《基于VHDL数字频率计的设计》开题报告+(1) (2)
基于VHDL语言数字频率计的设计

关于数字频率计设计[摘要]本报告介绍了一种以大规模可编程逻辑芯片为设计载体,由顶到底分层设计,多功能数字频率计的设计方法。
该频率计采用VHDL语言程序与原理图相结合的方法,极大地减少了硬件资源占用。
该数字频率计测量范围为0到9999HZ,基准频率为1HZ,结果用4只7段数码管显示十进制结果。
中间用到了设置控制电路、计数电路、锁存电路和译码电路等模块。
仿真结果表明,该数字频率计性能优异,设计语言灵活,硬件更简单,速度更快。
[关键词]数字频率计;控制电路;计数电路;锁存电路With regard to the design of digital frequency meter[Abstract] The present report describes a large-scale programmable logic chip design carrier, in the end by a top-tiered design, multi-function digital frequency meter design methods. The frequency counter using VHDL language programs, and the method of combining schematic, greatly reducing the hardware footprint. The digital frequency meter measurement range from 0 to 9999HZ, the base frequency of 1HZ, the results with the four 7-segment LED display decimal results. Intermediate used for setting up control circuit, counting circuit, latch circuit and decoding circuit modules. The simulation results show that the digital frequency meter high-performance, design language flexibility, hardware simpler and faster.[Key words]digital frequency meter; control circuit; counting circuit; Latch Circuit目录摘要 (I)Abstract (II)第1章引言 (3)第2章VHDL的简述 (4)2.1 VHDL的发展 (4)2.2 VHDL的特点 (4)2.3 VHDL语言结构 (4)2.3.1 实体(ENTITY) (5)2.3.2结构体(ARCHITECTURE) (6)2.4 VHDL软件设计简介 (6)第3章频率计方案的设计 (8)3.1 方案一 (8)3.2 方案二 (11)3.3 方案比较 (12)3.4 方案改造 (12)第4章利用VHDL语言设计频率计 (13)4.1 系统功能的分析与电路设置 (13)4.2 测频原理 (13)4.3 测频模块工作描述及VHDL程序 (13)4.3.1 计数模块(CNT10) (13)4.3.2 锁存模块(REG16B) (14)4.3.3 控制模块(TESTCTL) (15)4.3.4 译码模块(DISPLAR) (15)4.3.5 测频主系统实现(FREQ) (16)4.3.6 原理图的制作 (18)第5章数字频率计仿真及分析 (19)5.1 MAX+PLUS II的特点 (19)5.2 MAX+PLUS II的编译、仿真简介 (19)5.3 多功能数字频率计编译及仿真 (20)5.3.1 编译结果的记载 (20)5.3.2 仿真结果的记载 (22)5.4 引脚锁定 (23)5.5 程序的下载和测试 (24)第6章实验过程中遇到的问题及分析 (25)结论 (25)致谢 (26)参考文献 (27)附录 (28)附录一方案一总程序 (28)附录二原理图 (34)附录三实验结果记录 (35)第1章引言随着计算机技术和半导体技术的发展,传统的硬件电路电路设计方法已大大落后于当今技术的发展,一种崭新的、采用硬件描述语言的硬件电路设计方法已经兴起,这是电子设计自动化(EDA)领域的一次重大变革。
