七年级数学相反数

合集下载

七年级相反数的知识点总结

七年级相反数的知识点总结

七年级相反数的知识点总结相反数是初中数学中比较基础的概念之一,通过学习相反数可以进一步了解数学中的加减运算。

以下是七年级相反数的知识点总结。

一、相反数的概念相反数是值相反的两个数,它们的和等于零。

比如-3和3就是一对相反数,它们的和为0。

其中,3为-3的相反数,-3也是3的相反数。

二、相反数的性质1.相反数的绝对值相等。

例如,-7和7就是一对相反数,它们的绝对值都是7。

2.相反数的符号相反。

例如,-7和7就是一对相反数,它们的符号正好相反。

3.任何数和它的相反数的和等于0。

例如,3和-3是一对相反数,它们的和为0。

三、相反数的运用1.加减法中相反数的使用。

在加减法中,我们可以使用相反数来进行计算。

比如,我们想要计算12-8,可以将8取相反数(-8),然后改为加法,即12+(-8)=4。

2.解决数轴上的问题。

在数轴上,我们可以通过相反数来解决一些问题。

比如,如果我们要找出-5的相反数,可以在数轴上找到5,然后取反号即可得到-5。

四、相反数的拓展1.相反数可以拓展到分数和小数。

我们可以将分数或小数的相反数定义为它们的相反数分别除以-1。

例如,-0.5的相反数为0.5,-2/3的相反数为2/3。

2.相反数也可以使用字母表示。

字母的相反数是它的相反数加上负号。

例如,a的相反数是-a,b的相反数是-b。

总之,相反数是初中数学比较基础的概念之一,通过学习相反数可以进一步了解数学中的加减运算,并且可以用来解决在数轴上的问题。

通过对相反数的学习,我们可以更好地理解数学知识,提高数学运算能力。

教案设计:七年级数学《相反数》教案五篇

教案设计:七年级数学《相反数》教案五篇

七年级数学《相反数》教案五篇[ 20 -20 学年度第学期 ]任教学科:任教年级:授课教师:XXXX实验学校七年级数学《相反数》教案五篇温馨提示:该教案是教师为顺利而有效地开展教学活动,根据教学大纲的要求,以课时为单位,对教学内容,教学步骤,教学方法等进行具体的安排和设计的一种实用性教学文书.是经过周密考虑,精心设计而确定下来,体现着很强的计划性.本文可根据实际情况进行修改和使用。

相反数,指数值相反的两个数,其中一个数是另一个数的相反数。

你知道相反数的教案怎么编写么?下面就是笔者整理的《相反数》教案, 希望大家喜欢。

《相反数》教案1教学目标1, 掌握相反数的概念, 进一步理解数轴上的点与数的对应关系;2, 通过归纳相反数在数轴上所表示的点的特征, 培养归纳能力;3, 体验数形结合的思想。

教学难点归纳相反数在数轴上表示的点的特征知识重点相反数的概念教学过程(师生活动) 设计理念设置情境引入课题问题1:请将下列4个数分成两类, 并说出为什么要这样分类4, -2, -5, +2允许学生有不同的分法, 只要能说出道理, 都要难予鼓励, 但教师要做适当的引导, 逐渐得出5和-5, +2和-2分别归类是具有较特征的分法。

(引导学生观察与原点的距离)思考结论:教科书第13页的思考再换2个类似的数试一试。

归纳结论:教科书第13页的归纳。

以开放的形式创设情境, 以学生进行讨论, 并培养分类的能力培养学生的观察与归纳能力, 渗透数形思想深化主题提炼定义给出相反数的定义问题2:你怎样理解相反数定义中的“只有符号不同”和“互为”一词的含义?零的相反数是什么?为什么?学生思考讨论交流, 教师归纳总结。

规律:一般地, 数a的相反数可以表示为-a思考:数轴上表示相反数的两个点和原点有什么关系?练一练:教科书第14页第一个练习体验对称的图形的特点, 为相反数在数轴上的特征做准备。

深化相反数的概念;“零的相反数是零”是相反数定义的一部分。

人教版(2024数学七年级上册1.2.3 相反数

人教版(2024数学七年级上册1.2.3 相反数
–8 –7 –6 –5 –4 –3 –2 –1 0 1 2 3 4 5 6 7 8
请求出剩下两个 数的相反数吧.
请用自己的语言总结多重符号化简规律: -(-(+8) ) = 8
-(-(-3.3)) = -3.3
多重符号化简规律: 负号是_偶___数个,结果为正数; 负号是_奇___数个,结果为负数.
的距离一样,均为 300 m,所以以青少年宫为原点,示
意图如下: 商场 医院 青少年宫
学校
-600 -500 -400 -300 -200 -100 0 100 200 300 400 500 600
4.一只蚂蚁从数轴的原点出发,它先向右爬了 4 个单位长 度到达点 A,再向右爬了 2 个单位长度到达点 B,然后又 向左爬了 10 个单位长度到达点 C. (1)在数轴上点 A 所表示的数的相反数是多少?是哪一个点?
分析:假设学校为原点画数 观察 移动数轴,找
轴表示各个场所位置
到合适的原点
解:假设以学校为原点,4 个公共场所位置表示如下:
商场 医院 青少年宫
学校
-600 -500 -400 -300 -200 -100 0 100 200 300 400 500 600
由上图可知,商场到青少年宫的距离与学校到青少年宫
合作探究
知识点:相反数
探究一 观察在数轴上画的三组点,说说在数轴上与原 点的距离是 3、1 的点分别有几个,分别是哪些数?
2
-5
-3
1 1 22
3
5
–5 –4 –3 –2 –1 0 1 2 3 4 5
有两个,分别是 3 和 -3;
有两个,分别是
1 2

1 ;
2
思考1 对于一般数 a,设 a 是一个正数,数轴上与原点 的距离等于 a 的点有几个?探究这几组点表示的数之间 的关系.

