船舶结构设计方式及优化分析 邱帜
船舶结构设计中的优化方法研究

船舶结构设计中的优化方法研究1.材料优化:船舶结构设计中,材料的选择对于船舶的性能和成本有重要影响。
材料的优化方法主要包括研究不同材料的力学性能和耐久性能,针对具体的船舶类型和使用环境,选择最合适的材料。
例如,高强度钢材可以减轻船体重量,提高载重能力;复合材料可以提供良好的耐腐蚀性能等。
2.结构拓扑优化:结构拓扑优化是一种基于数学优化方法的设计方法,通过改变船舶结构的形状和布局,以达到减轻船体重量、提高结构刚度和减小船舶的阻力等目标。
这种优化方法可以通过数学模型和计算机软件来实现,能够在保证结构安全性的前提下,有效优化船舶结构。
3.结构刚度优化:结构刚度是船舶结构设计的重要指标之一、通过优化结构的刚度,可以提高船舶的稳定性和航行性能。
采用结构刚度优化方法,可以通过改变构件的尺寸和形状,来调整船舶结构的刚度。
此外,通过选择合适的支承结构和刚度分布,也可以实现结构刚度的优化。
4.结构疲劳寿命优化:船舶在长期使用的过程中,会受到疲劳破坏的影响。
结构疲劳寿命优化方法主要包括研究结构的疲劳损伤机理、确定结构的疲劳荷载谱以及预测结构的疲劳寿命等。
通过优化结构的设计和材料的选择,可以提高船舶的疲劳寿命,同时减少结构检测和维护的成本。
5.结构安全优化:船舶结构的安全性是设计中的重要考虑因素之一、结构安全优化方法主要包括研究结构的极限状态和破坏机制,通过合理的结构布局、加强关键部位的结构和采用合适的结构连接方式等手段,提高船舶结构的安全性。
总之,船舶结构设计优化方法是为了提高船舶性能和降低成本而进行的研究。
这些方法可以通过数学模型、计算机软件和实验手段来实现。
然而,每种方法都有其优缺点,需要根据具体情况选择最合适的方法。
此外,船舶结构设计的优化是一个复杂的过程,需要综合考虑结构的力学性能、材料的性能、船舶的使用环境和要求等因素,以实现最佳的设计效果。
船舶结构设计方式及优化分析 邱帜

船舶结构设计方式及优化分析邱帜发表时间:2019-07-16T09:05:47.510Z 来源:《工程管理前沿》2019年第08期作者:邱帜[导读] 在进行具体的船舶结构优化设计时,必须要与实际工程的特点相符合,同时结合计算机技术、现代数学理论等。
武汉船舶设计研究院有限公司湖北武汉 430060摘要:船舶结构设计对船舶的应用性有着很大的意义。
船舶结构设计的优化方法主要有经典优化设计的数学规划法、多目标模糊优化设计法、基于可靠性的优化设计法、智能型优化设计法等。
在进行具体的船舶结构优化设计时,必须要与实际工程的特点相符合,同时结合计算机技术、现代数学理论等。
关健词:船舶结构;优化;设计方法引言进行船舶结构优化设计的目的就是寻求合适的结构形式和最佳的构件尺寸,既保证船体结构的强度、稳定性、频率和刚度等一般条件,又保证其具有很好的力学性能、经济性能、使用性能和工艺性能。
随着计算机信息技术的发展,在计算机分析与模拟基础上建立的船舶结构的优化设计,借鉴了相关的工程学科的基本规律,而且取得了卓越的成效;基于可靠性的优化设计方法也取得了较大的进步;建立在人工智能原理与专家系统技术基础上的智能型结构设计方法也取得了突破性进展。
1.船舶结构设计的方式1.1船舶结构设计的设计理念在设计过程中,由于船舶结构的复杂性,有必要对其设计理念和施工过程中出现的问题进行具体分析。
第一要分析船舶运输能力及性能指标。
船舶结构的工程量非常大。
在正常情况下,它是各种工程建设的基础和综合工作。
出于这个原因,船舶的设计过程涉及结构、管系、轮机、电气、舾装等多个专业。
因此进行船舶设计时,各专业必须提前做好准备。
一方面要分析船舶结构设计和施工过程中的关键点,并针对各关键点制定具体的科学实施方案。
另一方面还应设计船舶结构图纸,针对特殊型式有必要与船东方沟通,并按照造船管理的具体过程进行严格管理。
这方面主要包括详细设计、生产设计,辅助工装设计,准备工作和管理施工方案。
