最新七年级下册第六章概率初步知识点回顾与练习
七年级数学下课本习题第6章概率初步

第六章概率初步第1节感受可能性1. P138-随堂练习-1以下事件中,哪些是必然事件?哪些是随机事件?〔1〕将油滴入水中,油会浮在水面上;〔2〕任意掷一枚质地均匀的骰子,掷出的点数是奇数。
2. P138-随堂练习-2小明任意买一张电影票,座位号是2的倍数与座位号是5的倍数的可能性哪个大?3. P以下事件中,哪些是必然事件?哪些是不可能事件?哪些是随机事件?〔1〕抛出的篮球会下落;〔2〕一个射击运发动每次射击的命中环数;〔3〕任意买一张电影票,座位号是2的倍数;〔4〕早上的太阳从西方升起。
4. P一个袋中装有8个红球、2个白球,每个球除颜色外都一样。
任意摸出一个球,摸到哪种颜色球的可能性大?说说你的理由。
5. P以下列图是一个可以自由转动的转盘,转动转盘,当转盘停顿时,指针落在哪个区域的可能性大?说明你的理由。
6. P以下列图表示各袋中球的情况,每个球除颜色外都一样,任意摸出一个球,请你按照摸到红球的可能性由大到小进展排列。
7. P如图是一个可以自由转动的转盘,利用这个转盘与同伴做下面的游戏:〔1〕自由转动转盘,每人分别将转出的数填入四个方格中的任意一个〔2〕继续转动转盘,每人再将转出的数填入剩下的任意一个方格中;〔3〕转动四次转盘后,每人得到一个“四位数〞;〔4〕比较两人得到的“四位数〞,谁的大谁就获胜。
多做几次上面的游戏,在做游戏的过程中,你的策略是什么?你积累了什么样的获胜经历?第2节频率的稳定性8. P142-随堂练习某射击运发动在同一条件下进展射击,结果如下表所示:〔1〕完成上表;〔2〕根据上表,画出该运发动击中靶心的频率的折线统计图;〔3〕观察画出的折线统计图,击中靶心的频率的变化有什么规律?9. P对某批产品的质量进展随机抽查,结果如下表所示:〔1〕完成上表;〔2〕根据上表,画出产品合格率变化的折线统计图;〔3〕观察画出的折线统计图,产品合格率的变化有什么规律?10. P抛一个如下列图的瓶盖,盖口向上或盖口向下的可能性是否一样大?怎样才能验证自己结论的正确性?11. P145-随堂练习-1小凡做了5次抛均匀硬币的试验,其中有3次正面朝上,2次正面朝下,因此他认为正面朝上的概率大约为35 ,朝下的概率约为25 ,你同意他的观点吗?你认为他再多做一些试验,结果还是这样吗?12. P145-随堂练习-2掷一枚质地均匀的硬币,正面朝上的概率为12 ,那么,掷100次硬币,你能保证恰好50次正面朝上吗?与同伴进展交流。
七年级数学下册第6章概率初步复习(北师大版)最新版

C
B
A
在学校举办的游艺活动中,数学俱乐部办 了个掷骰子的游戏。玩这个游戏要花四张 5角钱的票。一个游戏者掷一次骰子。如 果掷到6,游戏者得到奖品。每个奖品要 花费俱乐部8元。俱乐部能指望从这个游 戏中赢利吗?做出解释。
解一、个中人奖能的中概奖率 ,是 即收16 ,2×即66=个1人2元玩,,要有 送一个8元的奖品,所以能盈利。
2
4
1
3
(1)P(摸到红球)= 摸 到 红 球 可 能 出 现 的 结 果 数
摸 出 一 球 所 有 可 能 出 现 的 结 果 数
(2)P(事件发生)=
此 事 件 可 能 出 现 的 结 果 所 组 成 的 图 形 面 积 所 有 可 能 出 现 的 结 果 所 组 成 的 图 形 面 积
例1:袋中装有7个除了颜色不同外
甲产品合格率为98%,乙产 品的合格率为80% ,你认为买 哪一种产品更可靠?
