初中数学人教版九年级上册21.2.3 因式分解法教案

合集下载

人教版九年级上册数学教案21.2.3因式分解法

人教版九年级上册数学教案21.2.3因式分解法
人教版九年级上册数学教案21.2.3因式分解法
一、教学内容
人教版九年级上册数学教案21.2.3因式分解法:
1.因式分解的意义与基本概念;
2.提取公因式法;
3.应用公式法;
a.平方差公式:\(a^2 - b^2 = (a + b)(a - b)\)
b.完全平方公式:\(a^2 \pm 2ab + b^2 = (a \pm b)^2\)
五、教学反思
在今天的因式分解法教学中,我发现学生们对提取公因式这一部分掌握得相对较好,可能是因为之前的学习中已经接触过类似的题型,有了一定的基础。但在运用平方差公式和完全平方公式进行因式分解时,明显感觉到了他们的困惑。这一点在小组讨论和成果分享环节表现得尤为明显。
我意识到,对于这些难点内容,需要通过更多具体的例题和实际操作来帮助学生理解。在接下来的教学中,我打算增加一些互动环节,比如让学生上台演示解题过程,或者设计一些更具挑战性的题目,让学生在课堂上即时解答,以便及时发现并解决他们在理解上的问题。
-对于提取公因式的难点,可以通过展示不同层次的例题,逐步引导学生识别和提取含有多项式的公因式;
-十字相乘法的难点在于如何选择合适的两个数相乘得到原多项式的项,需要通过图示和练习来加强学生的直观感受;
-拆项与补项的难点在于如何添加和减去合适的项以形成可分解的因式,教师需要提供具体的策略和练习来帮助学生突破这一难点。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《因式分解法》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要将大问题分解成小问题来解决的情况?”(如分享拼图游戏的经验)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索因式分解的奥秘。

