函数零点分布专题
函数的零点个数问题-含答案

【知识要点】一、方程的根与函数的零点(1)定义:对于函数()y f x =(x D ∈),把使f(x)=0成立的实数x 叫做函数()y f x =(x D ∈)的零点.函数的零点不是一个点的坐标,而是一个数,类似的有截距和极值点等.(2)函数零点的意义:函数()y f x =的零点就是方程f(x)=0的实数根,亦即函数()y f x =的图像与x 轴的交点的横坐标,即:方程f(x)=0有实数根⇔函数()y f x =的图像与x 轴有交点⇔函数()y f x =有零点.(3)零点存在性定理:如果函数()y f x =在区间[,]a b 上的图像是一条连续不断的曲线,并且有0)()(<⋅b f a f ,那么函数()y f x =在区间(,)a b 内至少有一个零点,即存在(,c a b ∈)使得()0f c =,这个c 也就是方程的根.函数()y f x =在区间[,]a b 上的图像是一条连续不断的曲线,并且有0)()(<⋅b f a f 是函数()y f x =在区间(,)a b 内至少有一个零点的一个充分不必要条件.零点存在性定理只能判断是否存在零点,但是零点的个数则不能通过零点存在性定理确定,一般通过数形结合解决. 二、二分法(1)二分法及步骤对于在区间[,]a b 上连续不断,且满足0)()(<⋅b f a f 的函数()y f x =,通过不断地把函数的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到函数零点近似值的方法叫做二分法. (2)给定精确度ε,用二分法求函数的零点近似值的步骤如下: 第一步:确定区间[,]a b ,验证0)()(<⋅b f a f ,给定精确度ε. 第二步:求区间(,)a b 的中点1x .第三步:计算1()f x :①若1()f x =0,则1x 就是函数的零点;②若1()()0f a f x <,则令1b x = (此时零点01(,)x a x ∈)③若1()()0f x f b <,则令1a x =(此时零点01(,)x x b ∈)第四步:判断是否达到精确度ε即若a b ε-<,则得到零点值a 或b ,否则重复第二至第四步. 三、一元二次方程2()0(0)f x ax bx c a =++=≠的根的分布讨论一元二次方程2()0(0)f x ax bx c a =++=≠的根的分布一般从以下个方面考虑列不等式组: (1)a 的符号; (2)对称轴2bx a=-的位置; (3)判别式的符号; (4)根分布的区间端点的函数值的符号.四、精确度为0.1指的是零点所在区间的长度小于0.1,其中的任意一个值都可以取;精确到0.1指的是零点保留小数点后一位数字,要看小数点后两位,四舍五入. 五、方法总结函数零点问题的处理常用的方法有:(1) 方程法;(2)图像法;(3)方程+图像法. 【方法点评】方法一 方程法使用情景 方程可以直接解出来. 解题步骤 先解方程,再求解.【例1 】已知函数2()32(1)(2)f x x a x a a 区间(1,1)-内有零点,求实数a 的取值范围.【点评】(1)本题如果用其它方法比较复杂,用这种方法就比较简洁.关键是能发现方程能直接解出来.(2)对于含有参数的函数要尝试因式分解,如果不好因式分解,再考虑其它方法.【反馈检测1】函数2()(1)cos f x x x =-在区间[0,4]上的零点个数是( ) A .4 B .5 C .6 D . 7方法二 图像法使用情景一些简单的初等函数或单调性容易求出,比较容易画出函数的图像.解题步骤先求函数的单调性,再画图分析.学科@网【例2】(2017全国高考新课标I理科数学)已知函数2()(2)x xf x ae a e x=+--.(1)讨论()f x的单调性;(2)若()f x有两个零点,求a的取值范围.(2) ①若0,a≤由(1)知()f x至多有一个零点.②若0a>,由(1)知当lnx a=-时,()f x取得最小值,1(ln)1lnf a aa-=-+.(i)当1a=时,(ln)f a-=0,故()f x只有一个零点.(ii)当(1,)a∈+∞时,由于11ln aa-+>0,即(ln)0f a->,故()f x没有零点.(iii)当0,1a∈()时,11ln0aa-+<,即(ln)0f a-<.422(2)(2)2220,f ae a e e----=+-+>-+>故()f x在(,ln)a-∞-只有一个零点.00000000003ln(1),()(2)203ln(1)ln,()n n n nn n f n e ae a n e n naa f xa>-=+-->->->->-∞设正整数满足则由于因此在(-lna,+)有一个零点.综上所述,a的取值范围为(0,1).【点评】(1)本题第2问根据函数的零点个数求参数的范围,用的就是图像法. 由于第1问已经求出了函数的单调性,所以第2问可以直接利用第1问的单调性作图分析. (2) 当0,1a∈()时,要先判断(,ln)a-∞的零点的个数,此时考查了函数的零点定理,(ln)0f a-<,还必须在该区间找一个函数值为正的值,它就是422(2)(2)2220,f ae a e e----=+-+>-+>要说明(2)0f->,这里利用了放缩法,丢掉了42ae ae--+.(3) 当0,1a∈()时,要判断(ln,)a-+∞上的零点个数,也是在考查函数的零点定理,还要在该区间找一个函数值为正的值,它就是03ln(1)n a>-,再放缩证明0()f n >0. (4)由此题可以看出零点定理在高考中的重要性.【例3】已知3x =是函数()()2ln 110f x a x x x =++-的一个极值点. (Ⅰ)求a ;(Ⅱ)求函数()f x 的单调区间;(Ⅲ)若直线y b =与函数()y f x =的图象有3个交点,求b 的取值范围.(Ⅲ)由(Ⅱ)知,()f x 在()1,1-内单调增加,在()1,3内单调减少,在()3,+∞上单调增加,且当1x =或3x =时,()'0f x =所以()f x 的极大值为()116ln 29f =-,极小值为()332ln 221f =- 因此()()21616101616ln 291f f =-⨯>-=()()213211213f e f --<-+=-<所以在()f x 的三个单调区间()()()1,1,1,3,3,-+∞直线y b =有()y f x =的图象各有一个交点,当且仅当()()31f b f <<,因此,b 的取值范围为()32ln 221,16ln 29--【点评】本题第(3)问,由于函数()f x 中没有参数,所以可以直接画图数形结合分析解答.【反馈检测2】已知函数2()1x e f x ax =+,其中a 为实数,常数 2.718e =.(1) 若13x =是函数()f x 的一个极值点,求a 的值; (2) 当4a =-时,求函数()f x 的单调区间;(3) 当a 取正实数时,若存在实数m ,使得关于x 的方程()f x m =有三个实数根,求a 的取值范围.方法三 方程+图像法使用情景函数比较复杂,不容易求函数的单调性.解题步骤先令()0f x =,重新构造方程()()g x h x =,再画函数(),()y g x y h x ==的图像分析解答.【例4】函数()lg cos f x x x =-的零点有 ( ) A .4 个 B .3 个 C .2个 D .1个【点评】(1)本题主要考察零点的个数,但是方程f(x)lg cos 0x x =-=也不好解,直接研究函数的单调性不是很方便,所以先令()lg cos 0f x x x =-=,可化为lg cos x x =,再在同一直角坐标系下画出lg y x =和cos y x =的图像分析解答.(2)方程+图像是零点问题中最难的一种,大家注意理解掌握和灵活应用.【反馈检测3】设函数()()()221ln ,1,02f x x m xg x x m x m =-=-+>. (1)求函数()f x 的单调区间;(2)当1m ≥时,讨论函数()f x 与()g x 图象的交点个数.高中数学常见题型解法归纳及反馈检测第13讲:函数零点个数问题的求解方法参考答案【反馈检测1答案】C【反馈检测2答案】(1)95a =;(2)()f x 的单调增区间是51(1)2-,15(,12+; ()f x 的单调减区间是1(,)2-∞-,15(,12-,5(1)++∞;(3)a 的取值范围是(1,)+∞. 【反馈检测2详细解析】(1)222(21)()(1)xax ax e f x ax -+'=+ 因为13x =是函数()f x 的一个极值点,所以1()03f '=,即12910,935a a a -+==. 而当95a =时,229591521(2)()()59533ax ax x x x x -+=-+=--,可验证:13x =是函数()f x 的一个极值点.因此95a =.(2) 当4a =-时,222(481)()(14)xx x e f x x -++'=-令()0f x '=得24810x x -++=,解得51x =,而12x ≠±.所以当x 变化时,()f x '、()f x 的变化是x1(,)2-∞-15(,1)22-- 512-51(1,)22-15(,1)22+ 512+5(1,)2++∞ ()f x '--++-()f x极小值极大值因此()f x 的单调增区间是51(1)2,15(,12+;()f x 的单调减区间是1(,)2-∞-,15(,1)2--,5(1)+∞;【反馈检测3答案】(1)单调递增区间是(),m+∞, 单调递减区间是()0,m;(2)1.学科@网【反馈检测3详细解析】(1)函数()f x的定义域为()()()()0,,'x m x mf xx+-+∞=.当0x m<<时,()'0f x<,函数()f x单调递减,当x m>时,()'0f x>函数()f x单调递增,综上,函数()f x的单调递增区间是(),m+∞, 单调递减区间是()0,m.(2)令()()()()211ln,02F x f x g x x m x m x x=-=-++->,问题等价于求函数()F x的零点个数,()()()1'x x mF xx--=-,当1m=时,()'0F x≤,函数()F x为减函数,F x有唯一零点,即两函数图象总有一个交点.综上,函数()。
