交通流三个参数K Q V之间关系
第七章交通流三参数之间的关系

参考文献
1、任福田,刘小明,荣建等.交通工程学. 北京:人民交通 出版社,2003.7
2、刘建军.交通工程学基础. 北京:人民交通出版社, 1995.7
第七章 交通流量、速度和密度之间来自关系授课内容:1、三参数之间的关系
2、速度—密度之间的关系
3、交通流量—密度之间的关系
4、交通流量—速度之间的关系
授课要求:
掌握交通流中交通流量、速度和密度各参数之间
的关系,会分析和应用三参数之间的关系。
第一节 三参数之间的关系
一、交通流的三个参数关系
描述交通流的三个参数是交通量、速度和交通密 度,它们之间的关系可以用下式表示:
Q VK
式中:Q——交通量(辆/h);
V——速度(km/h);
K——交通密度(辆/km)。
二、交通量、速度和交通密度的关系曲线 由交通量、速度和交通密度三者关系图(图 7-1 ) 可见:
图7—1交通量、速度和交通密度的关系
(1)Qm是速度-流量图上的峰值,表示最大流量。
(2)Vm是流量取最大值(Q=Qm)时的速度,称为 临界速度。
例7-1已知某公路上畅行速度Vf=80 km/h,阻塞密度Kj =105veh/km,速度一密度符合直线关系式。 求:(1)在该路段上期望得到的最大流量? (2)此时所对应的车速是多少? 解:(1)该路段上期望得到的最大流量为: Qm=1/4 KjVf=1/4*80*105= 2100(veh/h)
阻塞密度值:kj=1000/hd=1000/8.05=124辆 /km,如假定ht=1.5s,由于 ht=3600/Q
因此,最大通行能力Qm=3600/1.5=2400辆/h。 此时的速度Vm=Qm/Km=2400/62=38.7km/ h。
交通流三个参数K Q V之间关系概要

V=60-3/4*70=7.5(km/h)
Q= KV=7.5*70=525(veh/h)
Qm=1/4 KjVf=1/4*60*80=1200(veh/h)
例7-3假定车辆平均长度为6.lm,在阻塞密度时,单车 道车辆间的平均距离为1.95m,因此车头间距h= 8.05m,试说明流量与密度的关系。 解:因为hd=1000/k
第二节 速度和密度之间的关系
1934年,格林希尔兹(Greenshields)提出了 速度一密度线性模型。
K v v( ) f 1Kj
式中:Vf-一畅行速度; Kj——阻塞密度。
这一模型较为直观、实用(图7-2),且与实 测数据拟合良好。
当 K = 0 时, V 值可达理论最高速度,即畅行速度 Vf 。实际上, AE 线不与纵坐标轴相交,而是趋于该 轴因为在道路上至少有一辆车V以速度Vf行驶。这时, Vf只受道路条件限制。该图也可以表示流量,根据直 线关系,直线上任意点的纵横坐标与原点O所围成的 面积表示交通量,如运行点 C ,速度为 Vm ,密度为 Km,其交通量为 Qm=VmKm,即图上的矩形面积。
过C点作一条平行于流量坐标轴的线,将曲线分 成两部分,这条线以上的部分,为不拥挤部分,速度 随流量的增加而降低,直至达到通行能力的流量Qm 为止,速度为Vm;这条线以下部分为拥挤部分,流 量和速度都下降。
综合以上三个参数的关系可知:当道路上交通密 度小时,车辆可自由行驶,平均车速高,交通流量不 大;随着交通密度增大,交通流量也增加,但车速下 降;当交通密度增加到最佳密度时,交通流量达到最 大值,即交通流量达到了道路的通行能力,车辆的行 驶形成了车队跟随现象,车速低且均衡;当交通密度 继续增大,即超过了最佳密度,交通流量下降,车速 明显下降,直到车速接近于零,道路出现阻塞,交通 密度达到最大值,即阻塞密度,交通流量等于零。
交通流三个参数K Q V之间关系