有5张数字卡片,它们的背面完全相同,
正面分别标有1,2,2,3,4。现将它们的背
面朝上,从中任1 意摸到一张卡片,则:p (摸 到1号卡片)= 5 ; 2
p (摸到2号卡片)= 5 ;
1
p (摸到3号卡片)= 5 ;
1
动手操作:
小猫在如图所 示的地板上自由 地走来走去,它 最终停留在红色 方砖上的概率
是 1 ,你试着把 4
每块砖的颜色涂 上。
涂色
动手操作:
小猫在如图所 示的地板上自由 地走来走去,它 最终停留在红色 方砖上的概率
是 1 ,你试着把 4
每块砖的颜色涂 上。
小结:
1、会判定三类事件(必然事件、不可能事件、 不确定事件)及三类事件发生可能性的大小(即 概率),用图来表示事件发生可能性的大小。
北师大版七年级数学下册 第6章 概率初步 第六章 回顾与思考

。
巩固练习(P158)
如图,一个均匀的转盘被平均分成10等份,分别标 有1、2、3、4、5、6、7、8、9、10这10个数字。转 动转盘,当转盘停止后,指针指向的数字即为转出 的数字。两人参与游戏:一人转动转盘,另一人猜 数,若所猜数字与转出的数字相符,则猜数的人获 胜,否则转动转盘的人获胜。猜数的方法从下面三 种中选一种:
3
巩固练习(P159)
现有足够多除颜色外均相同的球, 请你从中选12个球设计摸球游戏。 1、使摸到红球的概率和摸到白球 的概率相等; 2、使摸到红球、白球、黑球的概 率都相等; 3、使摸到红球的概率和摸到白球 的概率相等,且都小于摸到黑球的概率。
1、猜“是奇数”或“是偶数”; 2、猜“是3的倍数”或“不是3的倍数”; 3、猜“是大于6的数”或“不是大于6的数”。 如果轮到你猜数,那么为了尽可能获胜, 你将选择哪一种猜数方法?怎样猜?
巩固练习(P158)
如图,假设可以随意在图中取点,那么 这个点取在阴影部分的概率是多少?
巩固练习(P159)
有一个宝藏被随意埋在下面的长方形 区域内(图中每个方块完全相同)。 1 2 3
(1)、假如你去寻宝,你会选择哪个区域? 为什么?在这个区域一定能找到吗? (2)、宝藏埋在哪两个区域的可能性相同? (3)、如果埋宝藏的区域如下图所示(图中 每个三角形完全相同),(1)、(2)的结 果又会怎样? 1 2
确定事件: 2、3; 不确定事件: 1、4。
Байду номын сангаас
巩固练习(P157)
如图所示有10张卡片,分别写有 0至9这十个数字。将它们背面朝 上洗匀后,任意抽出一张。
1、P(抽到数字9)= ; 2、P(抽到两位数)= ; 3、P(抽到的数字大于6)= , P(抽到的数字小于6)= ; 4、P(抽到奇数)= ,P(抽到偶数)=
七年级数学下课本习题第6章概率初步

第六章概率初步第1节感受可能性1、P138-随堂练习-1下列事件中,哪些就是必然事件?哪些就是随机事件?(1)将油滴入水中,油会浮在水面上;(2)任意掷一枚质地均匀的骰子,掷出的点数就是奇数。
2、P138-随堂练习-2小明任意买一张电影票,座位号就是2的倍数与座位号就是5的倍数的可能性哪个大?3、P138-习题6、1-1下列事件中,哪些就是必然事件?哪些就是不可能事件?哪些就是随机事件?(1)抛出的篮球会下落;(2)一个射击运动员每次射击的命中环数;(3)任意买一张电影票,座位号就是2的倍数;(4)早上的太阳从西方升起。
4、P138-习题6、1-2一个袋中装有8个红球、2个白球,每个球除颜色外都相同。
任意摸出一个球,摸到哪种颜色球的可能性大?说说您的理由。
5、P138-习题6、1-3下图就是一个可以自由转动的转盘,转动转盘,当转盘停止时,指针落在哪个区域的可能性大?说明您的理由。
6、P139-习题6、1-4下图表示各袋中球的情况,每个球除颜色外都相同,任意摸出一个球,请您按照摸到红球的可能性由大到小进行排列。