试析船舶结构设计方式及其优化

试析船舶结构设计方式及其优化摘要:针对船舶结构设计方式及其优化,采用理论结合实践的方法,先分析了船舶结构设计中需要考虑的因素,接着探讨了船舶结构设计方法,最后提出船舶结构设计优化的要点。
分析结果表明,船舶结构设计对船舶结构的质量以及性能有很大影响,传统设计方法,存在一定的局限性,需要进行科学合理的优化,才能提升设计效果,保证船舶结构的稳定性,促使我国船舶建造事业健康发展。
关键词:船舶;结构设计;优化;遗传设计0 引言在我国社会经济高速发展的背景下,船舶工程事业取得了良好发展,同时对船舶结构设计提出了更高的要求,不仅仅需要按照船舶结构稳定性、耐久性、抗冲击性需求,也要注重轻量化,这就需要对船舶结构设计方法进行全面优化,以探索出更加科学、合理的船舶结构设计形式,在提升船舶使用性能的基础上,提升经济性。
因此,有必要对船舶结构设计方式及其优化进行分析。
1 船舶结构设计中需要考虑的因素在船舶结构设计为提升设计效果,需要综合考虑多方面因素,其中最关键的因素体现在两个方面,其一是工作环境,其二是船体载荷。
1.1 工作环境船舶在运行中长时间浸泡在水中,腐蚀速度非常快,如果没有做好维护保养工作,会大度缩短船舶的使用寿命。
而且船舶在航行中经常会遇到不良气候、波浪冲击、货物装卸时的机械碰撞等,船舶结构非常容易发生疲劳性损伤。
船舶结构长时间在腐蚀和疲劳性损伤的影响下,极易发生船体渗漏问题。
或者在波浪的冲击下,船舶结构可能会发生不同程度的变形,影响船舶航行的安全性。
1.2 船体荷载船舶在航行时,会受到多重荷载的同时影响,包括:船舶结构的自身重力、水的浮力、风力、惯性力、货物及人员的压力等。
在特殊情况下,还存在爆炸或者是撞击形成的突发荷载。
所以,在船舶结构设计中,不能只考虑单方面荷载,而是需要综合考虑所有可能遇到的荷载。
通过合理的结构设计来抵消或者分散不良荷载对船舶结构造成的影响,以实现船舶结构荷载均衡,提升船舶航行的稳定性。
船舶结构设计中的载荷分析与优化设计

船舶结构设计中的载荷分析与优化设计一、背景船舶是作为海上运输工具的承载体,需要在水下和水上生活环境中保持稳定的船体结构,以保证航行的安全和船舶的寿命。
因此,船舶结构设计中的载荷分析和优化设计显得尤为重要。
二、载荷分析船舶的载荷通常包括静载荷和动载荷两种。
静载荷主要指船舶自身的重量和货物的重量等固定载荷,而动载荷则包括波浪、风力、液压力等变化的载荷。
载荷分析的主要目的是确定船体结构的承受力和稳定性,以满足航行的要求。
1.静载荷分析静载荷分析是在船舶设计初期进行的,其主要目的是确定船舶自身的重量和船载荷的分布情况,以确定船舶的稳定性和航行性能。
静载荷主要包括以下几个方面的分析:(1)船舶自重分析:船舶的自重主要由船体结构、舱壳、船舱设备等组成。
通过计算这些结构的重量、体积,可以确定船舶自重的分布情况。
(2)货物重量分析:船载货物的种类、数量、重量等都会对船舶的稳定性和承受力产生影响。
因此在设计船舶时需要对各类货物的重量进行分析。
(3)油料重量分析:油料是船舶的重要能源,而不同的油料种类和数量会对船舶的重心位置产生巨大差异。
因此,设计船舶时需要对油料的种类、数量及其分布进行分析。
(4)悬挂件分析:不同的吊装设备会对船舶的结构和稳定性产生巨大影响。
因此,在设计船舶时也需要对悬挂件的种类、数量及其分布进行分析。
2.动载荷分析动载荷分析的目的是为设计师提供关于特定航行条件下船舶如何承受变化载荷的数据。
在船舶设计中,最常见的两种动载荷是波浪和风力。
波浪造成的负荷通常被描述为与振动频率和波浪形状有关的未知变量,需要特殊的计算方法来确定。
同样,风力的大小和方向也会对船舶的承受力产生影响。
三、优化设计在载荷分析的基础上,优化设计可以有效提高船体的强度和航行性能。
优化设计主要涉及以下几个方面:1.结构设计优化结构设计优化是指通过充分考虑船舶载荷情况来改变船体结构形式和尺寸,以达到船体强度和稳定性的最优结果。