例7-1已知某公路上畅行速度Vf=80 km/h,阻塞密度Kj =105veh/km,速度一密度符合直线关系式。 求:(1)在该路段上期望得到的最大流量? (2)此时所对应的车速是多少? 解:(1)该路段上期望得到的最大流量为: Qm=1/4 KjVf=1/4*80*105= 2100(veh/h)
当车流密度很大时,用直线关系描述就不准确了, 可以采用格林伯(Greenberg)提出的数模型:
v vm ln (
Kj K
)
当密度很小时,可采用安德伍德(Underwood)提 出的指数模型:
v vf e
K / Km
第三节 交通量和密度的关系
可由格林希尔兹模型导出。
K2 Q v f (K ) Kj
第七章 交通流量、速度和密度之间的关系
授课内容:
1、三参数之间的关系
2、速度—密度之间的关系
3、交通流量—密度之间的关系
4、交通流量—速度之间的关系
授课要求:
掌握交通流中交通流量、速度和密度各参数之间
的关系,会分析和应用三参数之间的关系。
第一节 三参数之间的关系
一、交通流的三个参数关系
描述交通流的三个参数是交通量、速度和交通密 度,它们之间的关系可以用下式表示:
式 表明速度与流量的关系曲 线同样是一条抛物线(图7-4)
v2 Q K j (v ) vf
图7—4 速度与流量的关系
当交通密度为零时,畅行交通流的车速就可能达 到最高车速,如图中曲线的最高点A,就是畅行速度 Vf,而流量等于零。当交通密度等于阻塞密度时,速 度等于零,流量也等于零,因此,曲线通过坐标原点。
2.已知流量一密度关系曲线如图7-5,指出B、C、D 三点代表交通流的何种运行状态?并指出车辆的畅行 点为何点?
交通流三个参数KQV之间关系解读

图7-3所示。
图7-3交通量和密度的关系
当交通密度为零时,流量为零,故曲线通过坐标 原点。当交通密度增加,流量增大,直至达到道路的 通行能力,即曲线C点的交通量达到最大值,对应的 交通密度为最佳密度Km;从C点起,交通密度增加, 速度下降,交通量 减少,直到阻塞密度Kj,速度等 于零,流量等于零;由坐标原点向曲线上任一点画矢 径。这些矢径的斜率,表示矢端的平均速度。通过A 点的矢径与曲线相切,其斜率为畅行速度Vf;对于密 度比Km小的点,表示不拥挤情况,而密度比Km大 的点,表示拥挤情况。
例7-2 在长400m的道路上行驶28辆车,速度-密度为直 线关系,V=60-3/4 K,
求:该道路的Vf ,Kj ,Q ,Qm 。 解:V=60-3/4 K=60(1- K/80)
Vf=60 km/h K=N/L=28/0.4=70(veh/km) V=60-3/4*70=7.5(km/h) Q= KV=7.5*70=525(veh/h) Qm=1/4 KjVf=1/4*60*80=1200(veh/h)
线同样是一条抛物线(图7-4)
图7—4 速度与流量的关系
当交通密度为零时,畅行交通流的车速就可能达 到最高车速,如图中曲线的最高点A,就是畅行速度 Vf,而流量等于零。当交通密度等于阻塞密度时,速 度等于零,流量也等于零,因此,曲线通过坐标原点。
过C点作一条平行于流量坐标轴的线,将曲线分 成两部分,这条线以上的部分,为不拥挤部分,速度 随流量的增加而降低,直至达到通行能力的流量Qm 为止,速度为Vm;这条线以下部分为拥挤部分,流 量和速度都下降。
对于式(7-6)若另dQ/dK=0,则可求出对应于 Qm的Km值:
km
1 2
k
j
从而
交通量、速度、密度之间的关系

2
交通量—密度的关系
K Q Vf ( K ) Kj
(1)0<K<Km:密度增大,交 通流增大 (2)K=临界密度Km时,交 通流最大为Qm (3)Km<K<Kj:密度增加, 交通流减小。到达阻塞密 度时,Q为0