二次函数的零点分布问题

二次函数作为一种基本的数学工具,在物理学、工程学、经济学等多个领域都有广泛的应用。未来,我 们将探索如何将二次函数零点分布的研究成果应用于这些领域,推动相关学科的发展。
THANKS FOR WATCHING
感谢您的观看
二次函数的零点分布问
contents
目录
• 引言 • 二次函数零点存在性定理 • 二次函数零点个数判断方法 • 二次函数零点分布规律探讨 • 典型案例分析与应用举例 • 总结与展望
01 引言
二次函数定义与性质
二次函数的一般形式:$f(x) = ax^2 + bx + c$,其中 $a, b,
c$ 为常数,$a neq 0$。
零点的意义
零点是函数图像与 $x$ 轴交点的横坐 标,决定了函数图像在 $x$ 轴上的位 置。
研究目的和意义
研究目的
通过探讨二次函数的零点分布问题,可以深入理解二次函数的性质及其与一元二次方程 的关系,为解决实际问题提供理论支持。
研究意义
二次函数作为一种基本的数学模型,在物理学、工程学、经济学等领域有着广泛的应用。研究二次函数的零 点分布问题,不仅有助于完善数学理论体系,还能为解决实际问题提供有效的数学工具。例如,在控制论中, 通过分析二次函数的零点分布可以判断系统的稳定性;在经济学中,可以利用二次函数模型分析市场供需关
迭代法收敛性
牛顿迭代法具有平方收敛速度,即每一步迭代后误差减少为上一步误差 的平方。但在某些情况下,如初始值选取不当或函数性质不满足要求时, 迭代法可能不收敛。
03 二次函数零点个数判断方 法
图像法
01
观察二次函数图像与x轴的交点个 数,交点个数即为零点个数。
02
专题突破卷02 函数零点分布问题 (学生版) 2025年高考数学一轮复习考点通关卷(新高考通用)

专题突破卷02 函数零点分布问题题型一 根据函数零点的个数求参数范围问题1.若当[]0,2πx Î时,函数sin 2x y =与π2sin (0)4y x w w æö=->ç÷èø的图象有且仅有4个交点,则w 的取值范围是( )A .91388éö÷êëø,B .913,88æùçúèûC .1317,88éö÷êëøD .1317,88æöç÷èø2.已知函数2ln ,0()2,0xx f x x x x x ì>ï=íï+£î;若方程()f x a =恰有三个根,则实数a 的取值范围是( )A .1(0,)e B .1[0,e C .1(1,)e -D .1(0,{1}e-U 3.已知函数()()21,01ln 1,0x ax x f x a x x x ì-+£ï=í-++>ïî,图象与x 轴至少有一个公共点,则实数a 的取值范围为( )A .[)2,-+¥B .()1,0-C .(][),20,-¥-+¥U D .(){}1,2-+¥È-4.()2ln x f x x=,()()()21g x f x mf x éù=--ëû,若()g x 在其定义域上有且仅有两个零点,则m 的取值范围是( )A .21,e æö++¥ç÷èøB .2e e 2,e 22e æö--ç÷èøC .2e ,e 2æö-¥-ç÷èøD .ee 1,122æö-+ç÷èø5.已知函数()432,0,ln ,0,x x x x f x x x x ì+-<=í>î若关于x 的方程()0f x m x -=有两个不同的实根,则实数m 的取值范围是( )A .(],0-¥B .[]0,1C .(){},01¥-ÈD .(]{},01-¥U 6.已知函数()223sin 1,sin 0sin 1,sin 0x x f x x x ì-³=í-<î且()0,2πx Î,若方程()1f x a =+与方程()1f x a =-共有6个不同的实数根,则实数a 的取值范围为( )A .12,63æöç÷èøB .12,33æöç÷èøC .()0,1D .1,16æöç÷èø7.定义在R 上的偶函数()f x 满足()()11f x f x +=-,且当[]0,1x Î时,()1e xf x =-,若关于x 的方程()()()10f x m x m =+<恰有5个实数解,则实数m 的取值范围为( )A .()0,e 1-B .1e 1e ,56--æöç÷èøC .e 1e 1,86--æöç÷èøD .1e 1e ,46--æöç÷èø8.已知函数()2()3e xf x x =-,若方程()f x a =有三个实数解,则实数a 的取值范围为( )A .360,e æöç÷èøB .(2e,0)-C .362e,e æö-ç÷èøD .32,6e e æö-ç÷èø9.已知函数()ln f x a x x =-有两个零点,则( )A .0a £B .0ea <<C .ea ³D .ea >10.若不等式ln 0a x x -³有且仅有三个整数解,则实数a 的取值范围是( )A .25,ln 2ln5éö÷êëøB .25,ln 2ln5æùçúèûC .35,ln 3ln5éö÷êëøD .35,ln 3ln 5æùçúèû11.设()321f x x ax bx =++-.函数()y f x =在1x =处取得极大值3,则以下说法中正确的数量为( )个.①320a b +=;②对任意的1m <,曲线()y f x =在点()(),m f m 处的切线一定与曲线()y f x =有两个公共点;③若关于x 的方程()f x k =有三个不同的根123,,x x x ,且这三个根构成等差数列,则1k =.A .0B .1C .2D .312.设函数()()2e1ln 2ax f x a x x -=+---有2个零点,则实数a 的取值范围是( )A .(),e ¥-B .10,e æöç÷èøC .1,e e æöç÷èøD .()0,e 13.若函数()()22e e 4e e 2x x x xf x b --=+-++(b 是常数)有且只有一个零点,则b 的值为( )A .2B .3C .4D .514.若函数121,02()πsin(π6xx x f x x x w ìæö--£ïç÷ïèø=íï-<<ïî有4个零点,则正数w 的取值范围是( )A .1319,66éö÷êëøB .1319,66æùçúèûC .1925,66éö÷êëøD .1925,66æùçúèû15.若函数()2341f x ax x =-+-在区间()1,1-内恰有一个零点,则实数a 的取值范围为( )A .5,13æö-ç÷èøB .54,33éù-êúëûC .54,133éùìü-íýêúëûîþU D .24,133éùìü-íýêúëûîþU 题型二 根据一次函数零点的分布求参数范围问题16.若函数f (x )=3ax +1-2a 在区间(-1,1)内存在一个零点,则a 的取值范围是( )A .1,5æö+¥ç÷èøB .11,5æö-ç÷èøC .(-∞,-1)D .(-∞,-1)∪1,5æö+¥ç÷èø17.若方程2222|1|0x ax a x -+++-=在区间()0,3内有两个不等实根,则实数a 的取值范围为( )A .192,5æöç÷èøB.19(,3)15æö-¥-ç÷èøUC .19(,115æö-¥+ç÷èøU D .1915æöç÷èø18.当||1x £时,函数21y ax a =++的值有正也有负,则实数a 的取值范围是( )A .1,3éö-+¥÷êëøB .(,1]-¥-C .11,3æö--ç÷èøD .11,3æù--çúèû19.已知函数()312f x ax a =--在区间(1,1)-上存在零点,则( )A .115a <<B .15a >C .15a <-或1a >D .15a <-20.已知函数f (x )=3ax -1-2a 在区间(-1,1)上存在零点,则( )A .1a <或15a >B .15a >C .15a <-或1a >D .15a <-21.若函数1y ax =+在(0,1)内恰有一解,则实数a 的取值范围是( )A .1a >-B .1a <-C .1a >D .1a <22.已知函数()312f x ax a =--在区间()1,1-上存在零点,则实数a 的取值范围是A .1(,1),5æö-¥-È+¥ç÷èøB .1,5æö+¥ç÷èøC .1,(1,)5æö-¥-È+¥ç÷èøD .1,5æö-¥-ç÷èø23.已知直线:3l y x =与函数3,1,(), 1.x x x f x ax a x ì-£=í->î的图像交于三点,其横坐标分别是1x ,2x ,3x .若1230x x x ++<恒成立,则实数a 的取值范围是A .3a >B .04a <£C .36a <£D .6a >24.已知函数2|log ,0(),21,0x x f x x x ìï=í+-£ïî若函数()1y f x m =-+有四个零点,零点从小到大依次为,,,,a b c d 则a b cd ++的值为( )A .2B .2-C .3-D .325.已知函数2()21f x mx x =--在区间(2,2)-恰有一个零点,则m 的取值范围是( )A .31,88éù-êúëûB .31,88æö-ç÷èøC .31,88éö-÷êëøD .13,88æù-çúèû26.