人教版九年级上册数学第21章21.2.3《因式分解法》教案

人教版九年级上册数学第21章21.2.3《因式分解法》教案

《一元二次方程》教案5教学内容用因式分解法解一元二次方程.教学目标(1)了解用因式分解法解一元二次方程的概念;会用因式分解法解一元二次方程;(2)学会观察方程特征,选用适当方法解决一元二次方程.教学难点学会观察方程特征,选用适当方法解决一元二次方程.教学过程设计1.创设情景,引出问题问题一根据物理学规律,如果把一个物体从地面以10m/s的速度竖直上抛,那么物体经过x s离地面的高度(单位:m)为.根据上述规律,物体经过多少秒落回地面(结果保留小数点后两位)?师生活动:学生积极思考并尝试列方程,可有学生解释如何理解“落回地面”.【设计意图】学生首先要理解实际问题背景下代数式的意义,理解落回地面的意义就是高度为零,就是表示高度的代数式的值为零,从而列出方程.在阅读并尝试回答的过程中让他们感受在生活、生产中需要用到方程,从而激发学生的求知欲.2.观察感知,理解方法问题二如何求出方程的解呢?师生活动:学生从已有的知识出发,考虑用配方法和公式法解决问题,教师再一步引导学生观察方程的结构,学生进行深入的思考,努力发现因式分解法方法解方程.【设计意图】通过配方法和公式法的选择,更好地让学生对比感受因式分解法的简便,为本节课的教学内容做好知识上的铺垫和准备.问题三如果,则有什么结论?对于你解方程有什么启发吗?师生活动:学生很容易回答有或的结论.由此进一步思考如何将一元二次方程化为两个一次式的乘积.【设计意图】通过观察,引导学生进一步思考,发现用因式分解中提取公因式法解方程更加简便,从而学生会对方法的选择有一定的理解.问题四上述方法是是如何将一元二次方程降为一次的?师生活动:学生通过对解决问题过程的反思,体会到通过提取公因式将一元二次方程化为了两个一次式的乘积的形式,得到两个一元一次方程,教师注重引导学生观察方程在因式分解过程中的变化,在学生总结发言的过程中适当引导.【设计意图】让学生对比不同解法,不是用开平方降次,而是先因式分解,使方程化为两个一次式的乘积等于0的形式,再使这两个一次式分别等于0,从而实现降次,这种节一元二次方程的方法叫做因式分解法.在反思小结的过程中,理解因式分解法的意义,从而引出本节课的教学内容.3.例题示范,灵活运用例解下列方程(1);(2).师生活动:提问:(1)如何求出方程(1)的解呢?说说你的方法.(2)对比解法,说说各种解法的特点.学生积极思考,积极回答问题,对比解法的不同.【设计意图】问题(1)的提出是开放式的,学生可能会回答将括号打开,然后利用配方法或公式法,也有些学生会观察到如果将当作一个整体,利用提取公因式的方法直接就化为两个一次式乘积为零的形式.通过问题(2)的思考讨论,让学生体会解法的利弊,注重观察方程自身的结构.师生活动:提问:(1)方程(2)与方程(1)对比,在结构上有什么不同?(2)谈谈方程(2)的解法.学生观察方程(2)与方程(1)的区别,用类比划归的思想解决问题.【设计意图】问题(2)的方程需要先进行移项,将方程化为右侧等于零的结构,然后得到一个平方差的结构,利用平方差公式将一元二次方程化为两个一次式的乘积为零的结构.4.巩固练习,学以致用完成教材P14练习1,2.【设计意图】巩固性练习,同时检验一元二次方程解法掌握情况.5.小结提升,深化理解问题五(1)因式分解法的一般步骤是什么?(2)请大家总结三种解法的联系与区别.师生活动:学生积极思考,归纳因式分解法的一般步骤.总结各种解题方法的特点,体会各种方法的利弊,在交流的过程中加深对解一元二次方程方法的理解,教师对学生的发言给予鼓励和肯定,对于小结交流中的出现的问题及时进行引导纠正,帮助学生深入理解问题.【设计意图】学生通过小结反思,深化对问题的理解,体会到配方法需要将方程进行配方降次,公式法需要将方程化为一般形式后利用求根公式求解;而因式分解法需要将一元二次方程化为两个一次项乘积为零的形式;另在还让学生体会到配方法和公式法适用于所有方程,但有时计算量比较大,因式分解法适用于一部分一元二次方程,但是三种方法都体现了降次的基本思想.五、目标检测设计解下列方程1..【设计意图】利用提取公因式法解方程.2..【设计意图】利用平方差公式解方程.3..【设计意图】利用因式分解法不适合的方程可选择用公式法或配方法解决.4..【设计意图】选用适当的方法解方程.《解一元二次方程》同步试题北京市海淀区中关村中学谢琳一、选择题1.方程的解是( ).A.B.C.D.考查目的:考查直接利用因式分解法的求解.答案:B.解析:两项一次项乘积为0,两个一次项分别为零.2.方程的正确解法是( ).A .化为B.C.化为D.化为考查目的:考查提取公因式法的求解.答案:C.解析:以为整体提取公因式.3.方程正确解法是( ).A.直接开方得B.化为一般形式C.分解因式得D .直接得或考查目的:考查平方差公式求解.答案:C.解析:将9和4分别看作3和2的平方,利用平方差公式进行因式分解求方程解二、填空题4.方程的解是____________________.考查目的:考查提取公因式法的求解.答案:或.解析:以为整体提取公因式.5.方程的解是___________________.考查目的:考查平方差公式求解.答案:或.解析:将256看作16的平方,利用平方差进行因式分解求方程解.三、解答题用适当的方法解下列方程.6..考查目的:考查提取公因式法的求解.答案:或.解析:以为整体提取公因式.7.把小圆形场地的半径增加5m得到大圆形场地,场地面积增加了4倍,求小圆形场地的半径.考查目的:考查平方差公式求解的实际问题.答案:或(舍).解析:能根据实际问题列方程,利用平方差进行因式分解求方程解,会对解进行取舍.。

数学人教版九年级上册《21.2.3 因式分解》教案

数学人教版九年级上册《21.2.3  因式分解》教案

《21.2.3分解因式法》教案教学目标:一、知识与技能目标:1、会应用分解因式的方法求一元二次方程的解。

2、能根据具体一元二次方程的特征,灵活选择一元二次方程的解法。

二、法与过程目标:1、理解分解因式法的思想,掌握用因式分解法解一元二次方程;2、能利用方程解决实际问题,并增强学生的数学应用意识和能力。

通过利用因式分解法将一元二次方程变形的过程,体会“等价转化”“降次”的数学思想方法。

三、情感与态度目标:通过学生探讨一元二次方程的解法,使他们知道分解因式法是一元二次方程解法中应用较为广泛的简便方法,它避免了复杂的计算,提高了解题速度和准确程度。