频率计设计开题报告

频率计设计开题报告频率计设计开题报告一、研究背景频率计是一种用于测量信号频率的仪器,广泛应用于电子、通信、无线电等领域。
目前市场上存在各种类型的频率计,但在某些特定应用场景下,仍存在一些问题,如精度不高、测量范围有限等。
因此,本次研究旨在设计一种新型的频率计,以提高测量精度和拓展测量范围。
二、研究目标本次研究的主要目标是设计一种基于数字信号处理技术的高精度频率计。
具体目标包括:1. 提高频率计的测量精度,使其能够满足更高精度要求的应用场景;2. 拓展频率计的测量范围,使其能够适应更广泛的频率范围;3. 优化频率计的性能指标,如响应速度、稳定性等。
三、研究内容本次研究的主要内容包括以下几个方面:1. 频率计原理研究:对现有频率计的工作原理进行深入研究,分析其优缺点,为设计新型频率计提供理论基础;2. 数字信号处理算法研究:探索适用于频率计的数字信号处理算法,提高测量精度和响应速度;3. 电路设计与优化:设计新型频率计的硬件电路,优化电路结构和参数,提高稳定性和抗干扰能力;4. 系统集成与测试:将数字信号处理算法和电路设计相结合,进行系统集成,并进行实验测试,验证设计的可行性和性能指标。
四、研究方法本次研究将采用以下研究方法:1. 文献综述:对相关领域的文献进行综述,了解现有频率计的研究进展和存在的问题;2. 理论分析:对频率计的原理进行深入分析,探索提高测量精度和拓展测量范围的方法;3. 数字信号处理算法的仿真与验证:使用MATLAB等工具进行数字信号处理算法的仿真和验证,评估其性能;4. 电路设计与优化:使用EDA工具进行电路设计和优化,提高电路的性能指标;5. 系统集成与测试:将数字信号处理算法和电路设计相结合,进行系统集成,并进行实验测试,验证设计的可行性和性能指标。
五、研究意义本次研究的意义主要体现在以下几个方面:1. 提高测量精度:设计一种高精度的频率计,满足更高精度要求的应用场景,提高测量精度;2. 拓展测量范围:设计一种能够适应更广泛频率范围的频率计,满足不同应用场景的需求;3. 推动技术发展:通过研究新型频率计的设计,推动相关领域的技术发展,为电子、通信、无线电等领域的应用提供更好的测量工具。
开题报告答辩PPT-格式及内容范例(仅供参考)

基于VHDL代码的频率计设计 专 业 班 级: 2013级应用物理学 学 生 姓 名: 周念 导 师 姓 名: 冉耀宗
Template
课题研究目的、目的和意义
01
课题研究现状及分析
02
技术研究路线、和可能出现的问题
04
论文工作进度安排
02
一、课题研究背景、意义
一、课题研究背景、意义
❉集成数字频率计由于所用元件少,投资少,体积小,功耗低,且可靠性强,功能强,易于设计和开发,使得它具有技术上的实用性和应用的广泛性。不论从我们用的彩色电视机,电冰箱,DVD,还有我们现在家庭常用到的数字电压表数字万用表等等都包含了频率计。 ❉ 现在频率计发展的方向,它不仅可以很方便的读数,而且还可以使频率的测量范围和测量准确度上都比模型先进。而且频率计的使用已是很多的方面,数字卫星,数字通信等高科技的领域都有广泛的应用,今天频率计的发展已经不仅仅是一个小电子产品的发展和开发,也是整个民族乃至整个国家的科技发展,所以频率计的发展是一个整体的趋势。
ஐ基于单片机取水车的设计制作(结构部分)ஐ
二.课题研究现状及分析
图2 小车运动路线图
基本内容、拟解决的主要问题
C区 (存水装置)
图1 设计的功能分区
B区 (输送路线)
ஐ基于单片机取水车的设计制作(结构部分)ஐ
A区 (给水装置)
小车
WINTER
基本内容、拟解决的主要问题
基本参数的选择和确定; 各个机构部件的加工; 组装运行调试; 机械结构控制部分的组装; 取水车模型调试; 给水与存水装置设计。
Template
1
ஐ基于单片机取水车的设计制作(结构部分)ஐ
基本内容:
2
ஐ基于单片机取水车的设计制作(结构部分)ஐ