7、P139-习题6、1-5如图就是一个可以自由转动的转盘,利用这个转盘与同伴做下面的游戏:(1)自由转动转盘,每人分别将转出的数填入四个方格中的任意一个(2)继续转动转盘,每人再将转出的数填入剩下的任意一个方格中;(3)转动四次转盘后,每人得到一个“四位数”;(4)比较两人得到的“四位数”,谁的大谁就获胜。
多做几次上面的游戏,在做游戏的过程中,您的策略就是什么?您积累了什么样的获胜经验?第2节频率的稳定性8、P142-随堂练习某射击运动员在同一条件下进行射击,结果如下表所示:(1)完成上表;(2)根据上表,画出该运动员击中靶心的频率的折线统计图;(3)观察画出的折线统计图,击中靶心的频率的变化有什么规律?对某批产品的质量进行随机抽查,结果如下表所示: 随机抽取的产品数n 1 500 1000 合格的产品数m 9 19 47 93 187 467 935 合格率m n(1)完成上表;(2)根据上表,画出产品合格率变化的折线统计图;(3)观察画出的折线统计图,产品合格率的变化有什么规律?10、 P142-习题6、2-2抛一个如图所示的瓶盖,盖口向上或盖口向下的可能性就是否一样大?怎样才能验证自己结论的正确性?11、 P145-随堂练习-1小凡做了5次抛均匀硬币的试验,其中有3次正面朝上,2次正面朝下,因此她认为正面朝上的概率大约为35 ,朝下的概率约为25 ,您同意她的观点不?您认为她再多做一些试验,结果还就是这样不?掷一枚质地均匀的硬币,正面朝上的概率为12 ,那么,掷100次硬币,您能保证恰好50次正面朝上不?与同伴进行交流。
北师大版数学七年级下册第6章 概率初步p6.1

1 感受可能性
栏目索引
易错点 不能正确区分随机事件和不可能事件 例 买一张福利彩票,中一等奖,这个事件是 或“不可能”)
1 感受可能性
栏目索引
3.(2016北京怀柔期末,5,★☆☆)下列事件中,必然事件是 ( ) A.掷一枚硬币,正面朝上 B.a是实数,|a|≥0 C.某运动员跳高的最好成绩是20.1米 D.从车间刚生产的产品中任意抽取一个,是次品 答案 B 四个选项中一定会发生的是B.
1 感受可能性
栏目索引
选择题 1.(2018山东淄博中考,2,★☆☆)下列语句描述的事件中,是随机事件的 为 ( ) A.水能载舟,亦能覆舟 B.只手遮天,偷天换日 C.瓜熟蒂落,水到渠成 D.心想事成,万事如意 答案 D A为必然事件;B为不可能事件;C为必然事件;D为随机事件.
1 感受可能性
栏目索引
1.(2018山东淄博临淄一中期中,7,★☆☆)一个盒子里装有除颜色外其 余都相同的红、白两种小球,从盒子里任意摸出一个小球,下列说法:① 可能是红球;②可能是白球;③一定是红球;④一定是白球;⑤红球的可能 性大.其中错误的有 ( ) A.2个 B.3个 C.4个 D.5个 答案 B ③④⑤错误.
答案 B 购买一张彩票中奖可能发生也可能不发生,是随机事件;根据 物理学知识可知通常温度降到0 ℃以下,纯净的水结冰,是必然事件;明 天可能是晴天也可能不是晴天,是随机事件;经过有交通信号灯的路口, 可能遇到红灯也可能不遇到红灯,是随机事件,故选B.
最新北师大版七年级数学下第六章 概率初步

数学理解
抛一个如图所示的瓶盖,盖口向上 或盖口向下的可能性是否一样大?
怎样才能验证自己结论的正确性?
课堂总结:
1、通过本节课的学习,你了解了
哪些知识? 2、在本节课的教学活动中,你获
得了哪些活动体验?
课后作业: 教材 145页知识技能 1
第六章 概率初步 6.2 频率的稳定性 (第2课时)
回顾与思考 1. 举例说明什么是必然事件?。
(1)随着调查次数的增加,红色的频率 如何变化? 随着调查次数的增加,红色的频率基 本稳定在40%左右.
(2)你能估计调查到10000名同学时,
红色的频率是多少吗? 估计调查到10000名同学时,红色
的频率大约仍是40%左右.
(3)若你是该厂的负责人,你将如何安
排生产各种颜色的产量? 红、黄、蓝、绿及其它颜色的生产比 例大约为4:2:1:2:1 .