再之,体会“降次”化归的思想。

从而培养学生主动探究的精神与积极参与的意识教学重点与难点:教学重点:运用分解因式法解一些能分解因式的一元二次方程。

教学难点:发现与理解分解因式的方法教学过程:一、温旧知新1.复习学习过的解方程方法:直接开平方法,配方法,公式法2.什么叫分解因式?把一个多项式分解成几个整式乘积的形式叫做分解因式二、探究新知你能行1.对比法引入新知:当一元二次方程的一边是0,而另一边易于分解成两个一次因式的乘积时,我们就可以用分解因式的方法求解.这种用分解因式解一元二次方程的方法称为分解因式法.2.因式分解主要方法:(1)提取公因式法(2)公式法: a2-b2=(a+b) (a-b)a2±2ab+b2=(a±b)23.用分解因式法解方程:(1)5x2=4x; (2)x-2=x(x-2); (3)x2+6x-7=04.强调:分解因式法解一元二次方程的步骤是:(1)将方程左边因式分解,右边等于0;(2)根据“至少有一个因式为零”,转化为两个一元一次方程.(3)分别解两个一元一次方程,它们的根就是原方程的根.三、练一练你行吧?(一)尝试分解因式法解下列方程1 .x2-4=0; 2.(x+1)2-25=0(二)解下列方程:()()()()()().14x-x1+xx.2x2=134.22,0++=(三)、分解因式,解方程,计算你能分辨吗?尝一尝四、二次项系数是1的二次三项式你能分解吗?(一)、常数项分解成两个因数的积,这两个因数的和恰好是一次项系数。

