; 当a <1时,原不等式的解集为(a ,例4 要使mx 2-mx -1<0对一切实数x 恒成立,若m =0,显然-1<0;若m ≠0,则⎩⎪⎨⎪⎧m <0,Δ=m 2+4m <0,解得-4<m <0, 故实数m 的取值范围是(-4,0].,变式训练4 【解析】 设f (a )=(x -2)a +x 2-4x +4,则原问题可转化为一次函数(或常数函数)f (a )在区间[-1,1]上恒正时x 应满足的条件,故应有⎩⎪⎨⎪⎧f (-1)>0,f (1)>0. 即⎩⎪⎨⎪⎧x 2-5x +6>0,x 2-3x +2>0, 化为⎩⎪⎨⎪⎧(x -2)(x -3)>0,(x -1)(x -2)>0. 解之,得x <1或x >3.课时训练1、B 解:由2230x x --<, 得13x -<<由12log 0x <,得1x > 所以{}13M N x x ⋂=<<2、C 解:()()1x a x a -⊗+<对任意实数x 成立, 即()(1)1x a x a ---<对任意实数x 成立2210x x a a ∴--++>恒成立 214(1)0a a ∴∆=--++< 1322a ∴-<< 3. B 【解析】 ∵|x -1|<2⇔-1<x <3,又x (x -3)<0⇔0<x <3.则(0,3)(-1,3). 4、C 解:由题意可知原不等式即为2011x <-< ,212x ∴<<1221x x ∴<<<-或5. B 【解析】 由|x -2|≤5,得-3≤x ≤7, 又x ∈Z ,∴A 中的最小元素为-36、C 解:由题意知2,3是方程20x ax b --=的解235,236a ab b +==⎧⎧∴∴⎨⎨⨯=-=-⎩⎩ 22106510bx ax x x ∴-->--->不等式为2116+5+1023x x x x ⎧⎫<∴-<<-⎨⎬⎩⎭即, 7、 A 【解析】 2x 2+x -1>0的解集为{x |x >12或x <-1}, 故由x >12⇒2x 2+x -1>0,但2x 2+x -1>0D ⇒/x >12. 则“x >12”是“2x 2+x -1>0”的充分不必要条件. 8、B 解:由102x x -≥+,得(1)(2)020x x x -+≥⎧⎨+≠⎩ 则(1)(2)020x x x -+≤⎧⎨+≠⎩解得21x -<≤ (]2,1∴-原不等式的解集为9、A 【解析】 关于x 的不等式x 2-2ax +a >0的解集为R ,则Δ=4a 2-4a <0,解得0<a <1,由集合的包含关系可知选A.10、B 解:原不等式可化为(21)(3)0x x +-≥,解得132x x ≤-≥或 所以原不等式成立的一个必要不充分条件是02x x <>或11、A 解:由题意知,2225(1)4x x x -+=-+的最小值为4,所以22253x x a a -+≥- 对任意实数x 恒成立,只需234a a -≤,解得14a -≤≤12、(13,)-+∞ 解:()(1)(1)f x f f ∴-=-是奇函数, 即1(12)a --=--2()2a f x ∴=->-,则不等式等价于22002222x x x x x x ≥<⎧⎧⎨⎨->--->-⎩⎩,或,解得030x x ≥<<,或-1- 即(13,)x ∈--+∞13、43a -≤≤ 解:原不等式可化为()(1)0x a x --≤,当1a <时,不等式的解集为[],1a , 此时只要4a ≥-即可,即41a -≤<,当1a =时,不等式的解集为1x =,此时符合要求; 当1a >时,不等式的解集为[]1,a ,此时只要3a ≤即可,即13a <≤,综上可得43a -≤≤14. -1 【解析】 由|x -2|>1得x -2<-1或x -2>1,即x <1或x >3.依题意得知,不等式x 2+ax +b >0的解集是(-∞,1)∪(3,+∞)于是有⎩⎪⎨⎪⎧1×3=b ,1+3=-a ,即a =-4,b =3,a +b =-1. 15、[0,12], 解:由2x 2-3x +1≤0,得12≤x ≤1, 由x 2-(2a +1)x +a (a +1)≤0,得a ≤x ≤a +1,由命题p 是命题q 的必要不充分条件知,p 是q 的充分不必要条件,即{x |12≤x ≤1}{x |a ≤x ≤a +1}, ∴⎩⎪⎨⎪⎧a ≤12,a +1≥1,∴0≤a ≤12. 16、 (2,+∞) 【解析】 由题意知,不等式(a +2)x 2+4x +a -1>0对一切x ∈R 恒成立,则有⎩⎪⎨⎪⎧a +2>0,Δ=16-4(a +2)(a -1)<0,解得a >2.。
高中数学《一元二次不等式及其解法习题课》课件

(1)求矩形 ABCD 的面积 S 关于 x 的函数解析式;
(2)要使仓库占地 ABCD 的面积不少于 144 平方米,则
AB 的长度应在什么范围内?
30
课前自主预习
课堂互动探究
随堂达标自测
课后课时精练
数学 ·必修5
解
(1)根据题意,得△NDC
与△NAM
相似,所以DC= AM
ND,即 x =20-AD,解得 NA 30 20
∵x∈[-2,2],x-212+34max=7,
∴x2-6x+1min=67,∴m<67.
25
课前自主预习
课堂互动探究
随堂达标自测
课后课时精练
数学 ·必修5
拓展提升
有关不等式恒成立问题的等价转化方式
(1)不等式 ax2+bx+c>0 的解集是全体实数(或恒成立)
的条件是当 a=0 时,b=0,c>0;
23
课前自主预习
课堂互动探究
随堂达标自测
课后课时精练
数学 ·必修5
(2)将 f(x)<-m+5 变换成关于 m 的不等式:m(x2-x+ 1)-6<0.则命题等价于:m∈[-2,2]时,g(m)=m(x2-x+1) -6<0 恒成立.
∵x2-x+1>0,∴g(m)在[-2,2]上单调递增. ∴只要 g(2)=2(x2-x+1)-6<0,即 x2-x-2<0, ∴-1<x<2.∴x 的取值范围为-1<x<2.
①式的解集为 x≤-2 或 0≤x≤3.由②式知 x≠3, ∴原不等式的解集为{x|x≤-2 或 0≤x<3}.