2.材料选择优化材料选择优化最终目的是选择最经济、最适合船舶的材料,以满足船体结构的要求。
关于船舶结构优化设计方法的分析

关于船舶结构优化设计方法的分析摘要:船舶优化设计方法有很多,从经典的优化设计方法到启发式优化设计方法,是从不同的角度采用不同的算法进行设计,船舶结构越来越复杂化,因此设计者需要明确自身的优势,并且根据市场的需求进行船舶结构的优化设计。
关键词:船舶结构;优化水;方法前言:船舶结构的优化设计需要满足刚度、强度、稳定性等多方面的要求,同时也要科学利用数学方法以及计算机编程。
在实践过程中,设计者需要掌握更多的技能,才能真正满足当前船舶优化设计的要求。
一、经典优化设计方法传统的船舶设计方法主要是针对简单的结构,比如一些规范的公式或者是经验公式等,设计者一般需要把这些公式编程程序,并且利用准则法一级数学规划等方式对一些问题采用求解的方式。
准则法是根据问题的工程经验等建立的最佳设计准则,这样就可以构建最优迭代式进行求解。
采用物理的方式进行计算,比较简单,而且结构重分析次数比较少,收敛的速度比较快。
船舶工程中经常使用的准则法有位移准则法、能量准则法等,数学规划化则是将规划论作为基础,然后具有较好的通用性,能够对不同性质的优化问题进行求解,经典优化算法也具有比较广泛的用途,但是其中也存在一些问题:(一)准则法缺乏数据理论的基础,收敛性无法有效证明,使用的准则法不一定能够达到最优的结果,因此在整个优化的过程中也需要设计者进行干预才能得到满意的结果。
数学规划法理论性较强,但是其收敛性无法有效保证,特别是需要进行大量的计算,因此收敛较慢。
(二)经典优化算法的搜索得了会基于梯度信息的最速下降法,但是在分析实际的工程问题时,无法有效获取信息,所以导致经典算法在工程上的使用存在较大的限制。
(三)梯度信息搜素偶的方式,无法有效解决高非线性问题,尤其是无法得到最优解,这样的话就会在极大程度上影响结果,虽然可以得到局部最优解,但是不是整体的最优解。
而且这一过程也要依赖于初始点,设计者需要不断的进行分析,通过初始点的计算,会降低工作的效率。
船舶结构强度分析与优化方法

船舶结构强度分析与优化方法船舶作为一种重要的水上交通工具,其结构强度直接关系到船舶的安全性、可靠性和使用寿命。
因此,对船舶结构强度进行准确的分析和有效的优化是船舶设计和建造过程中至关重要的环节。
船舶在航行过程中会受到各种外力的作用,如静水压力、波浪载荷、货物载荷、风载荷等。
这些外力会使船舶结构产生变形和应力,如果应力超过了材料的强度极限,就会导致结构的破坏,从而引发严重的安全事故。
因此,在船舶设计阶段,就需要对船舶结构的强度进行精确的分析,以确保船舶在各种工况下都能够安全可靠地运行。
船舶结构强度分析的方法主要有两种:传统的解析方法和现代的数值方法。
传统的解析方法主要是基于材料力学和结构力学的理论,通过简化船舶结构的几何形状和载荷分布,建立数学模型,求解结构的应力和变形。
这种方法虽然简单直观,但由于其对船舶结构和载荷的简化过于严重,往往难以准确地反映船舶结构的实际受力情况,因此在现代船舶设计中已经逐渐被淘汰。
现代的数值方法主要包括有限元法、边界元法和有限差分法等。
其中,有限元法是目前船舶结构强度分析中应用最为广泛的方法。
有限元法的基本思想是将连续的船舶结构离散成有限个单元,通过对单元的分析和组合,求解整个结构的应力和变形。
这种方法可以较为准确地模拟船舶结构的复杂几何形状和载荷分布,从而得到较为精确的分析结果。
在进行船舶结构强度分析时,首先需要建立船舶结构的有限元模型。
这包括对船舶结构进行几何建模、网格划分、材料属性定义和边界条件设置等。
几何建模是将船舶结构的实际形状转化为计算机能够识别的数学模型,网格划分是将几何模型离散成有限个单元,材料属性定义是确定船舶结构所用材料的力学性能参数,边界条件设置是模拟船舶结构在实际运行过程中的约束和载荷情况。