人教版九年级数学上册:21.2.3 因式分解法 教学设计

人教版九年级数学上册:21.2.3 因式分解法  教学设计

人教版九年级数学上册:21.2.3 因式分解法教学设计一. 教材分析因式分解法是九年级数学上册第21章第2节的一个知识点。

通过学习因式分解法,学生能够理解并掌握因式分解的概念,能够运用因式分解法解决一些实际问题。

本节课的内容包括因式分解的定义、因式分解的方法以及因式分解的应用。

二. 学情分析九年级的学生已经具备了一定的数学基础,对代数运算有一定的了解。

但是,因式分解法是一个较为抽象的概念,学生可能对其理解起来有一定的困难。

因此,在教学过程中,需要引导学生通过实际例子来理解因式分解的概念和方法,并通过练习来巩固所学知识。

三. 教学目标1.理解因式分解的概念,掌握因式分解的方法。

2.能够运用因式分解法解决一些实际问题。

3.培养学生的逻辑思维能力和解决问题的能力。

四. 教学重难点1.因式分解的概念和方法。

2.运用因式分解法解决实际问题。

五. 教学方法采用问题驱动法、案例教学法和小组合作法进行教学。

通过实际例子引导学生理解因式分解的概念和方法,通过案例教学法让学生通过解决实际问题来运用因式分解法,通过小组合作法让学生在小组内进行讨论和交流,共同解决问题。

六. 教学准备1.准备相关的教学案例和练习题。

2.准备教学PPT,包括因式分解的定义、方法和应用的讲解。

七. 教学过程1.导入(5分钟)通过一个实际问题引入因式分解的概念,例如:“已知一个数的平方减去这个数等于10,求这个数。

”引导学生思考如何解决这个问题,从而引出因式分解的概念。

2.呈现(10分钟)通过PPT讲解因式分解的定义和方法,包括提取公因式法、平方差公式法、完全平方公式法等。

通过具体的例子来解释每种方法的运用。

3.操练(10分钟)让学生分组进行练习,每组选择一个因式分解的方法,根据PPT上的例子,自己尝试解决一个问题。

教师巡回指导,解答学生的疑问。

4.巩固(10分钟)让学生独立完成PPT上的练习题,巩固因式分解的方法。

教师选取部分学生的作业进行讲解和分析。

2024年人教版九年级数学上册教案及教学反思第21章21.2.3 因式分解法

2024年人教版九年级数学上册教案及教学反思第21章21.2.3 因式分解法

21.2 解一元二次方程21.2.3 因式分解法一、教学目标【知识与技能】1.会用因式分解法(提公因式法、运用公式)解一元二次方程.2.能根据方程的具体特征,灵活选择方程的解法,体会解决问题方法的多样性.【过程与方法】在经历探索用因式分解法解一元二次方程及依据方程特征选择恰当方法解一元二次方程的过程中,进一步锻炼学生的观察能力,分析能力和解决问题能力.【情感态度与价值观】通过因式分解法解一元二次方程的探究活动,培养学生勇于探索的良好习惯,感受数学的严谨性及教学方法的多样性.二、课型新授课三、课时1课时四、教学重难点【教学重点】会用因式分解法解一元二次方程.【教学难点】理解并应用因式分解法解一元二次方程.五、课前准备课件六、教学过程(一)导入新课1.解一元二次方程的方法有哪些?(出示课件2)学生答:直接开平方法:x2=a (a≥0),配方法:(x+m)2=n (n≥0),公式法:x=2ba-±(b2-4ac≥0).2. 什么叫因式分解?学生答:把一个多项式分解成几个整式乘积的形式叫做因式分解,也叫把这个多项式分解因式.3.分解因式的方法有那些?(出示课件3)学生答:(1)提取公因式法:am+bm+cm=m(a+b+c).(2)公式法:a²-b²=(a+b)(a-b), a²±2ab+b²=(a±b) ².(3)十字相乘法.教师问:下面的方程如何使解答简单呢?x2+25x=0.出示课件5:根据物理学规律,如果把一个物体从地面以10m/s的速度竖直上抛,那么经过x s物体离地面的高度(单位:m)为10x-4.9x2.你能根据上述规律求出物体经过多少秒落回地面吗?(精确到0.01s)教师问:你能根据题意列出方程吗?学生答:设物体经过x s 落回地面,这时它离地面的高度为0m ,即10x -4.9x 2=0.教师问:你能想出解此方程的简捷方法吗?(二)探索新知探究 因式分解法的概念学生用配方法和公式法解方程10x -4.9x 2=0.(两生板演)配方法解方程10x -4.9x 2=0. 解:2100049x x -=,22210050500494949x x ⎛⎫⎛⎫-+-=+- ⎪ ⎪⎝⎭⎝⎭2250504949x ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭50504949x -=± 50504949x =±+110049,=x 20.=x公式法解方程10x -4.9x 2=0.解:24.9100x x -=,a=4.9,b=-10,c=0.b 2-4ac= (-10)2-0=100,a acb b x 242-±-=()10102 4.9--±=⨯110049,=x20. =x教师引导学生尝试找出其简洁解法为:(出示课件7)x(10-4.9x)=0. ∴x=0或10-4.9x=0, ∴x1=0,x2=10049≈2.04.这种解法是不是很简单?教师问:以上解方程的方法是如何使二次方程降为一次方程的?x(10-4.9x)=0,①x=0或10-4.9x=0,②通过学生的讨论、交流可归纳为:(出示课件8)可以发现,上述解法中,由①到②的过程,不是用开平方降次,而是先因式分解使方程化为两个一次式的乘积等于0的形式,再使这两个一次式分别等于0,从而实现降次.这种解法叫做因式分解法.教师提示:(出示课件9)1.用因式分解法的条件是:方程左边易于分解,而右边等于零;2.关键是熟练掌握因式分解的方法;3.理论依据是“ab=0,则a=0或b=0 ”.师生共同归纳:(出示课件10)分解因式法解一元二次方程的步骤是:1.将方程右边化为等于0的形式;2.将方程左边因式分解为A×B;3.根据“ab=0,则a=0或b=0”,转化为两个一元一次方程;4.分别解这两个一元一次方程,它们的根就是原方程的根.例1 解下列方程:(出示课件11)(1)x(x-2)+x-2=0; (2)5x 2-2x-14=x 2-2x+34. 师生共同解答如下: 解:(1)因式分解,得(x-2)(x+1)=0.故有x-2=0或x+1=0.∴x 1=2,x 2=-1;(2)原方程整理为4x 2-1=0.