18
课前自主预习
课堂互动探究
一元二次不等式解法和集合运算练习题

必修 5《一元二次不等式及其解法》练习卷知识点:1、一元二次不等式:只含有一个未知数,并且未知数的最高次数是 2 的不等式.2、二次函数的图象、一元二次方程的根、一元二次不等式的解集间的关系:鉴别式b2 4ac 0 0 0 二次函数y ax2bx ca0 的图象有两个相异实数根一元二次方程ax2 bx c 0x1,2 b 有两个相等实数根2a x1 x2b 没有实数根a 0 的根2ax1 x2ax2 bx c 0x x x1或x x2x xbRa 0 2a一元二次不等式的解集ax2 bx c 0x x1 x x2a 0同步练习:1、不等式6x2 5x 4 的解集为()A ., 4 1 , B. 4 , 13 2 3 2C., 1 4 , D. 1 , 42 3 2 32、设会合x 1 x 2 ,x x a 0 ,若,那么实数 a 的取值范围是()A.1, B.2, C.,2 D.1,3、若不等式x2 mx 1 0 的解集为 R ,则 m 的取值范围是()A .RB .2,2 C., 2 2, D.2,24、设一元二次不等式ax 2 bx 1 0 的解集为x 1 x 1 ,则 ab 的值是()3A .6 B.5 C.6 D.55、不等式x2 ax 12a2 0 a 0 的解集是()A .3a,4 aB .4a, 3a C.3,4 D .2a,6 a6、不等式ax2 bx 2 0 的解集是x 1 x 1,则2 3 A.14 B.14 C.a b()10D.101 2 x2 6 x 9 x2 3x 191的解集是()7、不等式22A .1,10 B., 1 10,C.R D., 1 10,8、不等式x 1 2 x 0 的解集是()A .x 1 x 2 B.x x 1或x 2 C.x 1 x 2 D.x x 1或x 29、不等式ax2 bx c a 0 的解集为,那么()A .a 0,0B .a 0,0 C.a 0,0 D .a 0,010、设f x x2 bx 1 ,且 f 1 f 3 ,则 f x 0 的解集是()A.,1 3, B.R C.x x 1 D .x x 111、若0 a 1,则不等式 a x1的解是()x 0aA .a1 1x a x B.a aC.x a或x 1 D.x 1或 x aa a12、不等式x 1 3x 0 的解集是()A.,1B.,0 0,1C.1, D.0,13 3 3 313、二次函数y ax2 bx c x R 的部分对应值以下表:x 3 2 1 0 1 2 3 4y 6 0 4 6 6 4 0 6则不等式 ax2 bx c 0 的解集是____________________________.14、若a b 0 ,则 a bx ax b 0 的解集是_____________________________.15 、不等式ax2 bx c 0 的解集为x 2 x 3 ,则不等式ax2 bx c 0 的解集是________________________ .16、不等式x2 2x 3 0 的解集是___________________________.17、不等式x2 5x 6 0 的解集是______________________________.18、k 1 x2 6x 8 0 的解集是或4 ,则k_________.x x 2 x519、已知不等式x2 px q 0 的解集是x 3 x 2 ,则 p q ________.20、不等式x x3 0 的解集为____________________.21、求以下不等式的解集:⑴ x 4 x 1 0 ;⑵3x2 x 2 ;⑶ 4x2 4x 1 0 .22、已知不等式ax 2bx 2 0 的解集为x 1x1,求a、b的值.2 323、已知会合x x29 0 ,x x24x 3 0 ,求,.会合的运算一、知识点:1.交集:由所有下于会合 A 即:A B2.并集:由所有下于会合 A 即:A B 属于会合 B 的元素所组成的会合,叫做 A 与 B 的交集。
2018年高考数学一轮复习讲练测江苏版专题7.2 一元二次不等式及其解法测 含解析

班级__________ 姓名_____________ 学号___________ 得分__________(满分100分,测试时间50分钟)一、填空题:请把答案直接填写在答题卡相应的位置........上(共10题,每小题6分,共计60分).1.不等式错误!未找到引用源。
的解集为.(用区间表示)【答案】错误!未找到引用源。
2.不等式错误!未找到引用源。
的解集为.【答案】错误!未找到引用源。
【解析】由错误!未找到引用源。
,解得:错误!未找到引用源。
,所以不等式错误!未找到引用源。
的解集为错误!未找到引用源。
.3.一元二次不等式错误!未找到引用源。
的解集为错误!未找到引用源。
,则一元一次不等式错误!未找到引用源。
的解集为.【答案】错误!未找到引用源。
【解析】因为一元二次不等式错误!未找到引用源。
的解集为错误!未找到引用源。
,即错误!未找到引用源。
为方程错误!未找到引用源。
的两个根,代入得错误!未找到引用源。
故一元一次不等式错误!未找到引用源。
的解集为错误!未找到引用源。
4.已知函数错误!未找到引用源。
,则不等式错误!未找到引用源。
的解集为______.【答案】错误!未找到引用源。
【解析】由题意得:错误!未找到引用源。
5.设函数错误!未找到引用源。
是定义在错误!未找到引用源。
上的奇函数,当错误!未找到引用源。
时,错误!未找到引用源。
,则关于错误!未找到引用源。
的不等式错误!未找到引用源。
的解集是.【答案】错误!未找到引用源。
【解析】因为当错误!未找到引用源。
时,错误!未找到引用源。
;所以由当错误!未找到引用源。
时,错误!未找到引用源。
解得错误!未找到引用源。
6.若“错误!未找到引用源。
”是“错误!未找到引用源。
”的必要不充分条件,则错误!未找到引用源。
的最小值为.【答案】错误!未找到引用源。
7.设函数错误!未找到引用源。
是定义在错误!未找到引用源。
上的奇函数,当错误!未找到引用源。
时,错误!未找到引用源。
高中数学一轮复习 一元二次不等式及其解法
(Ⅱ)若 ax2+bx+c≤0 的解集为 R,求实数 c 的取值范围.
Байду номын сангаас解:(Ⅰ)依题意知,-3,2 是方程 ax2+(b-8)x-a-ab=0 的两
-3+2=-b-a 8,
根,且 a<0,则
所以 -3×2=-aa-ab,
a=-3,b=5,则
f(x)=-
1- k1-k2};
当 k=-1 时,不等式的解集为{x|x≠-1};
当 k<-1 时,不等式的解集为 R.
点 拨: 解一元二次不等式的步骤:第一步,将二次项系数化 为正数;第二步,解相应的一元二次方程;第三步,根据 一元二次方程的根,结合不等号的方向画图;第四步,写
出不等式的解集.容易出现的错误有:①未将二次项系数
-2152,所以实数 c 的取值范围为-∞,-2152.
点 拨: 三个“二次”在高考中举足轻重,每年高考中,至
少有三分之一的题目与之相关.直接考查的不多见,以 间接考查为主,贯穿高中数学的始终.其中二次函数居 核心地位.
(1) 已 知 不 等 式 ax2 - 3x + 6>4 的 解 集 为
+2>0 的解集为 R.
(2)若关于 x 的不等式 ax2-x+2a<0 的解集为∅,则
实数 a 的取值范围是________.
解:依题意知,问题等价于 ax2-x+2a≥0 恒成立, 当 a=0 时,-x≥0 不恒成立; 当 a≠0 时,要使 ax2-x+2a≥0 恒成立,
需aΔ>≤0,0,即1a->08,a2≤0,解得 a≥ 42,即 a 的取值
{x|x1<x<x2}
有两相等实根 x1=x2= -2ba
2018高考一轮江苏数学(文)(练习)第3章第13课一元二次不等式及其解法Word版含答案