2
交通量—速度的关系
Q=KV (1)
K=Kj(1-V/Vf) (2)
V Q Kj (V ) Vf
安德伍德制造
V Vf (1 e
Kj Km
)
广义速度—密度模型
K N V Vf (1 ) Kj
式子中:N是大于零的实数,当N等于一时,该式 变为线性关系式
交通量—密度的关系
K V Vf (1 ) Kj
K2 Q Vf ( K ) Kj
Q KV
同理可得,将不同的速度密度关系模型带入式子中则可以得到不同的交通量 密度公式及相应曲线
三参数之间的关系
Q KV
L路段上的车流密度: K=N/L N号车通过L所用的时间: t=L/v N号车通过A断面时的交通量: Q=N/t=Kv
三参数关系图
• 直线关系模型:
速度—密度关系
K V Vf (1 ) Kj
• 对数关系模型:
• 指数模型: • 广义模型:
K V Vm In( ) Kj
交通量 速度 密度 之间的关系
11交通 徐卓斌 1104028
授课大纲
• • • • 三个参数之间的关系 速度密度的关系 交通量密度的关系 交通量速度时间通过某道路断面的交通体数量 辆/h 辆/(h.l) 密度:单位长度道路区段上的车辆数 辆/km 辆/(km.l) 速度:区间平均车速 km/h
第六章 流量速度密度三者关系

2
Q k jv
kj vf
v
2
2 i
13931 .65
463.92
x y k v
i i
12590 .04
20 *12590 .04 463.92 * 703.6 ( ) 1.177 2 kj 20 *13931 .65 463.92
1 1 * 703 .6 (1.177 * * 463 .92 62.47 20 20
一、概述
1. 交通流——交通体组成的粒子流。如同其它流 体一样,也可以用流量、速度、密度三个参数来 描述。
Q K V
式中:Q——流量,辆/h K——密度,辆/公里 V——区间平均速度,km/h
一、概述
三维空间曲线投影到二维 空间:
Qm
(1) Qm是u—q图上的峰值,表示 最大流量; (2)Vm是流量取最大值(Qm)时 的速度; (3)u—k图上:k↓,u↑。k→0 u u f , 畅行速度;当 k k j 时, 时(max),车流水泄不通,u=0 时, k j 为阻塞密度; (4)对应 Qm时的密度称为最佳密
a
Vf
二、流量、速度、密度三者关系
2.Q——k关系: 抛物线关系
2
K K Q KV K V f (1 ) V f ( K ) Kj Kj
二、流量、速度、密度三者关系
当K=0, Q=0 曲线通过坐标原点。
dQ 0 dK
1 K K j Km 2
从C点起,K增加,Q减少,直到 K=Kj时,V=0 Q=0。
当车流密度小于最佳车流密度时,车流处于自由行 驶状态,平均车速高。交通量没有达到最大值,密 度增大,交通量也增大;当车流密度接近或等于最
交通工程-交通流三参数之间的关系06

❖
V=60-3/4*70=7.5(km/h)
❖
Q= KV=7.5*70=525(veh/h)
❖ Qm=1/4 KjVf=1/4*60*80=1200(veh /h)
❖ 4、假定车辆平均长度为6.lm,在阻塞密度时,
单车道车辆间的平均距离5m,试说明流量与密度的关系。
❖试计算该道路的最大流量。 ❖解:对照车速-密度的对数模型,可得: ❖Vm=40km/h;则Vf=80km/h; ❖Kj=82辆/km; ❖则Qm=1/4Vf*Kj=1640辆/h。
3、交通量三参数之间关系的应用
拥挤收费——交通需求管理策略
流量-密度关系曲线
交通量三参数之间关系的应用
拥挤收费
通过对驶入城市中心区的车辆征收额外的 通行费达到调节中心区交通流的目的,从 而使城市中心区的交通流运行在最佳状态。