基于VHDL的分频器设计[开题报告]
![基于VHDL的分频器设计[开题报告]](https://img.taocdn.com/s3/m/2e8aa70426fff705cd170a78.png)
开题报告电子信息工程基于VHDL的分频器设计三、课题研究的方法及措施由于本课题所设计的分频器基于EDA技术,应用VHDL硬件语言设计完成的,因此选择合适的硬件解决原理对分频器性能至关重要的,为了满足不同系统功能需求的分频,本课题将阐述不同原理,不同分频器,同种分频不同原理的设计方案。
占空比可控的整数分设计方案,原理为计数器为带预置数的计数器,其设计的特殊之处在于:可以根据需要,调整数据的位宽,而且计数的初始值是从l开始的,此处计数初始值的设定是设计的一个创新,这样做的目的是为了配合后面比较器的工作,计数器的输出数据作为比较器的输入,比较器的另一输入作为控制端,控制高低电平的比例,从而达到占空比可调的目的。
原理图如图1所示。
图1 占空比可控的原理图部分小数分频的基本原理是采用脉冲吞吐计数器和锁相环技术先设计两个不同分频比的整数分频器,然后通过控制单位时间内两种分频比出现的不同次数来获得所需要的小数分频值。
如设计一个分频系数为lO.1的分频器时。
可以将分频器设计成9次10分频,1次11分频这样总的分频值为如式1所示。
F=(9×10+lxl 1)/(9+1)=10.1 (式1)从这种实现方法的特点可以看出,由于分频器的分频值不断改变.因此分频后得到的信号抖动较大。
当分频系数为N-0.5(N为整数)时,可控制扣除脉冲的时间,以使输出成为一个稳定的脉冲频率。
而不是一次N分频.一次N-1分频。
图2给出了通用小数分频器的电路组成。
图2通用小数分频器的电路组成改进的小数分频设计方案,将两个整数分频器由一个整数分频器和一个半整数分频器代替,结果在如上分析的两个性能方面都有所提高。
利用参数化的设计思想和VHDL描述语言与原理图输入方法相结合的方式,设计并实现了一种抖动性能好且通用性强的小数分频器。
其原理图如下图3。
图3改进小数分频原理图四、课题研究进度计划毕业设计期限:自2011年12月10日至2012年3月10日。
《基于VHDL数字频率计的设计》开题报告 (1) (2)

商洛学院本科毕业设计(论文)开题报告题目基于VHDL数字频率计的设计学院名称物理与电子信息工程系专业班级电子信息工程10级2班学生姓名吕超学号指导教师刘萌填表时间: 2014 年 3 月 10日填表说明1.开题报告作为毕业设计(论文)答辩委员会对学生答辩资格审查的依据材料之一。
2.此报告应在指导教师指导下,由学生在毕业设计(论文)工作前期完成,经指导教师签署意见、相关系主任审查后生效。
3.学生应按照学校统一设计的电子文档标准格式,用A4纸打印。
4.参考文献不少于8篇,其中应有适当的外文资料(一般不少于2篇)。
5.开题报告作为毕业设计(论文)资料,与毕业设计(论文)一同存档。
设计(论文)基于VHDL数字频率计的设计题目设计(论文)类型(划“√”)工程设计应用研究开发研究基础研究其它√一、本课题的研究目的和意义数字频率计是电子设计、仪器仪表、资源勘测、计算机、通讯设备、音频视频等应用领域不可缺少的测量仪器, 被广泛应用于航天、电子、测控等领域。
在数字电路中,频率计属于时序电路,它主要由具有记忆功能的触发器构成。
在计算机及各种数字仪表中,都得到了广泛的应用;在CMOS电路系列产品中,频率计是用量最大、品种最多的产品。
许多物理量的测量, 如振动、转速等的测量都涉及到或可以转化为频率的测量,并且与许多电参量的测量方案、测量结果都有十分密切的关系,因此,频率的测量就显得更为重要。
传统的数字频率计一般是由分离元件搭接而成,用到的器件较多,连线比较复杂,而且会产生比较大的延时,造成测量误差大、可靠性差。
后来随着单片机的大规模的应用, 出现了不少用单片机控制的频率测量系统。
相对于以前用分离元件搭接起来的频率测量系统, 单片机控制的频率测量系统在频率测量范围、频率测量精度和频率测量速度上都有了很大的提高。
但由于单片机工作频率的限制、单片机内部计数器位数的限制等因素, 由单片机控制的频率测量系统无法在频率测量范围、频率测量精度和频率测量速度上取得重大突破。