第13课一元二次不等式及其解法[最新考纲]一元二次不等式与相应的二次函数及一元二次方程的关系1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)不等式ax2+x-1>0一定是一元二次不等式.()(2)不等式x-2x+1≤0⇔(x-2)(x+1)≤0.()(3)若不等式ax2+bx+c>0的解集是(-∞,x1)∪(x2,+∞),则方程ax2+bx +c=0的两个根是x1和x2.()(4)不等式ax2+bx+c≤0在R上恒成立的条件是a<0且Δ=b2-4ac ≤0.( )[答案] (1)× (2)× (3)√ (4)×2.不等式-x 2-3x +4>0的解集为________.(用区间表示) (-4,1) [由-x 2-3x +4>0得x 2+3x -4<0,解得-4<x <1.]3.(教材改编)若关于x 的方程x 2+ax +a 2-1=0有一正根和一负根,则a 的取值范围为________.(-1,1) [令f (x )=x 2+ax +a 2-1,由题意可知f (0)=a 2-1<0,即-1<a <1.] 4.在R 上定义运算:⎪⎪⎪⎪⎪⎪ab cd =ad -bc .若不等式⎪⎪⎪⎪⎪⎪x -1 a -2a +1 x ≥1对任意实数x 恒成立,则实数a 的最大值为__________.32 [原不等式等价于x (x -1)-(a -2)(a +1)≥1, 即x 2-x -1≥(a +1)(a -2)对任意x 恒成立, x 2-x -1=⎝ ⎛⎭⎪⎫x -122-54≥-54,所以-54≥a 2-a -2,解得-12≤a ≤32.]5.(2017·宿迁模拟)已知不等式ax 2-bx -1≥0的解集是⎣⎢⎡⎦⎥⎤-12,-13,则不等式x 2-bx -a <0的解集是________.(2,3) [由不等式ax 2-bx -1≥0的解集为⎣⎢⎡⎦⎥⎤-12,-13可知 ,a <0且-12,-13是方程ax 2-bx -1=0的两个实数根.∴⎩⎪⎨⎪⎧-12-13=ba ,⎝ ⎛⎭⎪⎫-12×⎝ ⎛⎭⎪⎫-13=-1a ,解得⎩⎨⎧a =-6,b =5.∴由x 2-5x +6<0得2<x <3.即不等式x 2-bx -a <0的解集为(2,3).](1)3+2x -x 2≥0; (2)x 2-(a +1)x +a <0.[解] (1)原不等式化为x 2-2x -3≤0, 即(x -3)(x +1)≤0,故所求不等式的解集为{x |-1≤x ≤3}. (2)原不等式可化为(x -a )(x -1)<0, 当a >1时,原不等式的解集为(1,a ); 当a =1时,原不等式的解集为∅; 当a <1时,原不等式的解集为(a,1).[迁移探究] 将(2)中不等式改为ax 2-(a +1)x +1<0,求不等式的解集. [解] 若a =0,原不等式等价于-x +1<0,解得x >1. 若a <0,原不等式等价于⎝ ⎛⎭⎪⎫x -1a (x -1)>0,解得x <1a 或x >1.若a >0,原不等式等价于⎝ ⎛⎭⎪⎫x -1a (x -1)<0.①当a =1时,1a =1,⎝ ⎛⎭⎪⎫x -1a (x -1)<0无解;②当a >1时,1a <1,解⎝ ⎛⎭⎪⎫x -1a (x -1)<0得1a <x <1;③当0<a <1时,1a >1,解 ⎝ ⎛⎭⎪⎫x -1a (x -1)<0得1<x <1a .综上所述:当a <0时,解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <1a 或x >1; 当a =0时,解集为{x |x >1};当0<a <1时,解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1<x <1a;当a =1时,解集为∅;当a >1时,解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1a <x <1. [规律方法] 1.解一元二次不等式的步骤: (1)使一端为0且把二次项系数化为正数.(2)先考虑因式分解法,再考虑求根公式法或配方法或判别式法. (3)写出不等式的解集.2.解含参数的一元二次不等式的步骤:(1)二次项中若含有参数应讨论是等于0,小于0,还是大于0,然后将不等式转化为一次不等式或二次项系数为正的形式.(2)判断方程的根的个数,讨论判别式Δ与0的关系.(3)确定无根时可直接写出解集,确定方程有两个根时,要讨论两根的大小关系,从而确定解集形式.[变式训练1] 解关于x 的不等式kx 2-2x +k <0(k ∈R ). 【导学号:62172074】 [解] ①当k =0时,不等式的解为x >0.②当k >0时,若Δ=4-4k 2>0,即0<k <1时,不等式的解为1-1-k2k<x <1+1-k 2k;若Δ≤0,即k ≥1时,不等式无解.③当k <0时,若Δ=4-4k 2>0,即-1<k <0时,x <1+1-k 2k 或x >1-1-k 2k ;若Δ<0,即k <-1时,不等式的解集为R ; 若Δ=0,即k =-1时,不等式的解为x ≠-1. 综上所述,k ≥1时,不等式的解集为∅; 0<k <1时,不等式的解集为 ⎩⎨⎧⎭⎬⎫x ⎪⎪⎪1-1-k 2k <x <1+1-k 2k ; k =0时,不等式的解集为{x |x >0}; 当-1<k <0时,不等式的解集为 ⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <1+1-k 2k 或x >1-1-k 2k ; k =-1时,不等式的解集为{x |x ≠-1}; k <-1时,不等式的解集为R .角度1 形如f (x )≥0(x ∈R )求参数的范围不等式(a -2)x 2+2(a -2)x -4<0对一切x ∈R 恒成立,则实数a 的取值范围是__________.(-2,2] [当a -2=0,即a =2时,不等式即为-4<0,对一切x ∈R 恒成立, 当a ≠2时,则有⎩⎨⎧a -2<0,Δ=4(a -2)2+16(a -2)<0, 即⎩⎨⎧a <2,-2<a <2,∴-2<a <2. 综上,可得实数a 的取值范围是(-2,2].] ☞角度2 形如f (x )≥0()x ∈[a ,b ]求参数的范围设函数f (x )=mx 2-mx -1.若对于x ∈[1,3],f (x )<-m +5恒成立,求m 的取值范围. 【导学号:62172075】[解] 要使f (x )<-m +5在x ∈[1,3]上恒成立,即m ⎝ ⎛⎭⎪⎫x -122+34m -6<0在x ∈[1,3]上恒成立.有以下两种方法:法一:令g (x )=m ⎝ ⎛⎭⎪⎫x -122+34m -6,x ∈[1,3].当m >0时,g (x )在[1,3]上是增函数, 所以g (x )max =g (3)⇒7m -6<0, 所以m <67,所以0<m <67; 当m =0时,-6<0恒成立; 当m <0时,g (x )在[1,3]上是减函数,所以g (x )max =g (1)⇒m -6<0,所以m <6,所以m <0. 综上所述:m的取值范围是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫m ⎪⎪⎪m <67. 法二:因为x 2-x +1=⎝ ⎛⎭⎪⎫x -122+34>0,又因为m (x 2-x +1)-6<0,所以m <6x 2-x +1.因为函数y =6x 2-x +1=6⎝ ⎛⎭⎪⎫x -122+34在[1,3]上的最小值为67,所以只需m <67即可.所以m的取值范围是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫m ⎪⎪⎪m <67. ☞角度3 形如f (x )≥0(参数m ∈[a ,b ])求x 的范围对任意的k ∈[-1,1],函数f (x )=x 2+(k -4)x +4-2k 的值恒大于零,则x 的取值范围是__________.{x |x <1或x >3} [x 2+(k -4)x +4-2k >0恒成立, 即g (k )=(x -2)k +(x 2-4x +4)>0, 在k ∈[-1,1]时恒成立.只需g (-1)>0且g (1)>0,即⎩⎨⎧x 2-5x +6>0,x 2-3x +2>0,解得x <1或x >3.][规律方法] 1.解决恒成立问题一定要搞清谁是主元,谁是参数,一般地,知道谁的范围,谁就是主元,求谁的范围,谁就是参数.2.对于一元二次不等式恒成立问题,恒大于0就是相应的二次函数的图象在给定的区间上全部在x 轴上方,恒小于0就是相应的二次函数的图象在给定的区间上全部在x 轴下方,另外常转化为求二次函数的最值或用分离参数法求最值.[思想与方法]1.不等式ax 2+bx +c >0对任意实数x 恒成立⇔⎩⎨⎧ a =b =0,c >0,或⎩⎨⎧a >0,Δ<0.不等式ax 2+bx +c <0对任意实数x 恒成立⇔⎩⎨⎧ a =b =0,c <0,或⎩⎨⎧a <0,Δ<0.2.“三个二次”的关系是解一元二次不等式的理论基础,一般可把a <0时的情形转化为a >0时的情形.3.解含参数的一元二次不等式,可先考虑因式分解,再对根的大小进行分类讨论;若不能因式分解,则可对判别式进行分类讨论,分类要不重不漏.[易错与防范]1.对于不等式ax 2+bx +c >0,求解时不要忘记讨论a =0时的情形. 2.当Δ<0时,ax 2+bx +c >0(a ≠0)的解集为R 还是∅,要注意区别.3.含参数的不等式要注意选好分类标准,避免盲目讨论. 4.不同参数范围的解集切莫取并集,应分类表述.课时分层训练(十三)A 组 基础达标 (建议用时:30分钟)一、填空题1.不等式-2x 2+x +1>0的解集为__________.⎝ ⎛⎭⎪⎫-12,1 [-2x 2+x +1>0,即2x 2-x -1<0,(2x +1)(x -1)<0,解得-12<x <1,∴不等式-2x 2+x +1>0的解集为⎝ ⎛⎭⎪⎫-12,1.]2.若集合A ={}x |ax 2-ax +1<0=∅,则实数a 的值的集合是________.【导学号:62172076】{a |0≤a ≤4} [由题意知a =0时,满足条件, a ≠0时,由⎩⎨⎧a >0,Δ=a 2-4a ≤0, 得0<a ≤4,所以0≤a ≤4.]3.已知关于x 的不等式ax -1x +1<0的解集是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <-1或x >-12,则实数a =________.