556 棵. 园,则至少向林业部门购买约_______ 900
3.某厂打算生产一种中学生 使用的笔袋,但无法确定各
种颜色的产量,于是该文具
厂就笔袋的颜色随机调查了5000名中学 生,并在调查到1000名、2000名、3000
名、4 000名、5 000名时分别计算了各
种颜色的频率,绘制折线图如下:
6.从丙袋中摸到一球是白球。(
)
游戏2: 摸球
若丙盒中装有红球,白球共有10个,每 个球除颜色外其他相同。每次任意摸出一 个球,记录下所摸球的颜色,并将球放回 到盒中。 将结果填在下表中: 球的颜 色 摸到次
丙
红色
白色
新知探究三
可能性的大小
◆在上面的摸球活动中,每次摸到的球的
颜色是不确定的。 ◆如果红球和白球的数量不等,那么摸到 红球的可能性与摸到白球的可能性是不 一样的。
北师大版数学七年级下册:第六章《概率初步》单元复习

北师七年级下册第六章《概率初步》单元复习《知识点复习》1、频率:在n 次重复试验中,不确定事件A 发生了m 次,则比值n m 称为事件A 发生的频率。
(频率= )2、概率(1)概念:一般地,在大量重复试验中,如果事件A 发生的频率n m 会稳定在某个常数p 附近,那么这个常数p 就叫做事件A 发生的概率。
必然事件发生的概率为 ;不可能事件发生的概率为 ; 不确定事件发生的概率范围为(2)等可能事件的概率一般题,如果一个试验有n 种等可能的结果,事件A 包含其中的m 种结果,那么事件A 发生的概率为P (A )=(3)几何图形中的概率:P (A )=3、游戏对双方公平的含义是指《练习》一、选择题(每小题3分,共36分)1. 下列事件发生的概率为0的是( )A.小明的爸爸买体彩中了大奖B.小强的体重只有25公斤C.将来的某年会有370天 D .未来三天必有强降雨2.小明用一枚均匀的硬币试验,前7次掷得的结果都是下面向上,如果将第8次掷得下面向上的概率记为P ,则( )A 、P=0.5B 、P <0.5C 、P >0.5D 、无法确定3. 一幅扑克去掉大小王后,从中任抽一张是红桃的概率是( ) A.21 B.41 C.131 D.5214.一个袋中有a 只红球,b 只白球,它们除颜色不同外,其它均相同,若从中摸出一个球是红球的概率为( ) A.b a B. ab C. b a a + D . b a b + 5. 小狗在如图所示的方砖上走来走去,最终停在黑色方砖上的概率为( ) A.81 B. 97 C. 92 D . 1676. 一次抽奖活动中,印发奖券1000张,其中一等奖20张,二等奖80张, 三等奖200张,那么第一位抽奖者(仅买一张奖券)中奖的机会是( )A .150B .225C .15D .3107.四张卡片分别标有0、1、2、3的数字,抽出一张的数字是偶数的概率为( )A .41B .21C .43 D .28.下列说法正确的是( )A.小强今年12岁,明年是13岁是随机事件B.任意掷出一枚骰子,点数6朝上的概率与点数1朝上的概率相同.C.同时抛掷两枚硬币,同是正面或同是反面朝上的可能性比一正一反大D.盒子里装有10个完全相同的纸团,其中只有一个纸团内写有“奖”,而另九个纸团内均为“谢谢惠顾”,10名参与者可从中任摸一个纸团,则先摸的比后摸的“中奖”概率要大.9.图中有四个可以自由转动的转盘,每个转盘被分成若干等分,转动转盘,当转盘停止后,指针指向白色区域的概率相同的是( ).A.转盘2与转盘3B.转盘2与转盘4C.转盘3与转盘4D.转盘1与转盘410. 李明用6个球设计了一个摸球游戏,共有四种方案,肯定不能成功的是( ) A.摸到黄球 、红球的概率是21 B.摸到黄球的概率是32,摸到红球、白球的概率都是31 C.摸到黄球、红球、白球的概率分别为21、31、61 D.摸到黄球、红球、白球的概率都是3111、某电视综艺节目接到热线电话3000个。
深圳七年级下册数学《第六章概率初步》知识点复习

概念背记之《第六章概率初步》
1、什么叫做必然事件?