建立好有限元模型后,就可以通过有限元分析软件进行求解。
求解的结果包括结构的应力分布、变形情况和振动特性等。
通过对这些结果的分析,可以评估船舶结构的强度是否满足设计要求。
试析船舶结构设计方式及其优化

试析船舶结构设计方式及其优化船舶结构设计方式及其优化主要涉及船舶的结构设计原理和方法,以及通过优化设计提高船舶结构的安全性、寿命和性能等方面的问题。
船舶结构设计方式可以分为传统设计方法和现代设计方法两种。
传统设计方法主要是基于经验和试错的方法,通过参考以往的经验和实践,来设计出合适的船舶结构。
这种方法在船舶设计领域有着长期的应用和积累,可以快速有效地完成船舶结构设计。
然而,传统设计方法存在一些问题,比如设计流程复杂、效率低下,无法全面考虑到各种复杂的力学和环境因素对船舶结构的影响等。
现代设计方法则主要依靠计算机辅助设计软件(CAD)和有限元分析软件(FEA)等工具,以数值模拟和优化算法为基础,通过数学模型和仿真实验,来进行船舶结构设计和优化。
现代设计方法具有较高的精度和效率,并可以全面考虑到各种因素对船舶结构的影响。
此外,现代设计方法还可以进行多目标优化,综合考虑结构的轻量化、强度、舒适性、节能性等多个指标,并找到最佳的设计方案。
船舶结构的优化设计主要包括以下几个方面:1.结构轻量化:通过降低结构的重量来提高船舶的载重能力和性能。
轻量化设计可以从材料的选择、结构的布局和形式等方面入手,通过优化设计减少结构的重量,同时确保结构的强度和刚性满足要求。
2.结构强度优化:通过合理的结构布局、合理的材料选择和合理的结构设计等方式,提高船舶结构的抗弯、抗扭和抗疲劳等强度指标,以增强船舶的结构安全性和耐久性。
3.结构舒适性优化:船舶结构舒适性是指减小船舶在航行过程中受到的振动和噪声等不良影响的能力。
通过优化设计船舶的结构材料、结构布局和减振措施等,可以降低船舶的振动和噪声水平,提高船员和乘客的舒适性。
4.结构节能优化:船舶的结构设计也可以影响船舶的能源消耗和航行性能。
通过优化船舶的流线型、减少阻力、提高推进效率等,可以降低船舶的能耗,提高船舶的航行速度和经济性。
综上所述,船舶结构设计方式及其优化是为了提高船舶的安全性、寿命和性能等方面的问题进行研究和实践的重要领域。
船舶结构设计方式及优化分析

船舶结构设计方式及优化分析摘要:进行船舶结构优化设计的目的就是寻求合适的结构形式和最佳的构件尺寸,既保证船体结构的强度、稳定性、频率和刚度等一般条件,又保证其具有很好的力学性能、经济性能、使用性能和工艺性能。
本文就船舶结构设计中常见的问题及处理方法进行得简要的分析,以期为相关工作提供一定的参考价值。
关键词:船舶结构;设计;方法;优化1结构设计的要求对船体结构的设计要求大致包括以下几方面:可靠性,使用性,工艺性及维护性。
其中最重要的是可靠性要求,它为船舶执行任务提供一个基础,可靠性规定了结构必须满足的应力,变形,稳定性以及动力特性等要求,目前这些要求主要反映在有关的规范,规则中。
他们是根据理论计算分析,并且总结多年来航运经验制定出来,是结构设计的依据,结构设计之前要明确设计的依据。
工艺性主要是考虑设计的结构便于制造,保证质量。
限于对钢板弯曲能力,板不要太厚,为了充分利用自动焊机,减少装配最,提商劳动效率,骨材间距不要太小.为降低建造成本,尽量使用轧制型材或标准型材。
使用性主要由船主提出,如舱口尺寸不能太小以免形响装卸效率,客船船体总变形不要太大以免影响旅客的恐慌,这些问题在设计中都应当考虑满足。
设计出满足上述条件的船体结构不是唯一的,衡量设计水平高低主要是建造成本,无论是船主还是船厂都讲究经济效益,所以设计时结构要减少材料消耗,要容易制造。
重量减少了,还能相应提高航速.续航力,提高运抽力,所以结构设计要重量、成本两兼顾。