已知()213,(0)(1)f x ax a f f =-+<且在()1,2内存在零点,则实数a 的取值范围是( )A .(11,53)B . 11(,64C .11(,75D .11(,)8627.已知函数()()221,03,(0)ax x x f x ax x ì++£=í->î有3个零点,则实数a 的取值范围是( )A .1a <B .01a <<C .1a ³D .0a >28.“4a <-”是“函数()3f x ax =+在区间[]1,1-上存在零点”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件29.设函数2()3f x x ax a =-++,()2g x ax a =-,若0R x $Î,使得0()0f x <和0()0g x <同时成立,则a 的取值范围为A .(7,)+¥B .(6,)(,2)+¥È-¥-C .(,2)-¥-D .(7,)(,2)+¥È-¥-30.“函数在区间上存在零点”是“”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件题型三 根据二次函数零点的分布求参数范围问题31.若函数()()2ln 0b cf x a x ac x x =++¹有且仅有极大值,则( )A .0a >B .0ab >C .280b ac +>D .0c <32.二次函数2,(,y ax bx c a b c =++是常数,且0)a ¹的自变量x 与函数值y 的部分对应值如下表:x…-1012…y…m 22n…且当32x =时,对应的函数值0y <.下列说法正确的有( )A .0abc >B .1009mn >C .关于x 的方程20ax bx c ++=一定有一正、一负两个实数根,且负实数根在12-和0之间D .()112,P t y +和()222,P t y -在该二次函数的图象上,则当实数12t <时,12y y >33.已知函数()()ln 1f x a x ax a =-+ÎR ,()()2312g x f x x =+-,则下列说法正确的是( )A .当1a =时,()0f x £在定义域上恒成立B .若经过原点的直线与函数()f x 的图像相切于点()()3,3f ,则1ln31a =-C .若函数()g x 在区间3,42éùêúëû单调递减时,则a 的取值范围为[)16,¥+D .若函数()g x 有两个极值点为()1212,x x x x ¹,则a 的取值范围为(),12¥-34.已知1x ,2x 是关于x 的方程2220()x ax a -+=ÎR 的两个不相等的实数根,则下列说法正确的有( )A .若12112+=x x ,则2a =B .若121x x <<,则32a >C .若π02a b <<<,且1tan x a =,2tan x b =,则a b +为锐角D .若1x ,2x 均小于2,则(3,2a öÎ-¥÷øU 35.已知函数()23,021,0x x x x f x x -ì-£=í->î,若关于x 的方程()()()221630f x a f x a +-×-=有4个不同的实根,则实数a 可能的取值有( )A .112-B .38-C .14-D .18-36.已知函数()222,0log ,0x x x f x x x ì--£ï=í>ïî,且()()234230f x af x a -++=有5个零点,则a 的可能取值有( )A .1B .32-C .3-D .5-37.已知函数()()2222,41log 1,14x x f x x x +ì--££-ï=í+-<£ïî,若函数()()21f x mf x --恰有5个零点,则m的值可以是( )A .0B .1C .32D .238.已知函数()()()()2221,0,22log ,0x x f x g x f x mf x x x ì+£ï==-+í>ïî,下列说法正确的是( )A .若()y f x a =-有两个零点,则2a >B .()y f x =只有一个零点1x =C .若()y f x a =-有两个零点()1212,x x x x ¹,则121=x x D .若()g x 有四个零点,则32m >.39.已知函数()e xxf x =,且关于x 的方程()()20f x mf x m ++=éùëû有3个不等实数根,则下列说法正确的是( )A .当0x >时,()0f x >B .()f x 在()1,+¥上单调递减C .m 的取值范围是1,02æö-ç÷èøD .m 的取值范围是21,0e e æö-ç÷+èø40.设函数()2e ,0313,022x x f x x x x ì£ï=í-++>ïî,函数()()()222g x f x bf x b =-+-,则下列说法正确的是( )A .当1b =时,函数()g x 有3个零点B .当4140b =时,函数()g x 有5个零点C .若函数()g x 有2个零点,则2b <-或625b <<D .若函数()g x 有6个零点,则112b <<41.已知函数()224,021,0x x x x f x x -ì+<=í-³î,若关于x 的方程()()244230f x a f x a -×++=有5个不同的实根,则实数a 的取值可以为( )A .32-B .43-C .54-D .76-42.已知函数()()21,0,0x ax x f x f x x ì++³ï=í--<ïî,有4个零点()12341234,,,x x x x x x x x <<<,则( )A .实数a 的取值范围是(),2¥--B .函数()f x 的图象关于原点对称C .12342x x x x =D .1234357x x x x +++的取值范围是()8,¥+43.已知函数()21243,0log ,0x x x f x x x ì---£ï=í>ïî,若方程()()2[]10f x mf x ++=恰有6个不相等的实数根,则实数m 的值可能是( )A .53B .73C .103D .11344.在下列命题中,正确的是( )A .已知命题p :“0x "³,都有tan x x ³,则命题p 的否定:“0x $<,都有tan x x <”B .若函数()f x 满足()()2sin f x f x x +-=,则π162f æö=ç÷èøC .“方程210x ax -+=有两个不相等的正实数根”的充要条件是“2a >”D .若函数()1e 1x af x =-+是定义在区间[]2,a b -上的奇函数,则2b =45.已知函数()f x 的定义域为D ,且[,]a b D Í,若函数()f x 在[],x a b Î的值域为[],ka kb ,则称[],a b 为()f x 的“k 倍美好区间”.特别地,当1k =时,称[],a b 为()f x 的“完美区间”,则()A .函数21()2f x x x =-+存在“3倍美好区间”B .函数1()3f x x=-+不存在“完美区间”C.若函数()f x m =-“完美区间”,则1,04m æùÎ-çúèûD .若函数||1()||m x f x x -=存在“完美区间”,则(2,)m Î+¥题型四 根据指对幂函数零点的分布求参数范围问题46.已知函数()f x 的定义域为R ,且()10f ¹,若()()()f x y f x f y xy +-=-,则( )A .()01f =B .()23log 32f f æö>ç÷èøC .方程()21xf x =-有唯一的实数解D .函数()y xf x =有最小值47.已知函数()()ln ,12,1x a x x f x f x x +³ì=í-<î存在n 个零点12,,,,N n x x x n *×××Î,则( )A .n 为偶数B .e 1a -££-C .122n x x x +++=L D .1224n x x x ×××<L 48.已知实数,,x y z满足:22log xz ==,则下列不等式中可能成立的是( )A .y x z <<B .x y z <<C .y z x<<D .x z y<<49.已知函数()()()22124,1log 1,1x x f x x x +ì£-ï=í+>-ïî,若函数()y f x m =-有三个零点1x 、2x 、3x ,且123x x x <<,则( )A .14m <£B .3151162x -<£-C .函数()1f x +的增区间为[]2,1--D.2212log x x ++8+50.已知函数()14,0lg 1,0x x f x xx x ì++<ï=íï+>î,若方程()f x a =有4个不同实根()12341234,,,x x x x x x x x <<<,则( )A .2a >B .411110x x ->C .341100x x =D .221211214x x <+<51.已知1x ,2x 为函数()()32024log 3xf x x -=--的两个零点,则下列结论中正确的有( )A .()()12440x x --<B .()()120331x x <--<C .()()12331x x -->D .若12x x <,则1213320242024x x --<52.已知函数221,0()log ,0x kx x f x x x ì-+£=í>î,下列关于函数[()]1y f f x =+的零点个数的说法中,正确的是( )A .当1k >,有1个零点B .当1k >时,有3个零点C .当0k <时,有9个零点D .当4k =-时,有7个零点53.记函数1,0()lg ,0x x f x x x ì+£=í>î,若123()()()f x f x f x ==(1x ,2x ,3x 互不相等),则123x x x ++的值可以是( )A .2-B .6C .8D .954.