❖ 1998年8月,新加坡政府将ERP扩充到整个中心 商业区、高速公路和交通拥挤的区域。新加坡拥 挤收费的目的非常单一,就是为了控制交通拥挤 现象,同时辅以高达130%的小汽车牌照税进一 步限制小汽车的保有,削弱了拥挤收费政策的负 面影响,增强了拥挤收费实施的效果。
❖ 技术手段
❖ 早期的ALS和RPS均采取出入收费区域出示纸质凭证 的方式运行。
实施效果: 收费区域交 通量减少了 22%;
交通事故降 低5~10%;
公交利用率 大幅提高, 增减了16条 公交线路和 200多辆公交 车。
3、交通量三参数之间关系的应用
拥挤收费需解 决的关键问题
拥挤区域、拥挤收费时段、拥挤收费 费率、收费方式等。
新加 坡电 子拥 挤收 费区 域入 口图
❖ 新加坡交通拥挤收费典型成功案例
❖ 收费水平和收益分析 ❖ 新加坡的电子收费系统(ERP)是一种单次分级
交通调查与分析-概念复习

1、交通流三要素:交通流量(Q),平均车速(V)和车流密度(K)。
关系式:Q=Kv2、年平均日交通量(AADT):一年12个月内365天交通量的总和,除以一年的总天数。
2、月平均日交通量(MADT):求各月交通量的和,除以各月的实际天数。
3、各周日的平均日交通量(ADT):将各周日的交通量相加,除以这一年各周日的天数(52)。
4、月交通量变化系数(M):年平均日交通量(AADT)除以月平均日交通量(MADT)。
5、周日交通量变化系数(D):年平均日交通量(AADT)除以周日的平均日交通量(ADT)。
6、K16=16h平均交通量/平均日交通量。
7、Kd=主要方向行车交通量/双向总交通量*100%8、PhF=高峰小时交通量/扩大高峰小时交通量*100%PhF(5)=高峰小时交通量/(12*5min最高交通量)*100%PhF(15)=高峰小时交通量/(4*15min最高交通量)*100%9、K30=第30位年最高小时交通量/年平均日交通量=30HV/AADT10、交通量资料表示方法:汇总表,柱状图,曲线图,交叉口流量流向图,路网流量图,出入交通量示意图。
11、地点车速测定方法:人工测速法,雷达测速法,自动计数器测速,录像法。
12、第85%位车速:在样本中有85%的车辆未达到的车速,即在累计车速分布曲线中,累计频率为85%时的相应车速,常作为观测路段的最大限制速度。
第15%位车速:在样本中有15%的车辆未达到的车速,即在累计车速分布曲线中,累计频率为15%时相应时的车速,常作为最低限制速度第50%位车速:即中位车速。
13、采用系统调节的效能:1.使高速公路行驶行程时间有所缩短2.使高速公路行驶里程达到最大可能值3.平均车速由43Km/h提高到58Km/h14、道路通行能力分四种情况:1.路段的通行能力2.信号交叉口3.匝道4.交织路段。
15、道路通行能力:指在一定的道路、交通、环境条件下,道路上某一断面在单位时间内能通过的最大车辆数,单位是辆/h。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
过C点作一条平行于流量坐标轴的线,将曲线分 成两部分,这条线以上的部分,为不拥挤部分,速度 随流量的增加而降低,直至达到通行能力的流量Qm 为止,速度为Vm;这条线以下部分为拥挤部分,流 量和速度都下降。
综合以上三个参数的关系可知:当道路上交通密 度小时,车辆可自由行驶,平均车速高,交通流量不 大;随着交通密度增大,交通流量也增加,但车速下 降;当交通密度增加到最佳密度时,交通流量达到最 大值,即交通流量达到了道路的通行能力,车辆的行 驶形成了车队跟随现象,车速低且均衡;当交通密度 继续增大,即超过了最佳密度,交通流量下降,车速 明显下降,直到车速接近于零,道路出现阻塞,交通 密度达到最大值,即阻塞密度,交通流量等于零。