2结构设计的过程船体结构是很复杂的,它由许多构件组成,他们相互连接,相互影响,理想的方式是统一设计整个结构,但这是十分困难的,至少目前难以作到,为使设计能够进行,根据各部分结构的作用,以及它们之间连接特点,可把船体分成许多子结构进行设计,如船中纵向结构和横向结构,首和尾部结构,上层建筑等。
实际上船检在建造结束时也是分段进行检验的。
这些子结构之间互相影响,他们之间的组合决定了船体梁的特征,这些在设计之前虽然是未知的,但都与设计有关。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
船舶结构设计方式及优化分析邱帜
发表时间:2019-07-16T09:05:47.510Z 来源:《工程管理前沿》2019年第08期作者:邱帜[导读] 在进行具体的船舶结构优化设计时,必须要与实际工程的特点相符合,同时结合计算机技术、现代数学理论等。
武汉船舶设计研究院有限公司湖北武汉 430060摘要:船舶结构设计对船舶的应用性有着很大的意义。
船舶结构设计的优化方法主要有经典优化设计的数学规划法、多目标模糊优化设计
法、基于可靠性的优化设计法、智能型优化设计法等。
在进行具体的船舶结构优化设计时,必须要与实际工程的特点相符合,同时结合计算机技术、现代数学理论等。
关健词:船舶结构;优化;设计方法
引言
进行船舶结构优化设计的目的就是寻求合适的结构形式和最佳的构件尺寸,既保证船体结构的强度、稳定性、频率和刚度等一般条件,又保证其具有很好的力学性能、经济性能、使用性能和工艺性能。
随着计算机信息技术的发展,在计算机分析与模拟基础上建立的船舶结构的优化设计,借鉴了相关的工程学科的基本规律,而且取得了卓越的成效;基于可靠性的优化设计方法也取得了较大的进步;建立在人工智能原理与专家系统技术基础上的智能型结构设计方法也取得了突破性进展。
1.船舶结构设计的方式
1.1船舶结构设计的设计理念
在设计过程中,由于船舶结构的复杂性,有必要对其设计理念和施工过程中出现的问题进行具体分析。
第一要分析船舶运输能力及性能指标。
船舶结构的工程量非常大。
在正常情况下,它是各种工程建设的基础和综合工作。
出于这个原因,船舶的设计过程涉及结构、管系、轮机、电气、舾装等多个专业。
因此进行船舶设计时,各专业必须提前做好准备。
一方面要分析船舶结构设计和施工过程中的关键点,并针对各关键点制定具体的科学实施方案。
另一方面还应设计船舶结构图纸,针对特殊型式有必要与船东方沟通,并按照造船管理的具体过程进行严格管理。
这方面主要包括详细设计、生产设计,辅助工装设计,准备工作和管理施工方案。
1.2船体结构设计的设计要求
船体结构的设计必须是可行的,并且应在确保船舶安全的同时进行具体的设计和优化。
船舶在海洋中的安全航行是所有工作的重要保证。
在设计过程中,必要按照船级设规范要求进行设计,并确保船舶的稳定性。
船舶设计时应考虑在航行过程中的海洋环境,气候、水文和极端天气。
另船舶的设计需考虑施工的科学性,以方便制造厂进行施工。
船舶结构需有良好的强度和稳性。
施工期间必须确保各项材料的质量,例如,船舶构造中使用的板材必须保证强度及机械性能。
不能为追求成本而使用有缺陷的材料,导致船舶的安全性降低。
在设计过程中,船舶装载能力需高度重视,船舶的舱室和甲板的设计应根据实际装载要求进行优化设计,以便有足够的空间保证人员的生活和货物的装载,同时还应考虑到船员的安全性以及舒适性。
2.船体结构型式
船体结构基础模式属于板以及型材的组合,还可以叫作是板架结构。
针对结构处于的地方和功能,手动将其分成几个干板架。
例如,船底和甲板板架等。
通过分析船体梁,能够清楚甲板与船底板架可以说是船体梁的上冀板和下冀板,舷侧板架则是其腹板。
其功能不一样,骨架排列模式不同,一般分为横纵骨架式结构。
在纵向结构配置的时候,存在大量纵向构建必须穿过横向构件,在分段合拢过程中,纵向构件有大量的接口,导致纵骨架式结构配置难度较大,因此部分情况下,就算是甲板和船底也应该使用横骨架式的结构。