已知函数()1231,0,log ,0,x x f x x x +ì-£ï=í>ïî1x ,2x ,3x ,4x 是函数()()g x f x m =-的4个零点,且1234x x x x <<<,则( )A .m 的取值范围是(]0,2B .122333x x+=C .344x x +的最小值是4D .1234332x x x x ++55.已知函数()121x f x -=-,若关于x 的方程()()f f x m =有6个不相等的实根,则实数m的值可能为( )A .14B .13C .12D56.已知函数()()()1101xf x x x x =--×>,()()()1lg 1g x x x x x =--×>的零点分别为12,x x ,则( )A .1210x x ×<B .12lg x x =C .12111x x +=D .124x x +>57.已知函数()222,0log ,0x x x f x x x ì--£ï=í>ïî,若1234x x x x <<<,且()()()()1234f x f x f x f x k ====,则下列结论正确的是( )A .121x x +=-B .341x x =C .412x <<D .01k <<58.已知函数()21,144,1x x f x x x x ì-<ï=í+-³ïî,若存在实数m 使得方程()f x m =有四个互不相等的实数根()12343124,,,x x x x x x x x >>>,则下列叙述中正确的有( )A .140x x +<B .124x x ×=C .()3f m<D .()32f x x +有最小值59.已知函数()2ln ,041,0x x f x x x x ì>=í--+£î,若关于x 的方程()()22210f x af x a -+-=有()k k ÎN 个不等的实根1x 、2x 、L 、k x 且12k x x x <<<L ,则下列判断正确的是( )A .当0a =时,5k =B .当2k =时,a 的范围为(),1-¥-C .当8k =时,14673x x x x ++=-D .当7k =时,a 的范围为()1,260.已知函数()()()lg2lg512xf x =+-,实数a 、()b a b <是函数()y f x m =-的两个零点,则下列结论正确的有( )A .1m >B .01m <<C .222a b +=D.0a b +<1.函数()ln 1f x x =-的零点是( )A .eB .1eC .10D .1102.已知函数()()()()221,log 111x x xf x xg x x x x x =->=->--的零点分别为,a b ,则11a b +的值是( )A .1B .2C .3D .43.已知正数a b c ,,满足e ln e ln 1a c a b b c ===,则a b c ,,的大小关系为( )A .c<a<bB .c b a<<C .a b c<<D .a c b<<4.已知a 是方程e 40x x +-=的实根,则下列各数为正数的是( )A .22a a -B .e 2a -C .ln aD .23a a -5.下列命题为真命题的是( )A .若22ac bc >,则a b>B .函数()1f x +的定义域为[]0,1,则()3xf 的定义域为[]3,9C .若幂函数()f x 的图像过点13,27A æöç÷èø,则()3f x x-=D .函数()3ln f x x x=-的零点所在区间可以是()1,26.关于函数()π2sin 213f x x æö=-+ç÷èø,下列结论正确的是( )A .π,06æöç÷èø是()f x 的一个对称中心B .函数()f x 在π0,6æöç÷èø上单调递增C .函数()f x 图像可由函数()2cos21g x x =+的图像向右平移5π12个单位得到D .若方程()20f x m -=在区间π12π,2éùêúëû上有两个不相等的实根,则2,6m éùÎëû7.对于函数()3e x xf x =,下列说法正确的是( )A .()f x 有最小值但没有最大值B .对于任意的(),0x Î-¥,恒有()0f x <C .()f x 仅有一个零点D .()f x 有两个极值点8.已知函数224,0()log ,0x x x f x x x ì--£ï=í>ïî,若1234x x x x <<<,且()()()()1234f x f x f x f x ===,则下列结论正确的是( ) A .124x x +=-B .341x x ×=C .414x <<D .123402x x x x <£9.(多选)已知函数()()22,02ln 11,0x x t x f x x x ì-+£ï=í+->ïî,若函数(())y f f x =恰好有4个不同的零点,则实数t 的取值可以是( )A .-3B .-2C .0D .210.已知函数3()34,[0,2]f x x x x =-+Î,则下列选项中正确的是( )A .()f x 的值域为[]2,6B .()f x 在1x =处取得极小值为2C .()f x 在[]0,2上是增函数D .若方程()f x a =有2个不同的根,则[2,4]a Î11.已知函数()1e ,01ln ,04x x x f x x x +ì-£ï=í->ïî,下列选项中正确的是( )A .()f x 在(),1-¥-上单调递增,在()1,0-上单调递减B .()f x 有极大值C .()f x 无最小值D .若函数()()()()2[]24h x f x af x a =-+ÎR 恰有6个零点,则实数a 的取值范围是5,2æö+¥ç÷èø12.方程()230x m x m +-+=有两个实根,则实数m 的取值范围是.13.若函数()cos2sin f x x m x =-在π,π6æöç÷èø上有2个零点,则m 的取值范围是.14.若关于x 的方程sin cos x x k -=无解,则实数k 的取值范围是.15.已知函数()22x f x x =+-,()2log 2g x x x =+-,()32h x x x =+-的零点分别为a ,b ,c ,则a b c ++=.若1x 满足22=5x x +,2x 满足222log (1)5x x +-=,则12=x x + .16.设函数 22,0()lg ,0x x x f x x x ì+£ï=í>ïî若关于x 的方程22()(12)()0f x m f x m m +-+-=有5个不的取值范围是.17.已知函数()44,4x f x f x x £<=-³ïî,若对于正数()*n k n ÎN ,直线n y k x =与函数()f x 的图像恰好有21n +个不同的交点,则22212n k k k +++=L.18.若函数 ()22ln 1f x ax x =--有两个零点,则a 的取值范围为 .19.已知函数()|ln |f x x b =+,关于以下四个结论:①函数()f x 的值域为[,)b +¥;②当a b >时,方程()f x a =有两个不等实根;③当0b =,0a >时,设方程()f x a =的两个根为1x ,2x ,则12x x +为定值;④当0b =,0a >时,设方程(1)f x a +=的两个根为1x ,2x ,则12120x x x x ++=.则所有正确结论的序号为 .20.已知函数2)()(e x f x x ax =-.(1)若曲线()y f x =在=1x -处的切线与y 轴垂直,求()y f x =的极值.(2)若()f x 在(0,)+¥只有一个零点,求a .。
函数的零点存在与分布问题苏鸿基

1n2 22 2 22 n +12n +1n nn 在 区 间 1 ,内存在唯一零点;n又由( 1) 知 f n ( x ) 在( 1,1 )内是递增的, 2 1 2 22 ( )2 n n23n第 2 期 高中数学教与学函数的零点存在与分布问题苏鸿基( 福建省安溪沼涛中学,362400)普通高中课程标准实验教科书( 必修 1) 中在研究“函数与方程”时首先提出“函数的解( 1) b = 1,c = - 1,n ≥ 2 时,f ( x ) = x n+ x - 1. n( ) n(n)零点”这一概念. 在书中不仅给出了定义,还给出了一个存在性定理. 围绕这些解决一些 ∵ f12· f ( 1) = 1 - 1× 1 < 0,基本初等函数零点的问题,仍是近几年高考的一个热点.本文结合各地高考题对函数零点试题常见类型分析如下:一、函数零点的分布这类问题用零点存在性定理判断零点所在的区间或通过函数图象及函数的性质进行判断. ∴ f n ( x ) 在( 1 ,1 )内存在零点.又当x ∈ ( 1 ,1 )时,f n'( x ) = nx n -1+ 1 >0,∴ f n( x ) 在( 1 ,1 )内单调递增, ∴ f ( x ) 在( 1 ,1 )内存在唯一零点.( 2) 解略. 例1 设函数f ( x ) = 4s i n ( 2x + 1) - x ,则在下列区间中,函数 f( x) 不存在零点的是 ( )( 3) 解法1设x n 是f n ( x ) 在( 1 ,1 )内的 唯一零点( n ≥ 2) ,则f ( x ) = x n + x - 1 = 0,( A ) [- 4,- 2]( B ) [- 2,0]nnnn( C ) [0,2]( D ) [2,4]f n +1 ( x n +1 ) = x n +1 + xn +1- 1 = 0,分析 本题突出了对转化思想和数形结合思想的考察. 将 f( x) 的零点转化为函数g( x) = 4sin( 2x + 1) 与 h( x) = x 图 象 的 交 点,数形结合可知答案选 A .