(2)此时所对应的车速是:
Vm=Vf/2=1/2*80=40 km/h
例7-2 在长400m的道路上行驶28辆车,速度-密度为直 线关系,V=60-3/4 K, 求:该道路的Vf ,Kj ,Q ,Qm 。 解:V=60-3/4 K=60(1- K/80) Vf=60 km/h K=N/L=28/0.4=70(veh/km)
上式是二次函数关系,可用一条抛物线表示,如 图7-3所示。
图7-3交通量和密度的关系
当交通密度为零时,流量为零,故曲线通过坐标 原点。当交通密度增加,流量增大,直至达到道路的 通行能力,即曲线C点的交通量达到最大值,对应的 交通密度为最佳密度Km;从C点起,交通密度增加, 速度下降,交通量 减少,直到阻塞密度Kj,速度等 于零,流量等于零;由坐标原点向曲线上任一点画矢 径。这些矢径的斜率,表示矢端的平均速度。通过A 点的矢径与曲线相切,其斜率为畅行速度Vf;对于密 度比Km小的点,表示不拥挤情况,而密度比Km大 的点,表示拥挤情况。
参考文献
1、任福田,刘小明,荣建等.交通工程学. 北京:人民交通 出版社,2003.7
2、刘建军.交通工程学基础. 北京:人民交通出版社, 1995.7
阻塞密度值:kj=1000/hd=1000/8.05=124辆 /km,如假定ht=1.5s,由于 ht=3600/Q
因此,最大通行能力Qm=3600/1.5=2400辆/h。 此时的速度Vm=Qm/Km=2400/62=38.7km/ h。
Based on Greenberg’s speed-density model and Underwood’s speed-density model, substantiate that the capacity for Greenberg and Underwood is as follows:
Qm Vm
Qm k m
kj e
Greenberg
Underwood
kj k
vf e
)
As the model was that put forward by Greenberg, showing a logarithmic relationship:
v v m ln(
)
Q= K×V=K×vm
5.已知某公路上畅行速度Vf=60km/h,阻塞密度Kj= 86辆/km,速度—密度关系为线性关系。试问:
(l)该路段上期望得到的最大流量是多少? (2)此时所对应的车速是多少?
6.在长400m的道路上行驶24辆车,速度-密度为直线 关系,V=60-3/4 K,求:该道路的Vf ,Kj ,Q , Qm 。 7.试述交通量、速度和密度之间相互的关系?
第七章 交通流量、速度和密度之间的关系
授课内容:
1、三参数之间的关系
2、速度—密度之间的关系
3、交通流量—密度之间的关系
4、交通流量—速度之间的关系
授课要求:
掌握交通流中交通流量、速度和密度各参数之间
的关系,会分析和应用三参数之间的关系。
第一节 三参数之间的关系
一、交通流的三个参数关系
描述交通流的三个参数是交通量、速度和交通密 度,它们之间的关系可以用下式表示:
2.已知流量一密度关系曲线如图7-5,指出B、C、D 三点代表交通流的何种运行状态?并指出车辆的畅行 点为何点?
图7-5 流量一密度关系曲线
3.在道路上有一拥挤车流,车流跟随行驶无法超车, 其V—K关系符合对数模型V=40ln82/K。 试计算该道路的最大流量。 4.高速公路上的交通流其V一K关系为V=a—bK,其 中a,b为常数,要求实际交通流量不大于最大流量的 0.8倍,求高速公路车流控制应保持的密度范围?