数字频率计设计【开题报告】

开题报告通信工程数字频率计设计一、课题研究意义及现状频率计又称频率计数器,是一种专门对被测信号频率进行测量的电子测量仪器,频率测量的原理归结成一句话就是:单位时间内对被测信号进行计数。
在传统的电子测量仪器中,频率计的应用范围越来越广,它不仅可以测量普通的如正弦波信号的频率,在教学、科研、高精度仪器测量、工业控制等领域也都有广泛的应用。
示波器虽然可以对信号进行频率测量,但缺点是精度较低,误差较大。
频谱仪虽然有也准确的测量频率和显示被测信号的频谱的优点,但它的测量速度比较慢,比较耗时间,也不能实时精确的捕捉到被测信号频率的变化情况。
但频率计却能够快速精确的捕捉到被测信号频率的变化,所以,频率计在各个重要的领域中被普遍使用到。
例如:在传统的生产制造企业中,频率计被广泛的应用在生产线的生产测试中。
当生产线中有故障的晶振产品时,频率计就可以快速准确的定位到发生故障的那件晶振产品,生产人员就可以及时的采取措施,以确保产品的质量保证。
在计量实验室中,频率计也可以对各种电子测量设备等产品的本地振荡器进行校准。
在无线通讯测试中,就可以用频率计对无线通讯基站的主时钟进行校准,还可以对无线电台的跳频信号和频率调制信号进行分析。
虽然目前使用的频率计产品很多,但基本上都是采用专用技术芯片(如ICM7240等)和数字逻辑电路组成,由于这些芯片本身的工作频率不高(如ICM7240仅有15MHZ左右),从而限制了产品工作频率的提高,远不能达到在一些特殊场合需要测量很高频率的要求,而且测量精度也收到芯片本身的极大限制。
随着社会的进步、科技的发展,频率计所测量的频率范围极影越来越大,精度也越来越高,但最重要的是如今的频率计已不仅仅是简单的用来测量频率和一些具有周期特性的频率:经过改装,做成数字式脉宽测量仪,就可以测量脉冲宽度;也可以经过改装后做成可以测量电容的数字式电容测量仪;还可以在电路中增加传感器,使之可以测量长度、重量、压力、温度等非电量的测量。
基于VHDL的数字显示频率计的设计

EDA 课程设计报告书课题名称 基于VHDL 的数字显示频率计的设计 姓 名 学 号 院 系 专 业 指导教师※※※※※※※※※ ※※ ※※ ※※EDA 课程设计基于VHDL的数字显示频率计的设计1设计目的通过EDA的试验设计,加深我们对FPGA的了解,熟悉FPGA的工作原理和试验环境,知道FPGA的开发流程,熟悉各种软件如Quartus II 6.0的使用。
通过设计小型试验项目学会仿真和硬件测试的基本方法。
2设计的主要内容和要求在电子技术中,频率是最基本的参数之一,并且与许多电参量的测量方案、测量结果都有十分密切的关系,因此频率的测量就显得更加重要。
通过运用VHDL语言,实现4位数字频率计,并利用Quartus II 6.0集成开发环境进行编辑、综合、波形仿真,并下载到FPGA器件中,经实际电路测试,该系统性能可靠。
3 整体设计方案3.1四位十进制数据显示频率计设计在电子技术中,频率是最基本的参数之一,并且与许多电参量的测量方案、测量结果都有十分密切的关系,因此,频率的测量就显得更为重要。
测量频率的方法有多种,其中电子计数器测量频率具有精度高、使用方便、测量迅速,以及便于实现测量过程自动化等优点,是频率测量的重要手段之一。
数字式频率计的测量原理有两类:一是直接测频法,即在一定闸门时间内测量被测信号的脉冲个数;二是间接测频法即测周期法,如周期测频法。
直接测频法适用于高频信号的频率测量,通常采用计数器、数据锁存器及控制电路实现,并通过改变计数器阀门的时间长短在达到不同的测量精度;间接测频法适用于低频信号的频率测量,本设计中使用的就是直接测频法,即用计数器在计算1S内输入信号周期的个数。
数字频率计是数字电路中的一个典型应用,实际的硬件设计用到的器件较多,连线比较复杂,而且会产生比较大的延时,造成测量误差、可靠性差。
随着现场可编程门阵列FPGA的广泛应用,以EDA工具作为开发手段,运用VHDL等硬件描述语言,将使整个系统大大简化,提高了系统的整体性能和可靠性。
基于VHDL语言的全同步数字频率计的设计与研究的开题报告