-2 [不等式ax -1x +1<0等价于(ax -1)(x +1)<0,由题意可知x =-1及x =-12是方程(ax -1)(x +1)=0的两个实数根,∴1a =-12,即a =-2.]4.若关于x 的不等式x 2-2ax -8a 2<0(a >0)的解集为(x 1,x 2),且x 2-x 1=15,则a =________.52[由x 2-2ax -8a 2<0, 得(x +2a )(x -4a )<0,因a >0, 所以不等式的解集为(-2a,4a ), 即x 2=4a ,x 1=-2a ,由x 2-x 1=15,得4a -(-2a )=15,解得a =52.]5.不等式x 2-2x +5≥a 2-3a 对任意实数x 恒成立,则实数a 的取值范围为________.[-1,4] [令f (x )=x 2-2x +5,则f (x )=(x -1)2+4≥4, 由a 2-3a ≤4得-1≤a ≤4.]6.若不等式mx 2+2mx +1>0的解集为R ,则m 的取值范围是__________. [0,1) [①当m =0时,1>0显然成立;②当m ≠0时,由条件知⎩⎨⎧m >0,Δ=4m 2-4m <0,得0<m <1, 由①②知0≤m <1.]7.(2016·苏北四市摸底考试)已知函数f (x )=-x 2+2x ,则不等式f (log 2x )<f (2)的解集为________.(0,1)∪(4,+∞) [由f (log 2x )<f (2)可得 -(log 2x )2+2log 2x <-4+4, ∴log 2x (2-log 2x )<0, ∴log 2x >2或log 2x <0, ∴x >4或0<x <1,即不等式f (log 2x )2<f (2)的解集为(0,1)∪(4,+∞).]8.(2017·南京、盐城二模)已知函数f (x )=⎩⎪⎨⎪⎧12x +1, x ≤0,-(x -1)2,x >0,则不等式f (x )≥-1的解集是__________. 【导学号:62172077】[-4,2] [不等式f (x )≥-1⇔⎩⎪⎨⎪⎧x ≤0,12x +1≥-1或⎩⎨⎧x >0,-(x -1)2≥-1,解得-4≤x ≤0或0<x ≤2,故不等式f (x )≥-1的解集是[-4,2].]9.已知一元二次不等式f (x )<0的解集为⎩⎨⎧⎭⎬⎫x | x <-1或x >13,则f (e x )>0的解集为________.{x |x <-ln 3} [设-1和13是方程x 2+ax +b =0的两个实数根,∴a =-⎝ ⎛⎭⎪⎫-1+13=23,b =-1×13=-13.∵一元二次不等式f (x )<0的解集为⎩⎨⎧⎭⎬⎫x | x <-1或x >13,∴f (x )=-⎝ ⎛⎭⎪⎫x 2+23x -13=-x 2-23x +13,∴f (x )>0的解集为x ∈⎝ ⎛⎭⎪⎫-1,13.不等式f (e x )>0可化为-1<e x <13. 解得x <ln 13, ∴x <-ln 3,即f (e x )>0的解集为{x |x <-ln 3}.]10.已知函数f (x )=-x 2+ax +b 2-b +1(a ∈R ,b ∈R ),对任意实数x 都有f (1-x )=f (1+x )成立,当x ∈[-1,1]时,f (x )>0恒成立,则b 的取值范围是________.b <-1或b >2 [由f (1-x )=f (1+x )知f (x )图象的对称轴为直线x =1, 则有a2=1,故a =2.由f (x )的图象可知f (x )在[-1,1]上为增函数.∵x ∈[-1,1]时,f (x )min =f (-1)=-1-2+b 2-b +1=b 2-b -2, 令b 2-b -2>0,解得b <-1或b >2.] 二、解答题11.已知函数f (x )=ax 2+2ax +1的定义域为R . (1)求a 的取值范围;(2)若函数f (x )的最小值为22,解关于x 的不等式x 2-x -a 2-a <0.【导学号:62172078】[解] (1)由题意可知ax 2+2ax +1≥0恒成立. ①当a =0时,符合题意, ②当a ≠0时,只需⎩⎨⎧a >0,Δ=4a 2-4a ≤0,即0<a ≤1. 综上所述,实数a 的取值范围是[0,1]. (2)∵f (x )min =22,∴ax 2+2ax +1的最小值为12. 即⎩⎪⎨⎪⎧4a -4a 24a =12,a >0,解得a =12.∴不等式x 2-x -34<0的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-12<x <32.12.(2017·启东中学高三第一次月考)已知命题∃x ∈{x |-1<x <1},使等式x 2-x -m =0成立是真命题.(1)求实数m 的取值集合M ;(2)设不等式(x -a )(x +a -2)<0的解集为N ,若x ∈N 是x ∈M 的必要条件,求a 的取值范围.[解] (1)由x 2-x -m =0可得m =x 2-x =⎝ ⎛⎭⎪⎫x -122-14.∵-1<x <1,∴-14≤m <2,∴M =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫m ⎪⎪⎪-14≤m <2. (2)若x ∈N 是x ∈M 的必要条件,则M ⊆N , ①当a >2-a ,即a >1时,N ={x |2-a <x <a }, 则⎩⎪⎨⎪⎧2-a <-14,a ≥2,a >1,即a >94.②当a <2-a ,即a <1时,N ={x |a <x <2-a }, 则⎩⎪⎨⎪⎧a <1,a <-14,即a <-14,2-a ≥2,③当a =2-a ,即a =1时,N =∅,不合题意.综上可得a <-14或a >94.B 组 能力提升(建议用时:15分钟)1.若关于x 的不等式x 2-4x -2-a >0在区间(1,4)内有解,则实数a 的取值范围是________.(-∞,-2) [不等式x 2-4x -2-a >0在区间(1,4)内有解等价于a <(x 2-4x -2)max ,令g (x )=x 2-4x -2,x ∈(1,4),∴g (x )<g (4)=-2,∴a <-2.]2.在R 上定义运算:x *y =x (1-y ),若不等式(x -y )*(x +y )<1对一切实数x 恒成立,则实数y 的取值范围是__________.⎝ ⎛⎭⎪⎫-12,32 [由题意知(x -y )*(x +y )=(x -y )·[1-(x +y )]<1对一切实数x 恒成立,所以-x 2+x +y 2-y -1<0对于x ∈R 恒成立.故Δ=12-4×(-1)×(y 2-y -1)<0,所以4y 2-4y -3<0,解得-12<y <32.]3.(2017·南通第一次学情检测)已知二次函数f (x )=ax 2-bx +2.(1)若不等式f (x )>0的解集为{x |x >2或x <1},求a 和b 的值;(2)若b =2a +1,对任意a ∈⎣⎢⎡⎦⎥⎤12,1,f (x )>0恒成立,求x 的取值范围. [解] (1)因为不等式f (x )>0的解集为{x |x >2或x <1},所以与之对应的二次方程ax 2-bx +2=0的两个根为1和2,由韦达定理,得a =1,b =3.(2)令g (a )=a ()x 2-2x -x +2,则⎩⎪⎨⎪⎧ g (1)>0,g ⎝ ⎛⎭⎪⎫12>0,解得x >2或x <1.故实数x 的取值范围为(-∞,1)∪(2,+∞).4.已知函数f (x )=x 2-2ax -1+a ,a ∈R .(1)若a =2,试求函数y =f (x )x (x >0)的最小值;(2)对于任意的x ∈[0,2],不等式f (x )≤a 成立,试求a 的取值范围.[解] (1)依题意得y =f (x )x =x 2-4x +1x =x +1x -4.因为x >0,所以x +1x ≥2,当且仅当x =1x ,即x =1时,等号成立,所以y ≥-2.所以当x =1时,y =f (x )x 的最小值为-2.(2)因为f (x )-a =x 2-2ax -1,所以要使得“∀x ∈[0,2],不等式f (x )≤a 成立”只要“x 2-2ax -1≤0在[0,2]上恒成立”.不妨设g (x )=x 2-2ax -1,则只要g (x )≤0在[0,2]上恒成立即可,所以⎩⎨⎧ g (0)≤0,g (2)≤0,即⎩⎨⎧ 0-0-1≤0,4-4a -1≤0, 解得a ≥34,则a 的取值范围为⎣⎢⎡⎭⎪⎫34,+∞.。
专题6.2 一元二次不等式及其解法(解析版)