第二节 速度和密度之间的关系
1934年,格林希尔兹(Greenshields)提出了 速度一密度线性模型。
K v v( - ) f 1 Kj
式中:Vf-一畅行速度; Kj——阻塞密度。
这一模型较为直观、实用(图7-2),且与实 测数据拟合良好。
当K=0时,V值可达理论最高速度,即畅行速度 Vf。实际上,AE线不与纵坐标轴相交,而是趋于该 轴因为在道路上至少有一辆车V以速度Vf行驶。这时, Vf只受道路条件限制。该图也可以表示流量,根据直 线关系,直线上任意点的纵横坐标与原点O所围成的 面积表示交通量,如运行点C,速度为Vm,密度为 Km,其交通量为 Qm=VmKm,即图上的矩形面积。
例7-1已知某公路上畅行速度Vf=80 km/h,阻塞密度Kj =105veh/km,速度一密度符合直线关系式。 求:(1)在该路段上期望得到的最大流量? (2)此时所对应的车速是多少? 解:(1)该路段上期望得到的最大流量为: Qm=1/4 KjVf=1/4*80*105= 2100(veh/h)
(3)在速度、密度图上,车辆减少,密度随着变小, 速度增大。当密度趋于零时,速度可达最大值,这时 车辆可畅行无阻,所以Vf是畅行速度。若车辆增多时; 则密度增大,车速随之减小。当密度达到最大值Kj时, 车流受阻即Q = 0。此时的密度Kj称阻塞密度。
(4)在流量一密度图上,密度过小,速度虽大,但流 量仍达不到最大值。密度过大,速度会降低,流量也 不能有最大值。只有当密度合适时,通过的流量才最 大,对应流量为最大值的密度称为最佳密度,用Km 表示。
当车流密度很大时,用直线关系描述就不准确了, 可以采用格林伯(Greenberg)提出的数模型:
v vm ln (
Kj K
)
当密度很小时,可采用安德伍德(Underwood)提 出的指数模型:
v vf e
K / Km
第三节 交通量和密度的关系
可由格林希尔兹模型导出。
K2 Q v f (K ) Kj
ln(
kj k
)
kj dQ 0 v m ln( ) v m dk k
ln( k
j
k
k k
) 1
带入格林柏格公式得:
j
e
最后:
v vm
Qm v m kj e
安德伍德公式:
v vf e
Q= K×V=k×
(
k ) km
( k ) km
k
vf e
k dQ k km 0 v f (e km e ) dk km
式 表明速度与流量的关系曲 线同样是一条抛物线(图7-4)
v2 Q K j (v ) vf
图7—4 速度与流量的关系
当交通密度为零时,畅行交通流的车速就可能达 到最高车速,如图中曲线的最高点A,就是畅行速度 Vf,而流量等于零。当交通密度等于阻塞密度时,速 度等于零,流量也等于零,因此,曲线通过坐标原点。
k 1 km
Qm k m
vf e
例7-4对某路上的交通流进行观测,发现速度与密度 的关系是对数关系:V=40ln(180/K),式中车速 单位为:km/h,密度单位为:辆/km。试问该路 段阻塞密度是多少?车速为何值时交通流量最大?
解:车流密度大时,速度一密度的关系用对数关系式 V=Vmln(Kj/K):
将式 V= 40In180/K式V=Vmln(Kj/K)比较可知该 路段阻塞密度Kj= 180辆/km;速度 Vm=40km/h, 通过的交通流量最大为40×180/e。
思考作业题
1.用电子秒表在高峰小时内于路段(L=AB=200m) 两端断面A和B同步连续观测跟踪车队每辆车的到达 时间tA和tB记录如下表: 试确定车队的参数Q、K、 V?
对于式(7-6)若另dQ/dK=0,则可求出对应于 Qm的Km值:
km
1 kj 2
从而
Qm K m vm
K mv f 4
第四节 速度和流量的关系
由式
K v v f (1 ) Kj
可得:
v K K j (1 ) vf
代人式Q=KV,得
v2 Q K j (v ) vf
Q VK
式中:Q——交通量(辆/h);
V——速度(km/h);
K——交通密度(辆/km)。
二、交通量、速度和交通密度的关系曲线 由交通量、速度和交通密度三者关系图(图7-1) 可见:
图7—1交通量、速度和交通密度的关系
(1)Qm是速度-流量图上的峰值,表示最大流量。
(2)Vm是流量取最大值(Q=Qm)时的速度,称为 临界速度。
V=60-3/4*70=7.5(km/h)
Q= KV=7.5*70=525(veh/h)
Qm=1/4 KjVf=1/4*60*80=1200(veh/h)
例7-3假定车辆平均长度为6.lm,在阻塞密度时,单车 道车辆间的平均距离为1.95m,因此车头间距h= 8.05m,试说明流量与密度的关系。 解:因为hd=1000/k