基于VHDL语言的全同步数字频率计的设计与研究的开题报告一、题目基于VHDL语言的全同步数字频率计的设计与研究二、研究背景和意义数字频率计广泛应用于各种信号的频率测量,具有准确度高、稳定性好、适用范围广等优点。
目前市面上的数字频率计大多采用片上计数器实现,而片上计数器的精度受到芯片工艺和设计的限制,难以满足高精度应用的需求。
因此,本课题旨在研究一种基于VHDL语言的全同步数字频率计,通过FPGA实现,此方案将大幅提高精度,减小误差,提高计数范围。
三、研究内容和目标本课题拟研究的内容包括:1.通过对数字频率计功能和原理的分析,确定设计思路和参数。
2.根据设计思路和参数,完成数字频率计模块的设计与仿真,并验证其正确性和合理性。
3.使用VHDL语言完成数字频率计的程序设计。
4.将程序下载到FPGA中,实现数字频率计的硬件设计。
5.对硬件设计进行测试与调试,验证数字频率计的性能指标。
本课题的目标是:1.设计出一款精度高、误差小、计数范围广、应用范围广的全同步数字频率计。
2.通过实验验证数字频率计的功能和性能指标,并与市面上的数字频率计进行比较,证明本方案的优越性。
四、研究方法和技术路线本课题的研究方法和技术路线如下:1.文献调研通过查阅相关文献和资料,了解数字频率计的基本原理、设计思路、参数要求等内容,为后续的研究工作提供理论依据。
2.模块设计根据数字频率计的功能和参数要求,对数字频率计的各个模块进行设计,包括时钟模块、预分频器模块、计数器模块、显示模块等。
3.模块仿真通过VHDL语言进行数字频率计模块的仿真,验证模块的电路实现是否符合设计要求,进一步完善设计。
4.程序设计根据模块设计的结果,将各个模块的功能用VHDL语言进行程序设计。
5.硬件设计将程序下载到FPGA中,实现数字频率计的硬件设计,完成外围电路和显示模块的设计.6.测试与调试对数字频率计的设计进行测试和调试,记录其性能指标和实验结果,并对不足之处进行改进和提升。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
商洛学院本科毕业设计(论文)开题报告题目基于VHDL数字频率计的设计学院名称物理与电子信息工程系专业班级电子信息工程10级2班学生姓名吕超学号 10037318 指导教师刘萌填表时间: 2014 年 3 月 10日填表说明1.开题报告作为毕业设计(论文)答辩委员会对学生答辩资格审查的依据材料之一。
2.此报告应在指导教师指导下,由学生在毕业设计(论文)工作前期完成,经指导教师签署意见、相关系主任审查后生效。
3.学生应按照学校统一设计的电子文档标准格式,用A4纸打印。
4.参考文献不少于8篇,其中应有适当的外文资料(一般不少于2篇)。
5.开题报告作为毕业设计(论文)资料,与毕业设计(论文)一同存档。
设计(论文)题目基于VHDL数字频率计的设计设计(论文)类型(划“√”)工程设计应用研究开发研究基础研究其它√一、本课题的研究目的和意义数字频率计是电子设计、仪器仪表、资源勘测、计算机、通讯设备、音频视频等应用领域不可缺少的测量仪器, 被广泛应用于航天、电子、测控等领域。
在数字电路中,频率计属于时序电路,它主要由具有记忆功能的触发器构成。
在计算机及各种数字仪表中,都得到了广泛的应用;在CMOS电路系列产品中,频率计是用量最大、品种最多的产品。
许多物理量的测量, 如振动、转速等的测量都涉及到或可以转化为频率的测量,并且与许多电参量的测量方案、测量结果都有十分密切的关系,因此,频率的测量就显得更为重要。
传统的数字频率计一般是由分离元件搭接而成,用到的器件较多,连线比较复杂,而且会产生比较大的延时,造成测量误差大、可靠性差。
后来随着单片机的大规模的应用, 出现了不少用单片机控制的频率测量系统。
相对于以前用分离元件搭接起来的频率测量系统, 单片机控制的频率测量系统在频率测量范围、频率测量精度和频率测量速度上都有了很大的提高。
但由于单片机工作频率的限制、单片机内部计数器位数的限制等因素, 由单片机控制的频率测量系统无法在频率测量范围、频率测量精度和频率测量速度上取得重大突破。
若再增加别的器件, 以弥补单片机的不足, 不仅会大大增加系统的复杂性, 而且不利于系统的集成化。