第六篇不等式、推理与证明专题6.2 一元二次不等式及其解法【考纲要求】1.会从实际情境中抽象出一元二次不等式模型.2.通过函数图象了解一元二次不等式与相应的二次函数、一元二次方程的联系.3.会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图.【命题趋势】对一元二次不等式的考查,主要以考查解法为主,同时也考查一元二次方程的判别式、根的存在性及二次函数的图象与性质等.另外,以函数、数列为载体,以一元二次不等式的解法为手段求参数的取值范围也是热点.【核心素养】本讲内容主要考查数学运算、数学建模的核心素养.【素养清单•基础知识】三个二次之间的关系判别式Δ=b2-4acΔ>0Δ=0Δ<0 二次函数y=ax2+bx+c(a>0)的图象一元二次方程ax2+bx+c=0 (a>0)的根有两相异实根x1,x2(x1<x2)有两相等实根x1=x2=-b2a没有实数根ax2+bx+c>0 (a>0)的解集{x|x<x1或x>x2}⎩⎨⎧⎭⎬⎫x⎪⎪x≠-b2a Rax2+bx+c<0(a>0)的解集{x|x1<x<x2}∅∅【素养清单•常用结论】(x-a)(x-b)>0或(x-a)(x-b)<0型不等式的解法不等式解集a <ba =b a >b (x -a )· (x -b )>0 {x |x <a 或x >b }{x |x ≠a }{x |x >a 或x <b }(x -a )·(x -b )<0{x |a <x <b }∅{x |b <x <a }不等式ax 2+bx +c >0(<0)恒成立的条件(1)ax 2+bx +c >0对任意实数x 恒成立⇔⎩⎪⎨⎪⎧ a =b =0,c >0或 ⎩⎪⎨⎪⎧ a >0,Δ=b 2-4ac <0 . (2)ax 2+bx +c <0对任意实数x 恒成立⇔⎩⎪⎨⎪⎧a =b =0,c <0或 ⎩⎪⎨⎪⎧a <0,Δ=b 2-4ac <0【真题体验】1.【2018年高考全国I 卷理数】已知集合,则( )A .B .C .D .【答案】B 【解析】解不等式得,所以,所以可以求得,故选B .2.已知全集U =R ,集合A ={x ⎪⎪⎪⎭⎬⎫x -13-x >0,集合B ={x |}y =4-2x ,则A ∩B =( ) A .(1,2) B .(2,3) C .[2,3) D .(1,2] 【答案】D【解析】 因为x -13-x >0,所以(x -1)(x -3)<0,所以1<x <3.又因为4-2x ≥0,所以4≥2x ,所以x ≤2,所以A ∩B ={x |1<x ≤2}.故选D.3.不等式x (2-x )>0的解集为__________. 【答案】 (0,2)【解析】 因为x (2-x )>0,所以x (x -2)<0,所以0<x <2,故解集为(0,2).4.(2019·海安中学期中)若不等式x 2+px +2<0的解集为(1,2),则p =__________. 【答案】 -3【解析】 由题意可知1和2是方程x 2+px +2=0的两个根,所以1+2=-p ,即p =-3. 5.不等式x 2+ax +4≤0的解集不是空集,则实数a 的取值范围是__________. 【答案】 (-∞,-4]∪[4,+∞)【解析】 由题意可知Δ=a 2-16≥0,解得a ≥4或a ≤-4. 【考法解码•题型拓展】考法一 一元二次不等式的解法 归纳总结(1)解一元二次不等式的一般步骤①化为标准形式(二次项系数大于0);②确定判别式Δ的符号;③若Δ≥0,则求出该不等式对应的二次方程的根,若Δ<0,则对应的二次方程无实根;④结合二次函数的图象得出不等式的解集. (2)解含参数的一元二次不等式,需要对参数进行分类讨论①二次项中若含有参数,应讨论是小于零、等于零,还是大于零,然后将不等式转化为二次项系数为正的形式;②当不等式对应方程的根的个数不确定时,讨论判别式Δ与零的关系;③确定无实根时可直接写出解集,确定方程有两个根时,要讨论两根的大小关系,从而确定解集形式. 【例1】 (1)(2019·山东实验中学诊断)不等式-x 2+|x |+2<0的解集是( ) A .{x |-2<x <2} B .{x |x <-2或x >2} C .{x |-1<x <1} D .{x |x <-1或x >1} 【答案】B【解析】原不等式化为|x |2-|x |-2>0,所以(|x |-2)(|x |+1)>0.因为|x |+1>0,所以|x |-2>0,即|x |>2,解得x <-2或x >2.故选B.(2)(2019·长春外国语学校质检)若关于x 的不等式ax -b >0的解集是(-∞,-2),则关于x 的不等式ax 2+bx x -1>0的解集为( )A .(-2,0)∪(1,+∞)B .(-∞,0)∪(1,2)C .(-∞,-2)∪(0,1)D .(-∞,1)∪(2,+∞) 【答案】B【解析】关于x 的不等式ax -b >0的解集是(-∞,-2),所以a <0,ba =-2,所以b =-2a ,所以ax 2+bx x -1=ax 2-2ax x -1.因为a <0,所以x 2-2xx -1<0,解得x <0或1<x <2.故选B.(3)(2019·泉州中学月考)若不等式ax 2+bx +2>0的解集为⎩⎨⎧x ⎪⎪⎭⎬⎫-12<x <13,则不等式2x 2+bx +a <0的解集是__________. 【答案】{x |-2<x <3}【解析】由题意知-12和13是一元二次方程ax 2+bx +2=0的两根且a <0,所以⎩⎨⎧-12+13=-b a ,-12×13=2a ,解得⎩⎪⎨⎪⎧a =-12,b =-2.则不等式2x 2+bx +a <0,即2x 2-2x -12<0,所以x 2-x -6<0,解得-2<x <3. 考法二 一元二次不等式恒成立问题 解题技巧:不等式恒成立问题的求解方法(1)x ∈R 的不等式确定参数的范围时,结合二次函数的图象,利用判别式来求解.(2)x ∈[a ,b ]的不等式确定参数范围时,①根据函数的单调性,求其最值,让最值大于等于或小于等于0,从而求出参数的范围;②数形结合,利用二次函数在端点a ,b 处的取值特点确定不等式求参数的取值范围. (3)已知参数m ∈[a ,b ]的不等式确定x 的范围,要注意变换主元,一般地,知道谁的范围,就选谁当主元,求谁的范围,谁就是参数. 【例2】 函数f (x )=x 2+ax +3.(1)当x ∈R 时,f (x )≥a 恒成立,求a 的取值范围; (2)当x ∈[-2,2]时,f (x )≥a 恒成立,求a 的取值范围; (3)当a ∈[4,6]时,f (x )≥0恒成立,求x 的取值范围. 【答案】见解析【解析】 (1)因为x ∈R 时,有x 2+ax +3-a ≥0恒成立,需Δ=a 2-4(3-a )≤0,所以-6≤a ≤2,故a 的取值范围为[-6,2].(2)当x ∈[-2,2]时,设g (x )=x 2+ax +3-a ≥0,分如下三种情况讨论(如图所示):①如图①,当g (x )的图象恒在x 轴上方时,满足条件,有Δ=a 2-4(3-a )≤0,即-6≤a ≤2. ②如图②,g (x )的图象与x 轴有2个交点,但在x ∈ [-2,+∞)时,g (x )≥0,即⎩⎪⎨⎪⎧Δ>0,x =-a2<-2,g (-2)≥0,即⎩⎪⎨⎪⎧ a 2-4(3-a )>0,-a2<-2,4-2a +3-a ≥0⇔⎩⎪⎨⎪⎧a >2或a <-6,a >4,a ≤73,解得a ∈∅.③如图③,g (x )的图象与x 轴有2个交点, 但在x ∈(-∞,2]时,g (x )≥0,即⎩⎪⎨⎪⎧Δ>0,x =-a2>2,g (2)≥0,即⎩⎪⎨⎪⎧a 2-4(3-a )>0,-a2>2,7+a ≥0⇔⎩⎪⎨⎪⎧a >2或a <-6,a <-4,a ≥-7,所以-7≤a <-6.综上,得-7≤a ≤2,即a 的取值范围是[-7,2]. (3)令h (a )=xa +x 2+3,当a ∈[4,6]时,h (a )≥0恒成立.只需⎩⎪⎨⎪⎧ h (4)≥0,h (6)≥0,即⎩⎪⎨⎪⎧x 2+4x +3≥0,x 2+6x +3≥0,解得x ≤-3-6或x ≥-3+6, 故x 的取值范围是(-∞,-3-6]∪[-3+6,+∞). 考法三 一元二次不等式的实际应用 答题模板:求解不等式应用题的四个步骤(1)阅读、理解、审题,把握问题中的关键量,找准不等关系.(2)引进数学符号,将文字信息转化为符号语言,用不等式表示不等关系,建立相应的数学模型. (3)解不等式,得出数学结论,并注意数学模型中自变量的实际意义. (4)回归实际问题,将数学结论还原为实际问题的结果.【例3】 甲厂以x 千克/小时的速度匀速生产某种产品(生产条件要求1≤x ≤10),每小时可获得的利润是100·⎝⎛⎭⎫5x +1-3x 元.(1)要使生产该产品2小时获得的利润不低于3 000元,求x 的取值范围;(2)要使生产900千克该产品获得的利润最大,问:甲厂应该选取何种生产速度?并求最大利润. 【答案】见解析【解析】 (1)根据题意得200⎝⎛⎭⎫5x +1-3x ≥3 000,整理得5x -14-3x ≥0,即5x 2-14x -3≥0,又1≤x ≤10,可解得3≤x ≤10,故要使生产该产品2小时获得的利润不低于3 000元,x 的取值范围是[3,10]. (2)设利润为y 元,则y =900x ·100⎝⎛⎭⎫5x +1-3x=9×104⎝⎛⎭⎫5+1x -3x 2=9×104⎣⎡⎦⎤-3⎝⎛⎭⎫1x -162+6112, 故x =6时,y max =457 500元,即甲厂以6千克/小时的生产速度生产900千克该产品获得的利润最大,最大利润为457 500元. 【易错警示】易错点 不能正确转换简单的分式不等式【典例】 (2019·襄阳五中月考)已知R 是实数集,集合A ={x |x 2-x -2≤0},B =⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x -62x -1≥0,则A ∩(∁R B )=( )A .(1,6)B .[-1,2]C.