答:在一定条件下,有些事情我们事先能肯定它一定发生,这些事情称为必然事件.
2、什么叫做不可能事件?
答:有些事情我们事先能肯定它一定不会发生,这些事情称为不可能事件.
3、什么叫做确定事件?
答:必然事件与不可能事件统称为确定事件.
4、什么叫做不确定事件?
答:有些事情我们事先无法肯定它会不会发生,这些事情称为不确定事件(也称随机事件).
5、如何将事件进行分类?
答:事件{确定事件{
必然事件
不可能事件
不确定事件—也称随机事件
6、什么叫做频率?
答:在n次重复试验中,不确定事件A发生了m次,则比值m
n
称为事件A发生的频率.
7、什么是频率的稳定性?
答:在试验次数很大时事件发生的频率,都会在一个常数附近摆动,这个性质称为频率的稳定性
8、什么叫做概率?
答:我们把刻画事件A发生的可能性大小的数值,称为事件A发生的概率,记为P(A).
9、概率的取值范围是什么?
答:必然事件发生的概率为1;
不可能事件发生的概率为0;
不确定事件发生的概率是0与1之间的一个常数.
10、概率的计算公式是什么?
答:如果一个试验有n种等可能的结果,事件A包含其中的m种结果,那么事件A发生的
概率为:P(A)=m
n
.
11、游戏对双方公平的标准是什么?
答:双方获胜的概率相等.
12、“概率初步”体现了什么数学思想?
答:用不确定事件A发生的“频率”来估计事件A发生的“概率”.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级下册第六章概率初步
知识点回顾与练习
班级姓名成绩
01分点突破
知识点1事件的分类
1.(德州中考)下列说法正确的是()
A.为了审核书稿中的错别字,选择抽样调查
B.为了了解春节联欢晚会的收视率,选择全面调查
C.“射击运动员射击一次,命中靶心”是随机事件
D.“经过有交通信号灯的路口,遇到红灯”是必然事件
2.(衡阳中考)“a是有理数,|a|≥0”这一事件是()
A.必然事件B.不确定事件
C.不可能事件D.随机事件
知识点2频率与概率
3.在“抛掷正六面体”的试验中,如果正六面体的六个面分别标有数字“1”,“2”,“3”,“4”,“5”和“6”,如果试验的次数增多,那么出现数字“1”的频率的变化趋势是接近().
4.(宿迁中考)某种油菜籽在相同条件下发芽试验的结果如下表:那么这种油菜籽发芽的概率是()。
(结果精确到0.01).
5.
摸,在摸球试验中得到下列部分数据:
次数 发现红色 小球的 频数 14
23
38
52
67
86
97
111
120
133
出现红色 小球的 频率
0.350
0.288
0.317
0.325
0.335
0.358
0.346
0.347
0.333
0.333
(1)(2)根据表格在图中画出折线图;
(3)观察上面的图表可以发现:随着试验次数的增多,出现红色小球的频率的稳定值为( ); (4)估计出现红色小球的概率为( ).
知识点3 概率的意义及计算
6.商场举行摸奖促销活动,对于“抽到一等奖的概率为0.1”,下列说法正确的是( ) A .抽10次奖必有一次抽到一等奖 B .抽一次不可能抽到一等奖 C .抽10次也可能没有抽到一等奖
D .抽了9次如果没有抽到一等奖,那么再抽一次肯定抽到一等奖
7.有5个杯子,其中2个是一等品,2个是二等品,其余是三等品,任意取一个杯子,是一等品的概率是( ) A.15 B.25 C.35 D.23
8.(济南中考)小球在如图所示的地板上自由滚动,并随机地停留在某块方砖上,每一块方砖除颜色外完全相同,它最终停留在黑色方砖上的概率是( ). 知识点4 设计游戏
9.如图是一个等分成12个扇形的转盘,请在转盘上选出若干扇形涂色(涂色表示阴影区域,其中有一个扇形已涂)使得自由转动这个转盘,当它停止转动时,指针落在阴影区域内的概率为14
.