其中 x n +1 ∈ ( 1 ,1 ).于是有f n ( x n ) = 0 = f n +1 ( x n +1 )例 2 设 函 数 f ( x) = x n+ bx + c( n ∈ = x n +1 + x n +1 - 1 nN * ,b 、c ∈ R)nn +1 + x n +1 - 1 ( 1) 设 n ≥ 2,b = 1,c = - 1,证明: f ( x ) = f n ( x n +1 ) .2 1 2( 2) 设n = 2,若对任意 x 1 、x 2 ∈[- 1,1],有 | f ( x ) - f ( x ) | ≤ 4,求 b 的取值范围; ( 3) 在( 1) 的条件下,设 x n 是 f n ( x) 在 1 ,1 )内的零点,判断数列 x ,x ,…,x ,… 的 故 x n < x n +1 ( n ≥ 2) ,所以,数列 x 2 ,x 3 ,…,x n , … 是递增数列.= ( x n +1 + x - 1) ( 1n +1+ 1 - 1) 增减性.= x n +1+ x - 1 < x n+ x - 1 = 0,< x ( nn1 2 1 24 4 4 4高中数学教与学2015 年故 f n +1 ( x ) 的零点 x n +1 在( x n ,1) 内,故 x n <x n +1 ( n ≥ 2) .所以,数列 x 2 ,x 3 ,…,x n ,… 是递增数列. 评注 运用零点存在性定理判断零点所在区间,必须结合区间端点函数值的符号和单调性.二、函数零点的个数函数 f( x) 在某区间上是否有零点,有几个零点,通常用下列方法进行判断: ( 1) 通过解方程判断函数零点个数; ( 2) 利用零点存在定理判断; ( 3) 利用图象法转化为求两个函数图象交点的个数问题进行判断.例 3函数 f( x) = x cos 2x 在区间[0,2π]上的零点的个数为()( A) 2 ( B) 3 ( C) 4 ( D) 5 解 要使f ( x ) = xc o s 2x = 0,则x = 0 或 c o s 2x = 0; 而c o s 2x = 0( x ∈[0,2π]的解有 x = π ,3π,5π,7π,所以零点的个数为5. 故选 D .例 4函数f( x) = 2x + x 3- 2 在区间( 0,1) 内的零点个数是( )( A) 0 ( B) 1 ( C) 2 ( D) 3解 因为函数f( x) = 2x + x 3- 2 的导数为 f '( x ) = 2x l n 2 + 3x 2≥ 0,所以函数 f ( x ) = 2x + x 3- 2 单调递增,又 f( 0) = 1 - 2 = - 1 <0,f ( 1) = 2 + 1 - 2 = 1 > 0,所以根据根的存在定理可知在区间( 0,1) 内函数的零点个数为 1 个,选 B . 例 5 若 函 数 y = f( x) 在 x = x 0 处 取 得极大值或极小值,则称 x 0 为函数 y = f( x) 的极值点. 已知a 、b 是实数,1 和 - 1 是函数f ( x ) = x 3 + ax 2 + bx 的两个极值点. ( 1) 求 a 和 b 的值;( 2) 设函数g( x) 的导函数g'( x) = f( x) + 2,求 g ( x ) 的极值点;( 3) 设 h( x) = f( f( x) ) - c , 其 中 c ∈ [- 2,2],求函数 y = h ( x ) 的零点个数.解( 1) a = 0,b = - 3. ( 2) g ( x ) 的极值点为 - 2.( 3) 令f ( x ) = t ,则 h ( x ) = f ( t ) - c . 先讨论关于x 的方程f ( x ) = d 根的情况,d ∈[- 2, 2].当 | d | = 2 时,由( 2) 可知,f ( x ) = - 2 的两个不同的根为 1 和 - 2. 注意到 f ( x ) 是奇函数,所以 f ( x ) = 2 的两个不同的根为 - 1 和2.当 | d | < 2 时,因为 f( - 1) - d = f( 2) - d = 2 - d > 0,f ( 1) - d = f ( - 2) - d = - 2 - d < 0,所以 - 2,- 1,1,2 都不是 f ( x ) = d 的根 . 由 ( 1) 知 f '( x) = 3( x + 1) ( x - 1) .① 当 x ∈ ( 2,+ ∞ ) 时,f '( x ) > 0,于是 f ( x ) 是单调增函数,从而 f ( x ) > f ( 2) = 2.此时 f ( x ) = d 无实根; 同理,f ( x ) = d 在 ( - ∞ ,- 2) 上无实根.② 当x ∈ ( 1,2) 时,f '( x ) > 0,于是 f ( x )是单调增函数,又 f ( 1) - d < 0,f ( 2) - d > 0, y = f( x) - d 的图象不间断,所以 f( x) = d 在( 1,2) 内有唯一实根. 同理,f ( x ) = d 在( - 2, - 1) 内有唯一实根.③ 当x ∈ ( - 1,1) 时,f '( x ) < 0,故 f ( x )是单调减函数,又 f ( - 1) - d > 0,f ( 1) - d < 0,y = f ( x ) - d 的图象不间断,所以 f ( x ) = d 在( - 1,1) 内有唯一实根. 由上可知: 当| d | = 2 时,f ( x ) = d 有两个不同的根 x ,x ,满足 | x | = 1,| x | = 2; 当 | d | < 2 时,f ( x ) = d 有3 个不同的根 x 3 ,x 4 ,x 5 ,满足 | x i | < 2,i = 3,4,5. 现考虑函数 y = h( x) 的零点.( i ) 当 | c | = 2 时,f ( t ) = c 有两个根 t 1 ,t 2 满足 | t 1 | = 1,| t 2 | = 2,而 f ( x ) = t 1 有三个不同的根,f ( x ) = t 2 有两个不同的根,故 y = h( x) 有 5 个零点.( ii ) 当 | c | < 2 时,f ( t ) = c 有 3 个不同的根 t 3 ,t 4 ,t 5 ,满足 | t i | < 2,i = 3,4,5,而f ( x ) = t i ( i = 3,4,5) 有3 个不同的根,故 y = h( x) 有 9 个零点.综上可知,当 | c | = 2 时,函数 y = h( x) 有 5 个零点; 当 | c | < 2 时,函数 y = h( x) 有 9 个零点.评注用解方程确定零点个数要注意函2 0 0 00 1 1 0 0 0 22 1 0 02 *6 0 0**0 第 2 期高中数学教与学数定义域,用零点存在性定理判定,需将判定的区间划分为函数的单调区间逐一判定,借助基本函数图象判定零点个数是常用方法之一.三、两个函数图象的交点g'( x) = h( x) > h( x *) = 0; x ∈ ( x *,+ ∞ )时,g '( x ) = h ( x ) > h ( x * ) = 0,知 g ( x ) 在 R上单调递增.所以,函数 g( x) 在 R 上有且只有一个零点 x = x *.利用导数结合图象的变动,可将两个函 ( ii) 若x 0> x *,由 于 h( x) 在 ( x *,+ ∞ )数的图象的交点问题转化成函数的零点的个 内单调递增,且 h ( x ) = 0,则当 x ∈ ( x *,x ) 数问题.时,有 g '( x ) = h ( x ) < h ( x 0 ) = 0,g ( x ) > 例6 已知函数f ( x ) = e x + ax 2- e x ,a ∈ g( x ) = 0; 任 取 x ∈ ( x *,x ) 有 g ( x ) > 0. R.( 1) 若曲线y = f ( x ) 在点( 1,f ( 1) ) 处的 又当 x ∈ ( - ∞ ,x 1 ) 时,易知g( x) = e x + ax 2 - ( e + f '( x ) ) x 切线平行于 x 轴,求函数 f( x) 的单调区间; ( 2) 试确定 a 的取值范围,使得曲线 y = f ( x ) 上存在唯一的点P ,曲线在该点处的切线< ex - f( x 0 ) + x 0 f '( x 0 )+ ax 2 - ( e + f '( x ) ) x - f( x 0 ) + x 0 f '( x 0 )与曲线只有一个公共点 P .解( 1) f( x) 的单调递减区间为( - ∞ ,1) ,单调递增区间为( 1,+ ∞ ) .( 2) 设点 P ( x 0 ,f ( x 0 ) ) ,曲线 y = f ( x ) 在点 P 处的切线方程为 y = f '( x 0 ) ( x - x 0 ) + f( x 0 ) .令 g( x) = f( x) - f '( x 0 ) ( x - x 0 ) - f( x 0 ) ,故曲线 y = f( x) 在点 P 处的切线与曲线只有一个公共点P 等价于函数g( x) 有唯一零点.因 为 g( x 0 ) = 0, 且 g'( x) = f '( x) -f '( x ) = e x - e x+ 2a ( x - x ) . ① 若a ≥ 0,当 x > x 0 时,g '( x ) > 0,则 x > x 0 时,g ( x ) > g ( x 0 ) = 0;当x < x 0 时,g '( x ) < 0,则x < x 0 时,g ( x ) > g ( x 0 ) = 0,故 g ( x ) 只有唯一零点 x = x 0 .由于 x 0 具有任意性,不符合 P 的唯一性, 故 a ≥ 0 不合题意.