⎣⎡⎦⎤12,2D.⎝⎛⎦⎤12,2【错解】:由x 2-x -2≤0可得A ={x |-1≤x ≤2}.由x -62x -1≥0可得(2x -1)(x -6)≥0,所以B =⎩⎨⎧x ⎪⎪⎭⎬⎫x ≤12或x ≥6,所以∁R B =⎩⎨⎧ x ⎪⎪⎭⎬⎫12<x <6,所以A ∩(∁R B )=⎩⎨⎧x ⎪⎪⎭⎬⎫12<x ≤2.故选D.【错因分析】:本例的解答错在x -62x -1≥0的转化上,这里显然x ≠12,转化过程不等价,因而导致错误. 【正解答案】:C【正解】:由x 2-x -2≤0可得A ={x |-1≤x ≤2}.由x -62x -1≥0得⎩⎪⎨⎪⎧(x -6)(2x -1)≥0,2x -1≠0,所以B =⎩⎨⎧x ⎪⎪⎭⎬⎫x <12或x ≥6,所以∁R B =⎩⎨⎧ x ⎪⎪⎭⎬⎫12≤x <6,所以A ∩(∁R B )=⎩⎨⎧x ⎪⎪⎭⎬⎫12≤x ≤2.故选C.归纳总结 :解分式不等式的方法就是将其转换为整式不等式再求解.常见的转换方式为f (x )g (x )≥0(≤0)⇔⎩⎪⎨⎪⎧f (x )·g (x )≥0(≤0),g (x )≠0;f (x )g (x )>0(<0)⇔f (x )g (x )>0(<0),但转换时一定要注意判断条件是否有改变. 【跟踪训练】 不等式3x -12-x ≥1的解集是( )A.⎩⎨⎧ x ⎪⎪⎭⎬⎫34≤x ≤2B.⎩⎨⎧x ⎪⎪⎭⎬⎫34≤x <2C.⎩⎨⎧ x ⎪⎪⎭⎬⎫x >2或x ≤34D.⎩⎨⎧x ⎪⎪⎭⎬⎫x ≥34 【答案】B【解析】 3x -12-x ≥1⇒4x -32-x ≥0⇒34≤x <2.故选B.【递进题组】1.已知不等式ax 2+bx +c >0的解集为{}x |2<x <4,则不等式cx 2+bx +a <0的解集为( )A .{x ⎪⎪⎭⎬⎫x >12 B .{x ⎪⎪⎭⎬⎫x <14C .{x ⎪⎪⎭⎬⎫14<x <12 D .{x ⎪⎪⎭⎬⎫x >12或x <14 【答案】D【解析】 由已知得a <0且2,4为一元二次方程ax 2+bx +c =0的两根,得-b a =2+4 ①,ca =2×4 ②.①除以②得-b c =34,由②得a c =18.因为a <0,所以c <0,所以不等式cx 2+bx +a <0⇔x 2+b c x +a c >0⇔x 2-34x +18>0⇔⎝⎛⎭⎫x -12⎝⎛⎭⎫x -14>0,所以x >12或x <14.故选D.2.若不等式2kx 2+kx -38<0对一切实数x 都成立,则k 的取值范围为( )A .(-3,0)B .[-3,0)C .[-3,0]D .(-3,0] 【答案】D【解析】 当k =0时,显然成立;当k ≠0时,即一元二次不等式2kx 2+kx -38<0对一切实数x 都成立,则⎩⎪⎨⎪⎧k <0,k 2-4×2k ×⎝⎛⎭⎫-38<0,解得-3<k <0.综上,满足不等式2kx 2+kx -38<0对一切实数x 都成立的k 的取值范围是(-3,0].故选D.3.已知函数f (x )=⎩⎪⎨⎪⎧-x 2+x ,x ≤1,log 13x ,x >1,若对任意的x ∈R ,不等式f (x )≤m 2-34m 恒成立,则实数m 的取值范围为__________.【答案】 ⎝⎛⎦⎤-∞,-14∪[1,+∞)【解析】 由题意知m 2-34m ≥f (x )max .当x >1时,f (x )=log 13x 是减函数,且f (x )<0;当x ≤1时,f (x )=-x 2+x ,其图象的对称轴方程是x =12,且开口向下,所以f (x )max =f ⎝⎛⎭⎫12=-14+12=14,所以m 2-34m ≥14,即4m 2-3m -1≥0,所以m ≤-14或m ≥1.4.(2019·天津河东一模)设二次函数f (x )=ax 2+bx +c ,函数F (x )=f (x )-x 的两个零点为m ,n (m <n ). (1)若m =-1,n =2,求不等式F (x )>0的解集; (2)若a >0,且0<x <m <n <1a ,比较f (x )与m 的大小. 【答案】见解析【解析】 (1)由题意知,F (x )=f (x )-x =a (x -m )(x -n ). 当m =-1,n =2时,不等式F (x )>0,即a (x +1)(x -2)>0. 当a >0时,不等式F (x )>0的解集为{x |x <-1或x >2}; 当a <0时,不等式F (x )>0的解集为{x |-1<x <2}.(2)f (x )-m =F (x )+x -m =a (x -m )(x -n )+x -m =(x -m )(ax -an +1),因为a >0,且0<x <m <n <1a ,所以x -m <0,1-an +ax >0.所以f (x )-m <0,即f (x )<m .5.汽车在行驶中,由于惯性的作用,刹车后还要继续向前滑行一段距离才能停住,我们称这段距离为“刹车距离”.刹车距离是分析事故的一个重要因素.在一个限速为40 km/h 的弯道上,甲、乙两辆汽车相向而行,发现情况不对,同时刹车,但还是相碰了.事后现场勘查测得甲车的刹车距离略超过12 m ,乙车的刹车距离略超过10 m ,又知甲、乙两种车型的刹车距离s (单位:m)与车速x (单位:km/h)之间分别有如下关系:s 甲=0.1x +0.01x 2,s 乙=0.05x +0.005x 2,问:甲、乙两车有无超速现象? 【答案】见解析【解析】 由题意知,对于甲车,有0.1x +0.01x 2>12,即x 2+10x -1 200>0,解得x >30或x <-40(不合实际意义,舍去),这表明甲车的车速超过30 km/h.若x ≥40,则s 甲≥20,但根据题意知刹车距离略超过12 m .所以甲车车速不超过限速40 km/h.对于乙车,有0.05x +0.005x 2>10,即x 2+10x -2 000>0,解得x >40或x <-50(舍去),这表明乙车的车速超过40 km/h ,超过规定限速. 【考卷送检】 一、选择题1.(2019·南昌月考)已知p :|5x -2|>3,q :1x 2+4x -5≥0,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 【答案】B【解析】 由|5x -2|>3,得x <-15或x >1,故p :x ∈M =⎝⎛⎭⎫-∞,-15∪(1,+∞).由1x 2+4x -5≥0,得{x |x <-5或x >1},故q :x ∈N =(-∞,-5)∪(1,+∞).因为N ⊆M ,所以p 是q 的必要不充分条件,故选B. 2.在R 上定义运算⊙:a ⊙b =ab +2a +b ,则满足x ⊙(x -2)<0的实数x 的取值范围为( ) A .(0,2) B .(-2,1) C .(-∞,-2)∪(1,+∞) D .(-1,2) 【答案】B【解析】 根据条件,由x ⊙(x -2)<0得(x +2)(x -1)<0,解得-2<x <1.故选B.3.函数y =ln ⎝⎛⎭⎫1+1x +1-x 2的定义域为( )A .{x |-1<x <2}B .{x |0<x <1}C .{x |0<x ≤1}D .{x |-1<x ≤2} 【答案】C【解析】 由题意可得⎩⎪⎨⎪⎧1+1x >0,1-x 2≥0,解得⎩⎪⎨⎪⎧x >0或x <-1,-1≤x ≤1,所以函数y =ln ⎝⎛⎭⎫1+1x +1-x 2的定义域为{x |0<x ≤1}.故选C.4.已知关于x 的不等式kx 2-6kx +k +8≥0对任意x ∈R 恒成立,则k 的取值范围是( ) A .[0,1] B .(0,1]C .(-∞,0)∪(1,+∞)D .(-∞,0]∪[1,+∞) 【答案】A【解析】 当k =0时,不等式kx 2-6kx +k +8≥0化为8≥0恒成立;当k <0时,不等式kx 2-6kx +k +8≥0不能恒成立;当k >0时,要使不等式kx 2-6kx +k +8≥0恒成立,需Δ=36k 2-4(k 2+8k )≤0,解得0<k ≤1.故选A.5.若ax 2+bx +c <0的解集为{x |x <-2或x >4},则对于函数f (x )=ax 2+bx +c 应有( ) A .f (5)<f (2)<f (-1) B .f (5)<f (-1)<f (2) C .f (-1)<f (2)<f (5) D .f (2)<f (-1)<f (5) 【答案】B【解析】 因为ax 2+bx +c <0的解集为{x |x <-2或x >4},所以a <0,而且函数f (x )=ax 2+bx +c 的图象的对称轴方程为x =4-22=1,所以f (-1)=f (3).又因为函数f (x )在[1,+∞)上是减函数,所以f (5)<f (3)<f (2),即f (5)<f (-1)<f (2).故选B.6.若不等式(a -a 2)(x 2+1)+x ≤0对一切x ∈(0,2]恒成立,则a 的取值范围是( ) A.⎝ ⎛⎦⎥⎤-∞,1-32B.⎣⎢⎡⎭⎪⎫1+32,+∞C.⎝ ⎛⎦⎥⎤-∞,1-32∪⎣⎢⎡⎭⎪⎫1+32,+∞ D.⎣⎢⎡⎦⎥⎤1-32,1+32【答案】C【解析】 因为x ∈(0,2],所以a 2-a ≥x x 2+1=1x +1x .