因式分解,得(2x+1)(2x-1)=0.∴2x+1=0或2x-1=0.∴x 1=-12,x 2=12. 想一想 以上两个方程可以用配方法或公式法来解决吗?如果可以,请比较它们与因式分解法的优缺点.学生思考后,教师总结如下:(出示课件12)一.因式分解法简记歌诀:右化零,左分解;两因式,各求解.二.选择解一元二次方程的技巧:1.开平方法、配方法适用于能化为完全平方形式的方程.2.因式分解法适用于能化为两个因式之和等于0的形式的方程.3.配方法、公式法适用于所有一元二次方程.出示课件13:解下列方程:2222221 +=0; (2) -=0; (3) 3-6=-3;(4) 4-121=0; (5) 3(2+1)=4+2; (6) (-4)=(5-2).()x x x x x x x x x x x 学生自主思考并解答.(六生板演)解:⑴因式分解,得x(x+1)=0.于是得x=0或x+1=0,x 1=0,x 2=-1.⑵因式分解,得x (x)=0于是得x=0或x-2=0x1=0,x2=2.⑶将方程化为x2-2x+1 = 0. 因式分解,得(x-1)(x-1)=0.于是得x-1=0或x-1=0,x1=x2=1.⑷因式分解,得(2x+11)(2x-11)=0.于是得2x+11=0或2x-11=0,x1=-5.5,x2=5.5.⑸将方程化为6x2-x-2=0. 因式分解,得(3x-2)(2x+1)=0. 于是得3x-2=0或2x+1 = 0,x1=23,x2=12.⑹将方程化为(x-4)2-(5-2x)2=0.因式分解,得(x-4-5+2x)(x-4+5-2x)=0.(3x-9)(1-x)=0.于是得3x-9=0或1-x=0,x1=3,x2=1.出示课件16:用适当方法解下列方程:−x)2;(2)x2-6x-19=0;(3)3x2=4x+1;(4)y2-15=2y;(5)5x(x-3)-(x-3)(x+1)=0;(6)4(3x+1)2=25(x-2)2.教师提示:根据方程的结构特征,灵活选择恰当的方法来求解.四种方法的选择顺序是:直接开平方法→因式分解法→公式法→配方法.师生共同解答如下.(出示课件17,18,19)解:(1)(1-x)2=3,∴(x-1)2=3,x-1∴x1=1x2=1.(2)移项,得x2-6x=19.配方,得x2-6x+(-3)2=19+(-3)2.∴(x-3)2=28.∴x-3=±.∴x1=3+,x2=3-.(3)移项,得3x2-4x-1=0.∵a=3,b=-4,c=-1,∴x=−(−4)±√(−4)2−4×3×(−1)2×3=2±73.∴x1=2+73,x2=2-73.(4)移项,得y2-2y-15=0.把方程左边因式分解,得(y-5)(y+3)=0. ∴y-5=0或y+3=0.∴y1=5,y2=-3.(5)将方程左边因式分解,得(x-3)[5x-(x+1)]=0. ∴(x-3)(4x-1)=0.∴x-3=0或4x-1=0.∴x1=3,x2=1 4 .6)移项,得4(3x+1)2-25(x-2)2=0.∴[2(3x+1)]2-[5(x-2)]2=0.∴[2(3x+1)+5(x-2)]·[2(3x+1)-5(x-2)]=0. ∴(11x-8)(x+12)=0.∴11x-8=0或x+12=0.∴x1=811,x2=-12.出示课件20,21:用适当的方法解下列方程:(1)x2-41=0;(2) 5(3x+2)2=3x(3x+2).学生自主思考并解答.解:(1)∵x2-14=0,∴x2=14,即x=±14.∴x1=12,x2=-12.⑵原方程可变形为5(3x+2)2-3x(3x+2)=0,∴(3x+2)(15x+10-3x)=0.∴3x+2=0或12x+10=0.∴x1=-23,x2=-56.(三)课堂练习(出示课件22-30)1.已知x=2是关于x的一元二次方程kx²+(k²﹣2)x+2k+4=0的一个根,则k的值为.2. 解方程:2(x﹣3)=3x(x﹣3).3.解下列方程:(1)x2+4x-9=2x-11;(2)x(x+4)=8x+12.4.小华在解一元二次方程x2-x=0 时,只得出一个根x=1,则被漏掉的一个根是()A.x=4 B.x=3C.x=2 D.x=05.我们已经学习了一元二次方程的四种解法:直接开平方法、配方法、公式法和因式分解法.请从以下一元二次方程中任选一个,并选择你认为适当的方法解这个方程.①x2-3x+1=0;②(x-1)2=3;③x2-3x=0;④x2-2x=4.我选择______________________.6.解方程:(x2+3)2-4(x2+3)=0.参考答案:1.-32.解:2(x﹣3)=3x(x﹣3),移项得2(x﹣3)﹣3x(x﹣3)=0,因式分解得(x﹣3)(2﹣3x)=0,x﹣3=0或2﹣3x=0,解得:x1=3,x2=32.3.解:⑴x2+2x+2=0,(x+1)2=-1.此方程无解.⑵x2-4x-12=0,(x-2)2=16.x1=6,x2=-2.4.D5.解:答案不唯一.若选择①,①适合公式法,x2-3x+1=0,∵a=1,b=-3,c=1,∴b2-4ac=9-4=5>0.∴x=3±5 2.∴x1=3+52,x2=3-52.若选择②,②适合直接开平方法,∵(x-1)2=3,x-1=±3,∴x1=1+3,x2=1- 3. 若选择③,③适合因式分解法,x2-3x=0,因式分解,得x(x-3)=0.解得x1=0,x2=3.若选择④,④适合配方法,x2-2x=4,x2-2x+1=4+1=5,即(x-1)2=5.开方,得x-1=± 5.∴x1=1+5,x2=1- 5.5.提示:把(x2+3)看作一个整体来提公因式,再利用平方差公式,因式分解.解:设x2+3=y,则原方程化为y2-4y=0.分解因式,得y(y-4)=0,解得y=0,或y=4.①当y=0 时,x2+3=0,原方程无解;②当y=4 时,x2+3=4,即x2=1.解得x=±1.所以原方程的解为x1=1,x2=-1.(四)课堂小结1.用因式分解法解一元二次方程有哪些优缺点?需注意哪些细节问题?2.通过本节课的学习,你还有哪些收获和体会?⑴公式法虽然是万能的,对任何一元二次方程都适用,但不一定是最简单的,因此在解方程时我们首先考虑能否应用“直接开平方法”、“因式分解法”等简单方法,若不行,再考虑公式法(适当也可考虑配方法).⑵方程中有括号时,应先用整体思想考虑有没有简单方法,若看不出合适的方法时,则把它去括号并整理为一般形式再选取合理的方法.(五)课前预习预习下节课(21.2.4)的相关内容。