以E D A 工具作为开发平台,运用V H D L 语言,将使整个系统大大简化,从而提高整体的性能和可靠性。
本课题采用的是等精度数字频率计,在一片FPGA开发板里实现了数字频率计的绝大部分功能, 它的集成度远远超过了以往的数字频率计。
又由于数字频率计最初的实现形式是用硬件描述语言写成的程序, 具有通用性和可重用性。
所以在外在的条件(如基准频率的提高, 基准频率精度的提高)的允许下,只需对源程序作很小的改动, 就可以使数字频率计的精度提高几个数量级。
同时对于频率精度要求不高的场合, 可以修改源程序, 使之可以用较小的器件实现, 从而降低系统的整体造价。
二、本课题的主要研究内容(提纲)(1)测频模块的设计。
这是本课题研究的核心内容,通过VHDL编程使FPGA 完成对被测信号、标准信号的计数,及相应的数据处理从而求出被测信号的频率,由外部显示模块显示输出。
(2)放大整形电路模块的设计。
由运算放大器、电阻、电容等分离元件组成放大整形电路,能够把外部的正弦波、三角波、矩形波信号变为FPGA能够识别的矩形波信号以及去除外部噪声的干扰,从而由FPGA对其进行计数处理。
(3)电源模块的设计。
为FPGA开发板、LED显示电路、运算放大器等器件提供相应的电压。
(4)接口模块的设计。
能够实现FPGA开发板对外部放大整形电路、及显示电路信号的输入输出。
(5)人机交互界面的设计。
主要包括键盘处理及显示电路两个部分。
三、文献综述(国内外研究情况及其发展)纵观时间频率计量国内外发展现状,时间频率计量发展呈现如下特点:一是时间频率标准向两个方向发展,利用量子技术,不断提高频率基准的准确度;同时随着军事技术的需要,频率标准呈小型化化方向发展。
二是时间频率标准的发展推动时间传递向多媒介、综合媒介方向发展;三是利用超导技术,建立短期频率稳定度绝对标准;四是利用欠采样技术和数字处理技术研究新型相位噪声测量系统。
时间频率计量技术研究主要从事各类时频测量仪器设备,特别是各种频率源长期特性、频率短期特性和GPS接收机定时、定位、校频等特性的检定、校准、测试工作。
为国防军工、航天、武器型号等高科技领域做了大量的计量和测试服务工作。
多年来我国在时间频率计量标准研制、建立和维护以及时间频率综合测试技等领域取得了一批系统先进、设计合理,并具有国内、国际先进水平的研制成果,主要有:频率综合器扩频技术,毫米波短稳检定装置, 100 MHz锁相晶振频标系统, GPS标准信号定时技术研究和系统建立,脉冲功率放大链相位噪声检定系统, GPS时间同步技术研究和标准系统建立,射频脉冲序列稳定度测试系统等。
这些课题的研制成功,不仅保证了我国航天事业对计量测试设备以及统一计量的需要,而且对促进我国计量技术的发展起到了至关重要的作用。
时间频率的高精度测量,促进着当代科学技术的进步,当代科学技术的进步,又反过来把时间频率的精度测量提高到了新的高度,两者的密切关系,使很多人都想了解和掌握时间频率高精度测量的有关技术和方法。
时间和频率是我们日常生活和工作中最常用的两种基本参量,它是国际单位制中七个基本量之一。
在计量学和计量测试中,时间频率是带头学科,是先导。
现代量子频标的出现和电子技术的进步,极大地提高了时间频率计量测试的稳定度和准确度,其精度和测试技术遥遥领先于其它量子的计量测试水平。
时间频率的测量过程,实际上是通过所选定的方法将被测频标与参考频标进行比对的过程。
要进行时间频率的高精度测量,首先要选用高精密度的时间频率标准。
现在, 国际上使用最多的原子钟的震荡频率通常是数纳秒( 一纳秒= 10 亿分之一秒) , 它是通过调整超高频激光, 使之和铯原子钟发射的光波频率相匹配而实现的。
一般说全球卫星定位系统携带原子钟( 铷钟、铯钟和氢钟) , 因其结构紧凑, 可靠性高, 寿命长, 所以满足了需要。
但是, 计量科学家们仍然希望能有振荡频率更快的时钟, 用于科学前沿问题的研究, 例如弄清决定电磁互作用强度的所谓精细结构是否真的稳定等问题。
科学家们认为, 这种新型时钟应当易于制造, 且振荡频率应比相对较低的微波频率快1000 倍。
问题是, 目前没有一种装置能够如此快的计数。
最近, 美国科学家已经研制出了“光学传动装置”, 这种装置可将激光光波的高速振动转化成振荡系数正好慢100 万倍的激光强度波动, 并利用标准检波器显示激光强度在1 秒内所振荡的次数, 然后将得到的数值乘上100 万。