要使a 2-a ≥1x +1x 在x ∈(0,2]时恒成立,则a 2-a ≥⎝ ⎛⎭⎪⎫1x +1x max ,由基本不等式得x +1x ≥2,当且仅当x =1时,等号成立,即⎝ ⎛⎭⎪⎫1x +1x max =12.由a 2-a ≥12,解得a ≤1-32或a ≥1+32. 二、填空题7.某产品的总成本y (单位:万元)与产量x (单位:台)之间的函数关系式是y =3 000+20x -0.1x 2(0<x <240,x ∈N *),若每台产品的售价为25万元,则生产者不亏本时(销售收入不小于总成本)的最低产量是________台. 【答案】 150【解析】 设产品的利润为f (x )万元,则f (x )=25x -y =0.1x 2+5x -3 000,若生产者不亏本,则0.1x 2+5x -3 000≥0,解得x ≥150或x ≤-200(舍去),即最低产量为150台.8.若对任意实数p ∈[-1,1],不等式px 2+(p -3)x -3>0成立,则实数x 的取值范围为________.【答案】 (-3,-1)【解析】 不等式可变形为(x 2+x )p -3x -3>0,令f (p )=(x 2+x )p -3x -3,p ∈[-1,1].原不等式成立等价于f (p )>0(p ∈[-1,1])恒成立,则⎩⎪⎨⎪⎧ f (-1)>0,f (1)>0,即⎩⎪⎨⎪⎧-x 2-x -3x -3>0,x 2+x -3x -3>0,解得-3<x <-1. 9.已知二次函数f (x )的二次项系数为a ,且不等式f (x )>0的解集为(1,2),若方程f (x )的最大值小于1,则a 的取值范围是________.【答案】 (-4,0)【解析】 由题意知a <0,可设f (x )=a (x -1)(x -2)=ax 2-3ax +2a ,所以f (x )max =f ⎝⎛⎭⎫32=-a 4<1,所以a >-4,故-4<a <0.三、解答题10.已知f (x )=-3x 2+a (6-a )x +6.(1)解关于a 的不等式f (1)>0;(2)若不等式f (x )>b 的解集为(-1,3),求实数a ,b 的值.【答案】见解析【解析】 (1)由题意知f (1)=-3+a (6-a )+6=-a 2+6a +3>0,即a 2-6a -3<0,解得3-23<a <3+2 3.所以不等式的解集为{a |3-23<a <3+23}.(2)因为f (x )>b 的解集为(-1,3),所以方程-3x 2+a (6-a )x +6-b =0的两根为-1,3,所以⎩⎨⎧ (-1)+3=a (6-a )3,(-1)×3=-6-b 3,解得⎩⎨⎧a =3±3,b =-3. 11.(2019·扬州中学模拟)某商人如果将进货单价为8元的商品按每件10元出售,每天可销售100件,现在他采用提高售价,减少进货量的办法增加利润.已知这种商品每件售价提高1元,销量就要减少10件,问他将单价定为多少元时,才能使得每天的利润最大?单价定为多少元时,才能保证每天的利润在300元以上?【答案】见解析【解析】 设每件提高x 元(0≤x ≤10),即每件获利润(2+x )元,则每天可销售(100-10x )件,每天获总利润为y 元,由题意有y =(2+x )·(100-10x )=-10x 2+80x +200=-10(x -4)2+360.当x =4时,y 取得最大值360.所以当售价定为14元时,每天所赚利润最大,为360元.要使每天所赚的利润在300元以上,则有-10x 2+80x +200>300,即x 2-8x +10<0,解得4-6<x <4+ 6.故每件定价在(14-6)元到(14+6)元之间时,能确保每天的利润在300元以上.12.已知函数f (x )=ax 2+(b -8)x -a -ab ,当x ∈(-∞,-3)∪(2,+∞)时,f (x )<0,当x ∈(-3,2)时,f (x )>0.(1)求f (x )在[0,1]内的值域;(2)若ax 2+bx +c ≤0的解集为R ,求实数c 的取值范围.【答案】见解析【解析】 (1)因为当x ∈(-∞,-3)∪(2,+∞)时,f (x )<0,当x ∈(-3,2)时,f (x )>0.所以-3,2是方程ax 2+(b -8)x -a -ab =0的两根,所以⎩⎨⎧-3+2=8-b a ,-3×2=-a -ab a⇒⎩⎪⎨⎪⎧ a =-3,b =5.所以f (x )=-3x 2-3x +18=-3⎝⎛⎭⎫x +122+754.因为函数图象关于x =-12对称且抛物线开口向下,所以f (x )在[0,1]上为减函数,所以f (x )max =f (0)=18,f (x )min =f (1)=12,故f (x )在[0,1]内的值域为[12,18].(2)由(1)知不等式ax 2+bx +c ≤0可化为-3x 2+5x +c ≤0,要使-3x 2+5x +c ≤0的解集为R ,只需⎩⎪⎨⎪⎧a =-3<0,Δ=b 2-4ac ≤0,即25+12c ≤0,所以c ≤-2512,所以实数c 的取值范围为⎝⎛⎦⎤-∞,-2512. 13.在R 上定义运算:⎪⎪⎪⎪⎪⎪ab cd =ad -bc ,若不等式⎪⎪⎪⎪⎪⎪x -1 a -2a +1 x ≥1对x ∈R 恒成立,则实数a 的最大值为________.【答案】32 【解析】 原不等式等价于x (x -1)-(a -2)(a +1)≥1,即x 2-x -1≥(a -2)(a +1)对x ∈R 恒成立,因为x 2-x-1=⎝⎛⎭⎫x -122-54≥-54,所以(a -2)(a +1)≤-54,解得-12≤a ≤32,所以a max =32.。
近年届高考数学大一轮复习第七章不等式7.2一元二次不等式及其解法学案理北师大版(2021年整理)
2019届高考数学大一轮复习第七章不等式7.2 一元二次不等式及其解法学案理北师大版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019届高考数学大一轮复习第七章不等式7.2 一元二次不等式及其解法学案理北师大版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019届高考数学大一轮复习第七章不等式7.2 一元二次不等式及其解法学案理北师大版的全部内容。
§7.2一元二次不等式及其解法最新考纲考情考向分析1。
会从实际问题的情境中抽象出一元二次不等式模型.2.通过函数图象了解一元二次不等式与相应的二次函数、一元二次方程的联系.3。
会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图.以理解一元二次不等式的解法为主,常与集合的运算相结合考查一元二次不等式的解法,有时也在导数的应用中用到,加强函数与方程思想,分类讨论思想和数形结合思想的应用意识.本节内容在高考中常以选择题的形式考查,属于低档题,若在导数的应用中考查,难度较高.1.“三个二次"的关系判别式Δ=b2-4acΔ〉0Δ=0Δ<0二次函数y=ax2+bx+c(a〉0)的图像一元二次方程ax2+bx+c=0(a〉0)的根有两相异实根x1,x2(x1<x2)有两相等实根x1=x2=-错误!没有实数根一元二次不等式ax2+bx+c>0 (a>0)的解集{x|x<x1或x>x2}错误!{x|x∈R}一元二次不等式ax2{x|x1〈 x<x2}∅∅+bx+c<0(a〉0)的解集2。
常用结论(x-a)(x-b)〉0或(x-a)(x-b)<0型不等式的解法不等式解集a<b a=b a>b(x-a)·(x-b)〉0{x|x<a或x>b}{x|x≠a}{x|x〈b或x>a}(x-a)·(x-b)〈0{x|a〈x<b}∅{x|b〈x<a}口诀:大于取两边,小于取中间.知识拓展(1)f xg x>0(<0)⇔f(x)·g(x)>0(<0).(2)错误!≥0(≤0)⇔f(x)·g(x)≥0(≤0)且g(x)≠0.以上两式的核心要义是将分式不等式转化为整式不等式.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×")(1)若不等式ax2+bx+c〈0的解集为(x1,x2),则必有a>0。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第七章 不等式 7.2 一元二次不等式及其解法试题 理 北师大版 1.“三个二次”的关系 判别式Δ=b2-4ac Δ>0 Δ=0 Δ<0
二次函数y=ax2+bx+c (a>0)的图
像 一元二次方程ax2+bx+c=0 (a>0)的根 有两相异实根x1,x2(x1
一元二次不等式ax2+bx+c>0 (a>0)的解集 {x|xx2} {x|x≠-b2a} {x|x∈R}
一元二次不等式ax2+bx+c<0 (a>0)的解集 {x|x1< x∅
2.常用结论 (x-a)(x-b)>0或(x-a)(x-b)<0型不等式的解法
不等式 解集 ab (x-a)·(x-b)>0 {x|xb} {x|x≠a} {x|xx>a}
(x-a)·(x-b)<0 {x|a
口诀:大于取两边,小于取中间. 【知识拓展】 (1)fxgx>0(<0)⇔f(x)·g(x)>0(<0). (2)fxgx≥0(≤0)⇔f(x)·g(x)≥0(≤0)且g(x)≠0. 以上两式的核心要义是将分式不等式转化为整式不等式.