人教版数学九上 21.2.3因式分解法 教学教案设计

人教版数学九上 21.2.3因式分解法 教学教案设计

21.2.3 因式分解法教学内容用因式分解法解一元二次方程。

教学目标知识与技能:掌握用因式分解法解一元二次方程。

过程与方法:通过复习用配方法、公式法解一元二次方程,体会和探寻用更简单的方法──因式分解法解一元二次方程,并应用因式分解法解决一些具体问题。

情感态度:了解由二次向一次的“转化”思想在解方程中的应用,培养学生的学习兴趣,提高学习效率。

重难点关键1.重点:用因式分解法解一元二次方程。

2.•难点与关键:让学生通过比较解一元二次方程的多种方法感悟用因式分解法使解题简便。

教学过程一、复习回顾分解因式的方法有那些?(1)提取公因式法:am+bm+cm=m(a+b+c)(2)公式法:a2-b2=(a+b)(a-b), a2±2ab+b2=(a±b)2二、合作探究,知识感知1、问题:根据物理学规律,如果把一个物体从地面 10 m/s 的速度竖直上抛,那么经过x s 物体离地面的高度(单位:m)为10x-4.9x2,根据这个规律求出物体经过多少秒落回地面?(精确到 0.01 s)设物体经过x s 落回地面,这时它离地面的高度为 0 ,即10x-4.9x2=0分别用配方法和公式法解2、探究:有更简单的解法吗?10x-4.9x2=0x(10-4.9x)=0x=0或10-4.9x=0x 1=0,x 2=2.043、讨论:以上解方程10x-4.9x 2=0 的方法是如何使二次方程降为一次的?先因式分解,使方程化为两个一次式的乘积等于0的形式,再使这两个一次式分别等于0,从而实现降次.这种解一元二次方程的方法叫做因式分解法。

提示:(1)用分解因式法的条件是: 方程左边易于分解,而右边等于零;(2)关键是熟练掌握因式分解的知识;(3)理论依据是“ab=0,则a=0或b=0 ”三、例题精析,知识领悟例: 用因式分解法解方程 x-2=x(x-2)解:移项,得 x-2-x(x-2)=0 (将方程的右边化为0)因式分解,得 (1-x) (x-2)=0 (将方程的左边分解因式)得 1-x=0 或x-2=0 (转化为两个一元一次方程)∴ x 1=1 ,x 2=2 (两个一元一次方程的解就是原方程的解)因式分解法解一元二次方程的步骤:(1)将方程的右边化为0;(2)将方程的左边分解因式;(3)根据“至少有一个因式为零”,转化为两个 一元一次方程;(4)两个一元一次方程的解就是原方程的解。