据科学家研究小组说, 这种新型“光钟”的精度至少是最好的铯原子钟的1000 倍。
但是, 不同光波之间和某一光波与铯微波频标之间的频差测量都是极其庞大复杂, 价格昂贵的工程。
1999 年, 德国首次报道了“飞秒激光光学频率梳”, 飞秒光梳的出现提供了一个准确实用的“光学频率综合器”。
一举将微波频率基准与光学频率/ 波长联系起来。
由于飞秒光梳的研究成功和迅速推广应用。
使冷原子/ 离子存储稳频的光频标与飞秒光梳结合成“光钟”。
使光学频率标准的实际应用变为现实。
光钟的研制将成为国际计量发展的一个新热点。
目前, 科学家们正在把其他量转换成时频量进行测量。
第一个完成这种转换的是长度。
目前利用飞秒( 10- 16 秒) 激光脉冲所产生的梳状频谱与微波频率联系起来, 这样就可实现长度和时间基准的比对。
再就是电学量。
当两块低温( 液氮) 超导金属充分接近, 其间相隔仅为约1 纳米的绝缘层时便形成超导结, 若在结的两端施加直流电压, 结上即会产生高频超导电流。
这时约瑟夫森效应的宏观现象, 是一种量子力学隧道穿透效应, 其频率即可与电压挂钩, 单个结显示为若干毫伏, 上千个结叠加起来可获得1 伏或10 伏的电压。
另一方面, 量子化霍尔效应产生了量子化电阻, 使电阻取决于基本物理常数和一个整数值。
利用物理关系把温度转换为频率的研究正在进行之中, 比如某些材料和四极矩的共振频率随温度而变化。
质量和物质的量与频率的关系, 也正在探索之中, 比如利用电功率与机械的等价性,先确定力再定义质量单位; 或者通过一定数量的基本粒子和阿伏加德罗常数的精确测量来实现质量和物质的量。
事实上, 计量单位的基础已由或正在由宏观实物体系过渡到微观量子体系, 从而大大提高了单位实现的准确性、稳定性、可靠性和普通适用性。
在电子测量领域中,频率测量的精确度是最高的,可达10—10E-13数量级。
因此,在生产过程中许多物理量,例如温度、压力、流量、液位、PH值、振动、位移、速度、加速度,乃至各种气体的百分比成分等均用传感器转换成信号频率,然后用数字频率计来测量,以提高精确度。
由于大规模和超大规模数字集成电路技术、数据通信技术与单片机技术的结合,频率计的发展进入了智能化和微型化的新阶段。
其功能进一步扩大,除了测量频率、频率比、周期、时间、相位、相位差等基本功能外,还具有自捡、自校、自诊断、数理统计、计算方均根值、数据存储和数据通信等功能。
此外,还能测量电压、电流、阻抗、功率和波形等。
国际上数字频率计的分类很多。
按功能分类,因计数式频率计的测量功能很多,用途很广。
所以根据仪器具有的功能,电子计数器有通用和专用之分。
(1)通用型计数器:是一种具有多种测量功能、多种用途的万能计数器。
它可测量频率、周期、多周期平均值、时间间隔、累加计数、计时等;若配上相应插件,就可测相位、电压、电流、功率、电阻等电量;配上适当的传感器,还可进行长度、重量、压力、温度、速度等非电量的测量。
(2)专用计数器:指专门用来测量某种单一功能的计数器。
如频率计数器,只能专门用来测量高频和微波频率;时间计数器,是以测量时间为基础的计数器,其测时分辨力和准确度很高,可达ns 数量级;特种计数器,它具有特种功能,如可逆计数器、予置计数器、差值计数器、倒数计数器等,用于工业和白控技术等方面。
数字频率计按频段分类 (1)低速计数器:最高计数频率<10MHz; (2)中速计数器:最高计数频率10—100MHz; (3)高速计数器:最高计数频率>100MHz; (4)微波频率计数器:测频范围1—80GHz或更高。
国际国内通用数字频率计的主要技术参数:1.频率测量范围电子计数器的测频范围,低端大部分从10Hz开始;高端则以不同型号的频率计而异。
因此高端频率是确定低、中、高速计数器的依据。
如果装配相应型号的变频器,各种类型的数字频率计的测量上限频率,可扩展十倍甚至几十倍。
2.周期测量范围数字频率计最大的测量周期,一般为10s,可测周期的最小时间,依不同类型的频率计而定。
对于低速通用计数器最小时间为1ys;对中速通用计数器可小到0.1ys(或10捍s)。