② 若 a < 0,令 h ( x ) = e x - e x+ 2a ( x -x ) ,则 h ( x ) = 0,h '( x ) = e x + 2a . 令 h '( x ) = 0,得 x = l n ( - 2a ) . 记 x * =l n ( - 2a ) ,则当 x ∈ ( - ∞ ,x *) 时,h '( x ) < 0,从而 h ( x ) 在( - ∞ ,x *) 内单调递减; 当 x ∈ ( x * ,+ ∞ ) 时,h '( x ) > 0,从而 h ( x ) 在( x * , + ∞ ) 内单调递增.( i ) 若 x 0 = x ,由 x ∈ ( - ∞ ,x ) 时, = ax 2 + bx + c , 其 中 b = - ( e + f '( x 0 ) ) ,c = ex - f( x ) + x f '( x ) . 由于 a < 0,则必存在 x 2 < x 1 ,使得ax 2+ bx + c < 0, 所以 g ( x ) < 0,故 g ( x ) 在( x ,x ) 内存在零点,即 g( x) 在 R 上至少有两个零点.( iii) 若 x < x ,仿 ( ii) 并 利 用 e x> x可证函数 g( x) 在 R 上至少有两个零点.综上所述,当a < 0 时,曲线y = f( x) 上存在唯一点 P ( l n ( - 2a ) ,f ( l n ( - 2a ) ) ) ,曲线在该点处的切线与曲线只有一个公共点 P .评注 利用零点的问题确定函数中参数的取值,是有关函数、方程、不等式的综合性问题. 解决问题的主要思想方法是分类讨论与数形结合,特别是有关二次函数解析式中参数的取值范围的讨论,应充分利用根与系数的关系,对称轴与零点关系,最值与零点的关系.上述例子剖析了数学高考中函数零点问题的题型及解法,值得一提的是,各种类型各种方法并不是完全孤立的,虽然方法表现不尽相同,但其实质却都与求函数的零点是等价的., 1 1 3。
二次函数的零点分布

二次函数的零点分布一、基础知识1. 零点存在性定理:函数()y f x =的图像连续不断,且满足 ;则函数()y f x =在区间(a,b )存在零点;当 存在唯一零点。
2. 函数265y x x =-+的零点为3. 二次函数2y ax bx c =++(0a ≠)的零点个数与方程20ax bx c ++=根的关系:若0∆>,则方程20ax bx c ++=有 根,函数2y ax bx c =++有 个零点若0∆=,则方程20ax bx c ++=有 根,函数2y ax bx c =++有 个零点若0∆<,则方程20ax bx c ++=有 根,函数2y ax bx c =++有 个零点二、例题讲解例1:函数29y x mx =++有两个零点均大于2,求实数m 的范围变式1:函数29y x mx =++有两个零点在区间(2,4)内,求实数m 的范围变式2:函数29y x mx =++有两个零点在区间(2,4)两侧,求实数m 的范围变式3:函数29y x mx =++有一个零点在区间(2,4)内,求实数m 的范围变式4:函数29y x mx =++的两个零点,一个在(2,3)内,一个在(4,5)内,求实数m 的范围变式5:函数29y x mx =++有两个零点一个比2大,一个比2小,求实数m 的范围变式6:函数29y x mx =++的零点都比2大,求实数m 的范围例2:若不等式(a -2)x 2+2(a -2)x -4<0对一切x ∈R 恒成立,则a 的取值范围是( ) A (-∞,2] B [-2,2] C (-2,2] D (-∞,-2)例3:已知函数2()3f x x ax a =++-若[2,2]x ∈-时,()f x ≥0恒成立,则a 的取值范围为解:设()f x 的最小值为()g a (1)当22a -<-即a >4时,()g a =(2)f -=7-3a ≥0,得73a ≤故此时a 不存在; (2) 当[2,2]2a -∈-即-4≤a ≤4时,()g a =3-a -24a ≥0,得-6≤a ≤2 又-4≤a ≤4,故-4≤a ≤2;(3)22a ->即a <-4时,()g a =(2)f =7+a ≥0,得a ≥-7,又a <-4故-7≤a <-4综上,得-7≤a ≤2例4:是否存在这样的实数k ,使得关于x 的方程x 2+(2k -3)x -(3k -1)=0有两个实数根,且两根都在0与2之间?如果有,试确定k 的取值范围;如果没有,试说明理由.解:令2()(23)(31)f x x k x k =+---那么由条件得到 2(23)4(31)0(0)130(2)42(23)(31)023022k k f k f k k k ⎧∆=-+-≥⎪=->⎪⎪⎨=+--->⎪-⎪<<⎪⎩即24501313722k k k k ⎧+≥⎪⎪<⎪⎨>⎪⎪<<⎪⎩即此不等式无解 即不存在满足条件的k 值.例5:已知函数()213f x ax x a =+-+()a ∈R 在区间[]1,1-上有零点,求实数a 的取值范围.解:当0a =时,()1f x x =-,令()0f x =,得1x =,是区间[]1,1-上的零点.当0a ≠时,函数()f x 在区间[]1,1-上有零点分为三种情况:①方程()0f x =在区间[]1,1-上有重根,令()14130a a ∆=--+=,解得16a =-或12a =. 当16a =-时,令()0f x =,得3x =,不是区间[]1,1-上的零点. 当12a =时,令()0f x =,得1x =-,是区间[]1,1-上的零点. ②若函数()y f x =在区间[]1,1-上只有一个零点,但不是()0f x =的重根,令()()()114420f f a a -=-≤,解得102a <≤. ③若函数()y f x =在区间[]1,1-上有两个零点,则()()⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≥≥<-<->++-=∆>.01-,01,1211,01412,02f f a a a a 或()()⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≤≤<-<->++-=∆<.01-,01,1211,01412,02f f a a a a 解得a ∈∅.综上可知,实数a 的取值范围为10,2⎡⎤⎢⎥⎣⎦. 例6:已知二次函数2()163f x x x q =-++:⑴若函数在区间[]1,1-上存在零点,求实数q 的取值范围;⑵问:是否存在常数(0)t t ≥,当[],10x t ∈时,()f x 的值域为区间D ,且D 的长度为12t -。
专题10函数零点(原卷版)

《函数零点》专项突破 高考定位函数的零点其实质是相应方程的根,而方程是高考重点考查内容,因而函数的零点亦成为高考命题的热点.其经常与函数的图像、性质等知识交汇命题,以选择、填空题的形式考查可难可易,以大题形式出现,相对较难. 考点解析(1)零点个数的确定(2)二次函数的零点分布(3)零点与函数性质交汇(4)嵌套函数零点的确定(5)复杂函数的零点存在性定理(6)隐零点的处理(7)隐零点的极值点偏移处理 题型解析类型一、转化为二次函数的零点分布例1-1.(2022·全国·高三专题练习)已知f (x )是奇函数并且是R 上的单调函数,若函数y =f (2x 2+1)+f (λ-x )只有一个零点,则实数λ的值是( ) A .14B .18C .78-D .38-练(2022·湖北·黄冈中学模拟预测)若函数2()2a f x x ax =+-在区间(1,1)-上有两个不同的零点,则实数a 的取值范围是( ) A .2(2,)3-B .2(0,)3C .(2,)+∞D .(0,2)例1-2.(2022·湖北恩施·高三其他模拟)设函数()()2x f x x a e =+在R 上存在最小值(其中e 为自然对数的底数,a R ∈),则函数()2g x x x a =++的零点个数为( )A .0B .1C .2D .无法确定类型二、区间零点存在性定理例2-1.(2022·天津二中高三期中)已知函数()ln 1f x x x =-,则()f x 的零点所在的区间是( )A .()0,1B .()1,2C .()2,3D .()3,4练.(2022·天津·大钟庄高中高三月考)函数()2xf x x =+的零点所在的区间为( )A .()2,1--B .()1,0-C .()0,1D .()1,2类型三、利用两图像交点判断函数零点个数例3-1(一个曲线一个直线)14.(2022·黑龙江·哈尔滨三中高三期中(文))设函数222,0()lg ,0x x x f x x x ⎧--≤⎪=⎨>⎪⎩,则函数()1y f x =-的零点个数为( ) A .1个 B .2个 C .3个 D .0个练.已知m 、n 为函数()1ln xf x ax x+=-的两个零点,若存在唯一的整数()0,x m n ∈则实数a 的取值范围是( ) A .ln 3,92e e ⎡⎫⎪⎢⎣⎭ B .ln 20,4e ⎛⎫ ⎪⎝⎭ C .0,2e ⎛⎫ ⎪⎝⎭D .ln 2,14e ⎡⎫⎪⎢⎣⎭例3-2(一个曲线一个直线)(2018·浙江·绍兴市柯桥区教师发展中心高三学业考试)已知函数()()()()22,22,2x x f x x x ⎧-≤⎪=⎨->⎪⎩,函数()()2g x b f x =--,若函数()()y f x g x =-恰有4个零点,则实数b 的取值范围为_______.例3-3【一个曲线和一个倾斜直线】【2022福建省厦门市高三】已知函数()221,20, ,0,xx x x f x e x ⎧--+-≤<=⎨≥⎩若函数()()g x f x ax a =-+存在零点,则实数a 的取值范围为__________.