人教版九年级上册21.2.3因式分解法教学设计

人教版九年级上册21.2.3因式分解法教学设计

人教版九年级上册21.2.3因式分解法教学设计一、教学目标1.了解因式分解法的基本概念及其应用。

2.掌握因式分解法的基本步骤和方法,能够用因式分解法化简代数式。

3.培养学生的抽象思维能力和逻辑推理能力,提高学生的数学素养和解决问题的能力。

二、教学重点难点重点1.因式分解法的基本概念和应用。

2.因式分解法的基本步骤和方法。

3.因式分解法的综合应用。

难点1.抽象思维能力的培养。

2.逻辑推理能力的提高。

三、教学内容1.因式分解法的基本概念和应用。

–什么是因式分解法?–因式分解法的基本思想和应用。

2.因式分解法的基本步骤和方法。

–因式分解法的步骤和方法。

–因式分解法的练习。

3.因式分解法的综合应用。

–通过例题演示因式分解法的应用。

–学生练习相关习题。

四、教学方法1.讲授法:通过讲解、举例、分析等方式,向学生系统地介绍因式分解法。

2.实例法:通过精心设计的例题,让学生深入理解因式分解法的应用和方法。

3.课堂活动法:通过小组合作、课堂讨论、竞赛等形式,培养学生的合作意识和竞争意识,激发学生的学习兴趣。

五、教学过程第一步:引入引入因式分解法的概念和应用,激发学生的学习兴趣。

第二步:讲解基本概念和应用1.介绍因式分解法的概念和应用,让学生了解因式分解法的基本思想和应用。

2.讲解因式分解法的步骤和方法,向学生详细介绍因式分解法的具体内容。

3.通过例题讲解因式分解法的应用,让学生深入理解因式分解法的应用。

第三步:进行实践操作1.利用示例进行课堂演示,让学生参与进来,通过实践操作来加强对因式分解法的应用理解。

2.配置多组教师助教进行解答和指导,帮助学生在操作过程中有疑问时能够及时得到解答。

第四步:进行综合应用的讲解通过例题来演示因式分解法的综合应用。

第五步:布置课后作业让学生练习相关的习题,帮助学生巩固学习内容,提高对练习的能力。

六、教学评价通过课堂教学笔记、作业测试、口头答辩等方式,对学生的学习情况进行评价。

七、教学总结本次教学通过讲授、实践操作和综合应用等多种方式,介绍了因式分解法的基本概念和应用,并通过多个练习环节来加深学生对因式分解法的理解。

初中数学人教版九年级上册:因式分解法 教案

初中数学人教版九年级上册:因式分解法 教案

21.2.3因式分解法【教学目标】知识技能1.了解因式分解的概念2.会利用因式分解法解某些简单数字系数的一元二次方程情感态度1.学会和他人合作,并能与他人交流思维的过程和结果2.积极探索不同的解法,并和同伴交流,勇于发表自己的观点,从交流中发现最优方法,在学习活动中获得成功的体验,建立学好数学的自信心重点难点重点应用因式分解法解一元二次方程难点将方程化为一般形式后,对方程左侧二次三项式进行因式分解活动1复习引入问题(学生活动)解下列方程.(1)220x x (用配方法),(2)2360x x (用公式法).(3)要使一块矩形场地的长比宽多3m ,并且面积为228m ,场地的长和宽应各是多少?(4)如何设未知数并根据题目的等量关系列出方程?(5)所列方程和以前我们学习的方程2692x x 有何联系和区别?(6)你能由方程2692x x 的解法联想到怎样解方程23280x x 吗?活动2实验发现思考:(1)210x x (),(2)320x x ().问题:(1)你能观察出这两题的特点吗?(2)你知道方程的解吗?说说你的理由.因式分解的理论依据是:两个因式的积等于零,那么这两个因式的值就至少有一个等于零。