02 综合训练
10.(德阳中考)下列事件发生的概率为0的是( ) A .射击运动员只射击1次,就命中靶心 B .任取一个数x ,都有|x |≥0
C .画一个三角形,使其三边的长分别为8 cm ,6 cm ,2 cm
D .抛掷一枚质地均匀且六个面分别刻有1到6的点数的正方体骰子,朝上一面的点数为6
11.(河北中考)某小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如图的折线统计图,则符合这一结果的实验最有可能的是 ( )
A .在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”
B .一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃
C .暗箱中有1个红球和2个黄球,它们只有颜色上的区别,从中任取一球是黄球
D .掷一个质地均匀的正六面体骰子,向上的面的点数是4
(11题) (12题)
12.(宁波中考)如图,在2×2的正方形网格中有9个格点,已经取定点A 和B ,在余下的7个点中任取一点C ,使
△ABC 为直角三角形的概率是( )
A.12
B.25
C.37
D.47
13.如图,小明的父亲准备用大小相等、形状相同的16块地板砖铺小明卧室里的地面.16块地板砖要红、白、黄3种颜色,铺完后,地板要美观大方.当小明走进卧室并随意停在某块地板砖上时,停在红砖上的概率为1
4,停在白
砖上的概率为1
2
,请你替小明父亲设计一种铺砖方案.
14.某酒店为了吸引顾客,设立了一个可以自由转动的转盘,如图所示,并规定:顾客消费100元以上(不包括100元),就能获得一次转动转盘的机会,如果转盘停止后,指针正好对准九折、八折、七折、五折区域,顾客就可以获得此项打折待遇.
(1)甲顾客消费了80元,是否可以获得转动转盘的机会?
(2)乙顾客消费了150元,获得打折待遇的概率是多少?分别求出他获得九折、八折、七折、五折待遇的概率.
15.如图是由两个同心圆组成的一个木制圆盘,供甲、乙二人练习飞镖使用.其中大圆的直径为20 cm ,小圆的直径为10 cm ,若规定飞镖掷中小圆内(阴影部分)甲得2分,掷中白色圆环内乙得1分,最后按所得分数的大小决定输
赢.
(1)你认为这个游戏公平吗?为什么?
(2)若不公平,请你修改游戏规则,使游戏变得公平.
参考答案:1、C,2、A,3、1
6, 4 、0.95
5、(1)解:如图所示.(2)0.333 (3)0.333
6、C
7、B
8、4 9
9、解:答案不唯一,只要涂色区域占3份即可,如图所示.
10、C 11、D 12、D
13、解:答案不唯一,可设计为如图形式.
14、解:(1)不可以. (2)P =
520=14;P(九折)=220=110
; P(八折)=120;P(七折)=120;
P(五折)=1
20
.
15、解:(1)因为P(掷中小圆内)=
π·(10
2)2
π·(20
2)
2
=1
4,P(掷中白色圆环内)=π·(202)2-π·(10
2)2
π·(20
2)2
=3
4
. 所以甲平均得分为14×2=12,乙平均得分为34×1=34.因为12<3
4
,所以游戏不公平.
(2) 游戏规则可改为:飞镖掷中小圆内甲得3分,掷中白色圆环内乙得1分,最后按所得分数大小决定输赢.
初中语文基本语法知识(词性和句子成分)
【名词】是表示人或事物名称的词。
名词可分为:
1.个体名词,又叫可数名词。
如:(一本)书、(三朵)花、(五条)河。
2.集合名词,不能加个体量词,与集合量词或不定量词"对,批,部分,些"等搭配,如:(一对)夫妇、(一部分)船只、(一些)车辆。
3.专有名词,如:北京、天安门、孔子、长江。
4.时间名词,如:春天、上午、现在、立春、星期二、刚才。
处所名词,如:颐和园、商店、亚洲、北京、中国。
方位词,如:东、西、上、里、前、内。
名词的主要语法特点:
(1)不能用"不"来否定,如不能说"不帽子"。
(2)在句中经常充当主语、宾语、定语。
时间和处所名词可以做状语,如:小李昨天迟到了。
(3)名词一般不能重叠,只有带有量词性质的名词才可以重叠,如:人、年、天。
【动词】是表示人、事物的运动或相互作用的词(表示动作行为、发展变化、心理活动的词)。
动词可分为:
1.及物动词,能够带宾语的动词是及物动词,如:吃、打、敲、写,它们的宾语可以出现,也可以不出现。
也有一部分动词必须带宾语,如:费(劲)、顾全(大局)。
2.不及物动词,不可带宾语,如:咳嗽、休养、毕业。