例3-4(两个曲线)(2022·全国·高三专题练习)函数2π()2sin sin()2f x x x x =+-的零点个数为________.(两个曲线)(2022·四川·高三期中(理))已知定义在R 上的函数()f x 和()1f x +都是奇函数,当(]0,1x ∈时,21()log f x x=,若函数()()sin()F x f x x π=-在区间[1,]m -上有且仅有10个零点,则实数m 的最小值为( ) A .3 B .72C .4D .92(两个曲线)【2022河北省武邑中学高三】若定义在R 上的偶函数()f x 满足()()2f x f x +=,且当[]0,1x ∈时, ()f x x =,则函数()3log y f x x =-的零点个数是( )A . 6个B . 4个C . 3个D . 2个例3-5(直接解出零点)(2022·四川·高三月考(理))函数()25sin sin 1f x x x =--在5π5π,22x ⎡⎤∈-⎢⎥⎣⎦上的零点个数为( ) A .12 B .14 C .16 D .18类型三、利用周期性判断零点个数例3-1.(2022·广东·高三月考)已知定义域为R 的函数()y f x =在[0,10]上有1和3两个零点,且(2)y f x =+与(7)y f x =+都是偶函数,则函数()y f x =在[0,2013]上的零点个数为( ) A .404 B .804C .806D .402例3-2.偶函数()f x 满足()()44f x f x +=-,当(]0,4x ∈时,()()ln 2x f x x=,不等式()()20f x af x +>在[]200,200-上有且只有200个整数解,则实数a 的取值范围是( ) A .1ln6,ln23⎛⎤- ⎥⎝⎦B .1ln2,ln63⎡⎫--⎪⎢⎣⎭C .1ln2,ln63⎛⎤-- ⎥⎝⎦D .1ln6,ln23⎛⎫- ⎪⎝⎭类型四、零点之和例4-1.(2022·全国·高三专题练习(文))已知函数()1sin sin f x x x=+,定义域为R 的函数()g x 满足()()0g x g x -+=,若函数()y f x =与()y g x =图象的交点为()()()112266,,,,,,x y x y x y ⋯,则()61i j i x y =+=∑( )A .0B .6C .12D .24例4-2(2022·新疆·克拉玛依市教育研究所模拟预测(理))已知定义在R 上的奇函数()f x 满足()()2f x f x =-,当[]1,1x ∈-时,()3f x x =,若函数()()()4g x f x k x =--的所有零点为()1,2,3,,i x i n =,当1335k <<时,1nii x==∑( )A .20B .24C .28D .36类型五、等高线的使用例5-1.(2022·福建宁德·高三期中)已知函数()()8sin ,02log 1,2x x f x x x π≤≤⎧=⎨->⎩,若a 、b 、c 互不相等,且()()()f a f b f c ==,则a b c ++的取值范围是___________.例5-2(2022·山西太原·高三期中)设函数22log (1),13()(4),3x x f x x x ⎧-<≤⎪=⎨->⎪⎩,()f x a =有四个实数根1x ,2x ,3x ,4x ,且1234x x x x <<<,则()3412114x x x x ++的取值范围是( )A .109,32⎛⎫ ⎪⎝⎭B .(0,1)C .510,23⎛⎫ ⎪⎝⎭D .3,22⎛⎫ ⎪⎝⎭例5-3(2022·吉林吉林·高三月考(理))()22,01ln ,0x x x f x x x ⎧--≤⎪=⎨+>⎪⎩,若存在互不相等的实数a ,b ,c ,d 使得()()()()f f b f d m a c f ====,则下列结论中正确的为( )①()0,1m ∈;①()122e 2,e 1a b c d --+++∈--,其中e 为自然对数的底数; ①函数()y f x x m =--恰有三个零点. A .①① B .①① C .①① D .①①①例5-4.(2022·辽宁实验中学高三期中)已知函数()266,1ln 1,1x x x f x x x ⎧---≤⎪=⎨+>⎪⎩,若关于x 的方程()f x m =恰有三个不同实数解123x x x <<,则关于n 的方程()()121222356516n x x x x x -+=++-的正整数解取值可能是( ) A .1 B .2 C .3 D .4类型六、嵌套函数零点例6-1.(2022·黑龙江·哈尔滨三中高三期中(理))设函数()32,0lg ,0x x f x x x +≤⎧=⎨>⎩,则函数()()12y f f x =-的零点个数为( )A .1个B .2个C .3个D .4个例6-2.(2022·天津市第四十七中学高三月考)已知函数()2e ,0,0x x f x x x ⎧≤⎪=⎨>⎪⎩,2()2g x x x =-+(其中e 是自然对数的底数),若关于x 的方程(())g f x m =恰有三个不等实根123,,x x x ,且123x x x <<,则12322x x x -+的最大值为___________.例6-3(2022·全国·高三专题练习)设函数()210log 0x x f x x x +≤⎧=⎨>⎩,,,,若函数()()()g x f f x a=-有三个零点,则实数a 的范围为________.例6-4. 已知函数f(x)={e |x−1|,x >0−x 2−2x +1,x ≤0 ,若关于x 的方程f 2(x)−3f(x)+a =0(a ∈R)有8个不等的实数根,则a 的取值范围是( ) A . (0,14) B . (13,3) C . (1,2) D . (2,94)类型七、隐零点处理例7-1.(1)已知函数f(x)=x 2+πcos x ,求函数f(x)的最小值;(2)已知函数()()32213210f x x ax a x a a ⎛⎫=++++> ⎪⎝⎭,若()f x 有极值,且()f x 与()f x '(()f x '为()f x 的导函数)的所有极值之和不小于263-,则实数a 的取值范围是( ) A .(]0,3 B .(]1,3 C .[]1,3 D .[)3,+∞例7-2已知函数()ln()(0)x af x ex a a -=-+>.(1)证明:函数()'f x 在(0,)+∞上存在唯一的零点;(2)若函数()f x 在区间(0,)+∞上的最小值为1,求a 的值.例7-3已知函数()xf x xe =,()lng x x x =+.若()()()21f x g x b x -≥-+恒成立,求b 的取值范围.例7-4已知函数()()22e xx x f a x =-+.(1)讨论函数()f x 的单调性;(2)当1a =时,判断函数()()21ln 2g x f x x x -+=零点的个数,并说明理由.类型八、隐零点之极值点偏离类型一、目标与极值点相关思想:偏离−−→−转化对称 步骤:(1)利用单调性与零点存在定理判定零点个数 (2)确定极值点(3)确定零点所在区域 (4)构造对称函数类型二、目标与极值点不相关 步骤:(1)利用单调性与零点存在定理判定零点个数 (2)确定极值点(3)确定零点所在区域(4)寻找零点之间的关系,消元换元来解决例8-1.(2022·江苏高三开学考试)已知函数()ln af x x x=+(a ∈R )有两个零点.(1)证明:10ea <<. (2)若()f x 的两个零点为1x ,2x ,且12x x <,证明:a x x 221>+.(3)若()f x 的两个零点为1x ,2x ,且12x x <,证明:.121<+x x练、已知函数f(x)=x 2+πcos x. (1)求函数f(x)的最小值;(2)若函数g(x)=f(x)-a 在(0,+∞)上有两个零点x 1,x 2,且x 1<x 2,求证:x 1+x 2<π.练、已知函数21()1xx f x e x-=+. (①)求()f x 的单调区间;(①)证明:当12()()f x f x = 12()x x ≠时,120x x +<练、已知函数f(x)=xe -x .(1)求函数f(x)的单调区间和极值; (2)若x 1≠x 2且f(x 1)=f(x 2),求证:x 1+x 2>2.练、已知函数f(x)=xln x 的图象与直线y =m 交于不同的两点A(x 1,y 1),B(x 2,y 2).求证:x 1x 2<1e 2.练(2022·沙坪坝区·重庆八中)已知函数()222ln f x x ax x =-+(0a >).(1)讨论函数()f x 的单调性;(2)设()2ln g x x bx cx =--,若函数()f x 的两个极值点1x ,2x (12x x <)恰为函数()g x 的两个零点,且()12122x x y x x g '+⎛⎫=- ⎪⎝⎭的取值范围是[)ln31,-+∞,求实数a 的取值范围.练.已知2()4ln f x x x a x =-+.已知函数()f x 有两个极值点12x x ,(12x x <),若123()20f x mx ->恒成立,试求m 的取值范围.。
二次函数零点的分布

f ( k1 ) 0 f ( k2 ) 0
(6) x1,x2有且只有一个根在(k1 , k2)内
k1
k2
f (k1 ) f (k2 ) 0
k1
k2
0 或 b k1 k2 2a
k1
k2
f ( k1 ) 0 或 b k1 k2 k1 2a 2
2,
1 即- <m≤ 1- 2. 2
解决二次方程范围根的问题,关键是依据零点存在性 定
理用二次函数的性质对方程的根进行限制,布列不等 式
组求解.