即:若ab=0,则a=0或b=0.由上述过程我们知道:当方程的一边能够分解成两个一次因式的乘积而另一边等于0时,即可解之。

这种方法叫做因式分解法.(3)因式分解法解一元二次方程的步骤:①移项,使方程的右边为零;②将方程的分解为两个一次因式的乘积;③令每个因式分别为零,得到两个一元一次方程;④解这两个一元一次方程,它们的解都是原方程的解.活动3用因式分解法解决问题教材第14页例3.补充例题解方程(1)238x x ,(2)24312x x ().分析:(1)移项提取公因式x ;(2)等号右侧移项到左侧得312x -,提取因式-3,即34x -(),再提取公因式x-4,便可达到分解因式的目的,一边为两个一次因式的乘积,另一边为0的形式.解:(1)移项,得2380x x ,因式分解,得380x x (),于是,得0380x x ,或,12803x x,(2)移项,得243120x x (),24340x x ()()因式分解,得4430x x ()()整理,得470x x ()()于是,得4070x x 或1247x x ,活动5课堂小结小结:(1)用因式分解法,即用提取公因式法、平方差公式、完全平方公式等解一元二次方程.(2)三种方法(配方法、公式法、因式分解法)的联系与区别:联系:①降次,它们的解题的基本思想是:将二次方程化为一次方程,即降次。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学人教版九年级上册实用资料
21.2.3因式分解法
1.会用因式分解法解某些简单的数字系数的一元二次方程.
2.能根据具体的一元二次方程的特征,灵活选择方程的解法,体会解决问题方法的多样性.
阅读教材第12至14页,完成预习内容.
1.将下列各题因式分解:
am+bm+cm=________;a2-b2=________;
a2±2ab+b2=________.
2.解下列方程:
(1)2x2+x=0(用配方法);
(2)3x2+6x=0(用公式法).
知识探究
仔细观察上面两个方程特征,除配方法或公式法,你能找到其他的解法吗?
1.对于一元二次方程,先将方程右边化为0,然后对方程左边进行因式分解,使方程化为两个一次式的乘积的形式,再使这两个一次式分别等于零,从而实现降次,这种解法叫做________.2.如果a·b=0,那么a=0或b=0,这是因式分解法的根据.如:如果(x+1)(x-1)=0,那么x+1=0或________,即x=-1或________.
自学反馈
1.说出下列方程的根:
(1)x(x-8)=0;(2)(3x+1)(2x-5)=0.
2.用因式分解法解下列方程:
(1)x2-4x=0;(2)4x2-49=0;
(3)5x2-20x+20=0.
活动1小组讨论
例1用因式分解法解下列方程:
(1)5x2-4x=0;
(2)3x(2x +1)=4x +2;
(3)(x +5)2=3x +15.
解:(1)x 1=0,x 2=45
. (2)x 1=23,x 2=-12
. (3)x 1=-5,x 2=-2.
解这里的(2)(3)题时,注意整体的思想.
例2 用因式分解法解下列方程:
(1)4x 2-144=0;
(2)(2x -1)2=(3-x)2;
(3)5x 2-2x -14=x 2-2x +34
; (4)3x 2-12x =-12.
解:(1)x 1=6,x 2=-6.
(2)x 1=43
,x 2=-2. (3)x 1=12,x 2=-12
. (4)x 1=x 2=2.
注意本例中的方程可以使用多种方法求解.
活动2 跟踪训练
1.用适当的方法解下列方程:
(1)x 2+x =0; (2)x 2+x -12=0;
(3)3x 2-6x =-3; (4)4x 2-121=0;
(5)4x 2-x -9=0.
2.把小圆形场地的半径增加5 m 得到大圆形场地,场地面积增加了一倍,求小圆形场地的半径. 活动3 课堂小结
1.因式分解法解一元二次方程的一般步骤:
(1)将方程右边化为0;
(2)将方程左边分解成两个一次因式的乘积;
(3)令每个因式分别为0,得两个一元一次方程;
(4)解这两个一元一次方程,它们的解就是原方程的解.
2.归纳解一元二次方程不同方法的优缺点.
【预习导学】
(a +b +c)m (a +b)(a -b) (a±b)2
知识探究
1.因式分解法 2.x -1=0 x =1
自学反馈
1.(1)x 1=0,x 2=8.(2)x 1=-13,x 2=52
. 2.(1)x 1=0,x 2=4.(2)x 1=72,x 2=-72
.(3)x 1=x 2=2. 【合作探究】
活动2 跟踪训练
1.(1)x 1=0,x 2=-1.(2)x 1=-4,x 2=3.(3)x 1=x 2=1.(4)x 1=112,x 2=-112.(5)x 1=1+1458,x 2=1-1458
. 2.设小圆形场地的半径为x m .则可列方程2πx 2=π(x +5)2.解得x 1=5+52,x 2=5-52(舍去).答:小圆形场地的半径为(5+52)m .。

相关文档
最新文档