针对干货船,上面的甲板应该使用横骨架式机构的详细情况为:(1)船只长度不超过 10m 的时候,船只长度在 10m 到 120m,L/D 不超过 11。
整个弯矩不大,中刨面模数标准值不大,部分强度要求成为重点的。
(2)上方甲板时常摆放货物,进而横向荷载巨大,若使用纵骨架式结构,相对较大的横梁将会对于舱容造成影响。
如图1所示为横骨架式机构图。
针对船体应该使用骨架式结构的情况为:(1)船只长度不超过 10m,L/D 不超过 12 的时候,船底外板厚度并不视强度情况确定的,而是以锈蚀和磨损进行掌控。
(2)船只中垂弯矩超出拱弯矩较大的时候。
(3)船底容易搁浅,或者是舱内使用抓斗起货,同时舱底缺少护板,厚度主要取决于磨损程度。
舷侧结构型式,主要是横舱壁之间的距离以及甲板和舱底之间的距离确定的。
通常垂向距离不应该使用横骨架式,这对于结冰区域航行十分重要。
部分地区在冬天时常存在漂浮的冰排,船只的舷侧结构骨架型式必须充分思考这个因素。
3.船舶板架结构动力优化设计的具体方法
3.1船舶与海洋平台结构动力优化设计
船舶与海洋平台的结构动力优化设计活动中最大的限制因素就是结构动态响应与设计变量之间的关系。
由于两者的关系属于高度非线性,所以在实际设计优化过程中只能够通过可行域对其连通性进行判断,所以优化的难度相对较大。
根据国内一些学者的研究情况来看,通过可行域调整、一维搜索以及自适应运动极限调整等方式能够优化求解算法,让优化设计的结果更加接近实际数据。
马红艳等人通过实际环境载荷对海洋导管架的平台结构进行了研究,同时也对导管架的海洋平台结构进行了尺寸以及形状方面的优化,提升了非线性设计的可能性,也为实现船舶与海洋平台结构动力的优化设计提供了新的思路与方向。
3.2夹层结构力学特性优化与设计
金属夹层结构具有良好的机械性能,其不但重量轻、强度高,而且具有良好的隔音性能与隔热性能,通过特殊的表层处理还可以获得不错的耐腐蚀性,所以在夹层的结构力学优化与设计中应用极为广泛。
目前最为常见的夹层结构就是上下面板与中间芯层组成的夹层结构,其按照结构形式可以分为连续型以及离散型两种不同的形式。
其中结构形式为连续的力学性能更加稳定,离散型的则具有更高的强度,在一些特殊的夹层结构设计中的应用也相对广泛一些。
3.3遗传模型优化设计方式
遗传模型是在相关数学模型变量属性的基础上演变而来,能够将结构优化设计划分为离散变量模型、连续变量模型、混合变量模型。
基于传统模型结构优化设计中的不足之处,相关专家学者研发出了一种全新的算法,依照船舶结构设计的特征,融入生物进化知识,创新遗传算法。
经过实验得知,这类遗传算法具备较强的鲁棒性,不需要导数资料,就能够借助目标函数的方式,将之前的不足之处及时完善。
相应工作由编码集完成,利用二进制将相应的变量关系表现出来,有效解决在设计过程中连续性、离散性问题。
效仿生物进化的方式开展交叉算子、再生算子、异化算子。
通过实践证明,这类优化设计方式适用于各类繁琐的设计环境。
在实际的应用中,遗传优化设计方式具有显著的应用效果,是工程设计上的又一次革新,意义显著。
4.结论
通过对船舶结构优化设计方法的研究,我们得出在进行船舶结构优化设计的时候,往往会涉及到很多相互制约和互相影响的因素,这就需要设计人员权衡利弊,进行综合考察,不但要进行结构参数与结构型式的优选,而且还要针对具体情况对做出的方案进行评估、优选和排序。
通过什么准则对不同的方案进行综合评估,得出最优方案,成为专家和设计人员需要继续研究的问题。
参考文献
[1]郭军,肖熙.基于可靠性的船体结构多目标优化设计[J].上海交通大学学报,2010(1).
[2]俞铭华,谢祚水,吴剑国,窦培林,曹骥.船舶中剖面结构优化设计研究进展[J].华东船舶工业学院学报,2012(3).
[3]郭小东,嵇春艳,王自力,顾学康,胡嘉骏.大型油船中剖面结构优化设计的遗传算法[A].2005年船舶结构力学学术会议论文集[C],2011(12).。