B 练习.若 f (x )=(m -2)x 2+mx +(2m +1)的两个零 点分别在区间(-1, 0) 和区间 (1 , 2) 内,则实数 m 的取 1 1 值范围是 4,2 .
2 2
得: m 6或m 2.
m 6或m 2 0 (2) x1 x2 0 得 m 0 得:m 6 x x 0 m 3 0 1 2
m 6或m 2 0 (3) 得 得:m 3. x1 x2 0 m 3 0
k1
f ( k2 ) 0 或 k1 k2 b 2 2a k2 k2
(7)m x1 n p x2 q ( m , n, p, q为常数)
f (m ) 0 f ( n) 0 f ( p ) 0 f (q ) 0
• 判断二次函数的零点分布的关键:
在于作出二次函数的图象的草图, 根据草图通常从判别式、对称轴 的位置、特殊点的函数值这三个 角度列于 x 的二次方程 x2+2mx+2m+ 1= 0. (1)若方程有两根,其中一根在区间 (-1,0)内,另一根在区间 (1,2)内,求 m 的范围; (2)若方程两根均在区间 (0,1)内,求 m 的范围.
函数零点练习题

函数零点练习题一、选择题1. 函数f(x)=x²-1在区间[-1,1]上有几个零点?A. 0个B. 1个C. 2个D. 3个2. 若函数f(x)=2x³-x在(-∞,+∞)上恰有一个零点,则f'(x)=0的解有几个?A. 0个B. 1个C. 2个D. 3个3. 函数g(x)=x³-3x²+2在区间[1,2]上零点的个数是?A. 0个B. 1个C. 2个D. 3个4. 函数h(x)=x³+2x²-4x-8的零点个数为?A. 0个B. 1个C. 2个D. 4个5. 函数y=x³-6x²+11x-6的零点一定在哪个区间内?A. (1,2)B. (2,3)C. (3,4)D. (4,5)二、填空题6. 若函数f(x)=x³-6x²+11x-6的零点在区间[1,2]内,求f'(x)=______。
7. 函数y=x³-8x+4的导数为y'=______。
8. 函数f(x)=x³-3x²+2在区间[1,2]上有一个零点,求f(x)在x=1处的导数值为______。
9. 若函数g(x)=x³-3x²+2在区间[1,2]上的零点为x₀,则g'(x₀)=______。
10. 若函数h(x)=x³+2x²-4x-8在区间[-2,2]上恰有两个零点,求h'(x)=______。
三、解答题11. 已知函数f(x)=x³-6x²+11x-6,求证其在区间[1,2]内恰有一个零点。
12. 函数y=x³-8x+4在区间[-1,1]上有几个零点?请给出证明。
13. 设函数g(x)=x³-3x²+2,求其在区间[1,2]上的零点,并证明其唯一性。
14. 函数h(x)=x³+2x²-4x-8的导数为h'(x),求h(x)在区间[-2,2]上的零点个数,并给出证明。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数零点专题(高一版)
一、已知函数解析式(不含参)求零点个数
1、基本初等函数模型
例1:若函数31(),()log (1)2x
f x
g x x ⎛⎫==- ⎪⎝⎭
,则方程()()f x g x =的实数根的根数为 2、复合函数模型 例2:若函数⎩⎨⎧>≤=0,log 0,2)(2
x x x x f x ,则函数[]1)(-=x f f y 的零点个数为 3、周期函数模型
例3:函数()f x 的周期为2,若[]21,1,()x f x x ∈-=,则()y f x =的图像与lg y x =的图像的交点个数为
4、具有对称性的函数模型(求和)
例4:已知函数2221,0()log ,0
x x x f x x x ⎧--+≤⎪=⎨>⎪⎩,若()f x k =有四个不同的实数根1234,,,x x x x ,则1234x x x x +++的取值范围为
例5:定义在R 上的奇函数()f x ,当0x ≥时,[)[)
12log (1),0,1()13,1,x x f x x x ⎧+∈⎪=⎨⎪--∈+∞⎩,则关于x 的函数
()()(01)F x f x a a =-<<的所有零点之和为
二、已知零点个数求参数范围
1、二次函数模型
例6:函数2()2f x x x a =-+在区间(1,3)内有一个零点,则实数a 的取值范围是 .(3,0)A - .(3,1)B - .(1,3)C - .(1,1)D -
2、分段函数模型
例7:已知函数2ln(1),0()2,0
x x f x x x x +>⎧=⎨--≤⎩,若()()g x f x m =-有三个零点,则实数m 的取值范围为 1
.(0,)2A 1.(,1)2
B .(0,1)
C (].0,1
D 3、复合函数模型
例8:设函数()21,02,0
gx x f x x x x ⎧>⎪=⎨--≤⎪⎩,若函数()()2221y f x bf x =++⎡⎤⎣⎦有8个不同的零点,则实数b 的取值范围是
4、周期函数模型
例9: 定义在R 上的偶函数()f x 满足()(4)f x f x =+,且在[]12,0,()12x
x f x ⎛⎫∈-=- ⎪⎝⎭,若在(]2,6-内关于x 的方程()log (2)0(0,1)a f x x a a -+=>≠恰有三个不同的实数根,则实数a 的取值范围为
三、已知零点范围求参数范围
1、一次函数模型
例10:函数()1f x ax =+在区间(1,1)-上存在一个零点,则实数a 的取值范围是
2、二次函数模型
(1)参数在常数项上
例11:函数2()3f x x x k =--在区间(1,1)-上有零点,则实数k 的取值范围是
(2)参数在一次项系数上
例12:函数2()(1)1f x x k x =+-+在区间[]0,2上有零点,则实数k 的取值范围是
(3)参数在二次项系数上
例13:函数2()21(0)f x ax x a =-+≠在区间(0,1)(1,2)和上各有一个零点,则实数a 的取值范围是
3、两个基本初等函数
例14:已知方程23log kx x +=的根落在区间(1,2)内,则实数k 的取值范围是
答案:
例1:2; 例2:2; 例3:10; 例4:19,24⎡⎫⎪⎢⎣⎭
; 例5:12a - 例6:B ; 例7:C ; 例8:)2,23(--; 例9: ()
243,; 例10:11a a <->或 例11:(2,4)- 例12: (],1-∞- 例13:3(,1)4 例14:(3,1)--。