【思考辨析】 判断下列结论是否正确(请在括号中打“√”或“×”) (1)若不等式ax2+bx+c<0的解集为(x1,x2),则必有a>0.( √ ) (2)若不等式ax2+bx+c>0的解集是(-∞,x1)∪(x2,+∞),则方程ax2+bx+c=0的两个根是x1和x2.( √ ) (3)若方程ax2+bx+c=0(a≠0)没有实数根,则不等式ax2+bx+c>0的解集为R.( × ) (4)不等式ax2+bx+c≤0在R上恒成立的条件是a<0且Δ=b2-4ac≤0.( × ) (5)若二次函数y=ax2+bx+c的图像开口向下,则不等式ax2+bx+c<0的解集一定不是空集.( √ )
1.(教材改编)不等式x2-3x-10>0的解集是( ) A.(-2,5) B.(5,+∞) C.(-∞,-2) D.(-∞,-2)∪(5,+∞) 答案 D 解析 解方程x2-3x-10=0得x1=-2,x2=5, 由于y=x2-3x-10的图像开口向上,所以x2-3x-10>0的解集为(-∞,-2)∪(5,+∞). 2.设集合M={x|x2-3x-4<0},N={x|0≤x≤5},则M∩N等于( ) A.(0,4] B.[0,4) C.[-1,0) D.(-1,0] 答案 B 解析 ∵M={x|x2-3x-4<0}={x|-1∴M∩N=[0,4). 3.(教材改编)y=log2(3x2-2x-2)的定义域是________________________.
答案 (-∞,1-73)∪(1+73,+∞) 解析 由题意,得3x2-2x-2>0, 令3x2-2x-2=0,得x1=1-73,x2=1+73, ∴3x2-2x-2>0的解集为(-∞,1-73)∪(1+73,+∞),即函数y=log2(3x2-2x-2)的定义域是(-∞,1-73)∪(1+73,+∞). 4.(教材改编)若关于x的不等式ax2+bx+2>0的解集是(-12,13),则a+b=________. 答案 -14
解析 ∵x1=-12,x2=13是方程ax2+bx+2=0的两个根,∴ a4-b2+2=0,a9+b3+2=0,解得
a=-12,
b=-2,
∴a+b=-14.
5.不等式x2+ax+4≤0的解集不是空集,则实数a的取值范围是________________. 答案 (-∞,-4]∪[4,+∞) 解析 ∵x2+ax+4≤0的解集不是空集, ∴x2+ax+4=0一定有解. ∴Δ=a2-4×1×4≥0,即a2≥16,∴a≥4或a≤-4.
题型一 一元二次不等式的求解 命题点1 不含参数的不等式 例1 求不等式-2x2+x+3<0的解集. 解 化-2x2+x+3<0为2x2-x-3>0,
解方程2x2-x-3=0,得x1=-1,x2=32,
∴不等式2x2-x-3>0的解集为(-∞,-1)∪(32,+∞),即原不等式的解集为(-∞,-1)∪(32,+∞). 命题点2 含参数的不等式 例2 解关于x的不等式:x2-(a+1)x+a<0. 解 由x2-(a+1)x+a=0,得(x-a)(x-1)=0, ∴x1=a,x2=1, ①当a>1时,x2-(a+1)x+a<0的解集为{x|1②当a=1时,x2-(a+1)x+a<0的解集为∅, ③当a<1时,x2-(a+1)x+a<0的解集为{x|a引申探究 将原不等式改为ax2-(a+1)x+1<0,求不等式的解集. 解 若a=0,原不等式等价于-x+1<0,解得x>1.
若a<0,原不等式等价于(x-1a)(x-1)>0,
解得x<1a或x>1. 若a>0,原不等式等价于(x-1a)(x-1)<0. ①当a=1时,1a=1,(x-1a)(x-1)<0无解; ②当a>1时,1a<1,解(x-1a)(x-1)<0, 得1a③当01,解(x-1a)(x-1)<0, 得1综上所述,当a<0时,解集为{x|x<1a或x>1}; 当a=0时,解集为{x|x>1}; 当0当a=1时,解集为∅; 当a>1时,解集为{x|1a思维升华 含有参数的不等式的求解,往往需要对参数进行分类讨论. (1)若二次项系数为常数,首先确定二次项系数是否为正数,再考虑分解因式,对参数进行分类讨论,若不易分解因式,则可依据判别式符号进行分类讨论; (2)若二次项系数为参数,则应先考虑二次项系数是否为零,确定不等式是不是二次不等式,然后再讨论二次项系数不为零的情形,以便确定解集的形式; (3)对方程的根进行讨论,比较大小,以便写出解集. 解下列不等式: (1)0(2)求不等式12x2-ax>a2(a∈R)的解集. 解 (1)原不等式等价于
x2-x-2>0,x2-x-2≤4⇔ x2-x-2>0,
x2-x-6≤0
⇔
x-x+,x-x+⇔ x>2或x<-1,
-2≤x≤3.
借助数轴,如图所示,
所以原不等式的解集为{x|-2≤x<-1或2(2)∵12x2-ax>a2,∴12x2-ax-a2>0, 即(4x+a)(3x-a)>0,令(4x+a)(3x-a)=0,
得x1=-a4,x2=a3.
当a>0时,-a4<a3,解集为x|x<-a4或x>a3; 当a=0时,x2>0,解集为{x|x∈R且x≠0}; 当a<0时,-a4>a3,解集为x|x<a3或x>-a4. 综上所述,当a>0时,不等式的解集为
x|x<-a4或x>
a
3;
当a=0时,不等式的解集为{x|x∈R且x≠0}; 当a<0时,不等式的解集为x|x<a3或x>-a4. 题型二 一元二次不等式恒成立问题 命题点1 在R上的恒成立问题
例3 (1)若一元二次不等式2kx2+kx-38<0对一切实数x都成立,则k的取值范围为( ) A.(-3,0] B.[-3,0) C.[-3,0] D.(-3,0) (2)设a为常数,对于任意x∈R,ax2+ax+1>0,则a的取值范围是( ) A.(0,4) B.[0,4) C.(0,+∞) D.(-∞,4) 答案 (1)D (2)B 解析 (1)∵2kx2+kx-38<0为一元二次不等式, ∴k≠0, 又2kx2+kx-38<0对一切实数x都成立,
则必有 2k<0,Δ=k2-4×2k-38,解得-3(2)对于任意x∈R,ax2+ax+1>0,则必有 a>0,Δ=a2-4a<0或a=0,∴0≤a<4. 命题点2 在给定区间上的恒成立问题 例4 设函数f(x)=mx2-mx-1.若对于x∈[1,3],f(x)<-m+5恒成立,求m的取值范围. 解 要使f(x)<-m+5在x∈[1,3]上恒成立,
即mx-122+34m-6<0在x∈[1,3]上恒成立. 有以下两种方法: 方法一 令g(x)=mx-122+34m-6,x∈[1,3]. 当m>0时,g(x)在[1,3]上是增加的, 所以g(x)max=g(3)⇒7m-6<0,
所以m<67,所以0当m=0时,-6<0恒成立; 当m<0时,g(x)在[1,3]上是减少的, 所以g(x)max=g(1)⇒m-6<0,所以m<6,所以m<0.
综上所述,m的取值范围是{m|m<67}.
方法二 因为x2-x+1=x-122+34>0, 又因为m(x2-x+1)-6<0,所以m<6x2-x+1. 因为函数y=6x2-x+1=6x-122+34在[1,3]上的最小值为67,所以只需m<67即可.
所以,m的取值范围是m|m<67. 命题点3 给定参数范围的恒成立问题