《相反数》PPT课件2-七年级上册数学人教版

《相反数》PPT课件2-七年级上册数学人教版
§1.2.3 相反数
温故知新: 1.在数轴上,与原点的距离是3的点有两个,所表示的数 分别为__3和__-_3. 2.在数轴上,与原点的距离是2.5的点有两个,所表示的 数分别为_2_._5和_-2_._5_.
-2.5与+2.5,+1与-1,+3与-3
-2.5
+1
+2.5
-1
+3 -3
每对数均为一正一负,只有_符_号__不同.
我来做一做:
(1)分别写出下列各数的相反数:
+11.2, -7, 3 , -3 1 ;
2
(2)指出下列各数是哪个数的相反数:
3.1415926 , 0 ,

1 10

解: (1)+11.2的相反数是-11.2 , (2) 3.1415926是- 3.1415926的相反数,
-7的相反数是7,
3的相反数是-3,
3.5的相反数是___-_5;a的相反数是___;-a
0 的相 反数是____.
4.若
a
13,则
0
a
_____13____;
若 a 6 ,则 a _____6____ .
5.若a是负数,则 a 是 _正__数;
若 a 是负数,则 a 是___正___数.
想一想
数轴上表示相反数的两个点和原点 有什么关系?
在数轴上表示互为相反数的两个数的 点,分别位于原点的两侧,且与原点的 距离相等,我们说这两个点关于原点对 称.
【总结】 1.相反数的定义: (1)代数定义:只有_符__号__不同的两个数叫做互为相反数,
0的相反数是__. 0 (2)几何定义:一般地,设a是一个正数,数轴上与原点的距 是a的点有_两__个,它们分别在原点左右,表示-a和a,我们说 两点关于原点__对__称_,这里-a与a互为相反数.

相反数(4种题型)-2023年新七年级数学核心知识点与常见题型(人教版)(解析版)

相反数(4种题型)-2023年新七年级数学核心知识点与常见题型(人教版)(解析版)

相反数(4种题型)【知识梳理】一、相反数1.定义:只有符号不同的两个数互为相反数;0的相反数是0.要点:(1)“只”字是说仅仅是符号不同,其它部分完全相同.(2)“0的相反数是0”是相反数定义的一部分,不能漏掉.(3)相反数是成对出现的,单独一个数不能说是相反数.(4)求一个数的相反数,只要在它的前面添上“-”号即可.2.性质:(1)互为相反数的两数的点分别位于原点的两旁,且与原点的距离相等(这两个点关于原点对称). (2)互为相反数的两数和为0.二、多重符号的化简多重符号的化简,由数字前面“-”号的个数来确定,若有偶数个时,化简结果为正,如-{-[-(-4)]}=4 ;若有奇数个时,化简结果为负,如-{+[-(-4)]}=-4 .要点:(1)在一个数的前面添上一个“+”,仍然与原数相同,如+5=5,+(-5)=-5.(2)在一个数的前面添上一个“-”,就成为原数的相反数.如-(-3)就是-3的相反数,因此,-(-3)=3.【考点剖析】题型一:相反数的代数意义例1.写出下列各数的相反数:16,-3,0,-12015,m,-n.解析:只需将各数前面的正、负号换一下即可,但要注意0的相反数是0.解:-16,3,0,12015,-m,n.方法总结:求一个数的相反数,只需改变它前面的符号,符号后面的数不变;0的相反数是0.【变式1】相反数不大于它本身的数是( )A .正数B .负数C .非正数D .非负数【答案】D【详解】解:设这个数为a ,根据题意,有-a ≤a ,所以a ≥0.故选D .【变式2】若a ,b 互为相反数,则下列等式不一定成立的是( )A .1a b =−B .=−a bC .=−b aD .0a b +=【答案】A【分析】由题意直接根据相反数的定义和性质,进行分析即可得出答案.【详解】解:A. 1a b =−,注意b ≠0,此选项当选;B. =−a b ,此选项排除;C. =−b a ,此选项排除;D. 0a b +=,此选项排除.故选:A.【变式3】如果m 的相反数是最大的负整数,n 的相反数是它本身,则m n +的值为( )A .1B .0C .2D .-1【答案】A【分析】先根据相反数的定义确定、n 的值,再代入m +n ,计算即可求出其值.【详解】∵m 的相反数是最大的负整数,n 的相反数是它本身,∴m =1,n = 0,∴m +n =1+0=1,故A 选项是正确答案.【变式4】下列说法不正确的是( )A .所有的有理数都有相反数B .正数与负数互为相反数C .在一个数的前面添上“-”,就得到它的相反数.D .在数轴上到原点距离相等的两个点所表示的数是互为相反数【答案】B【详解】解:A . 所有的有理数都有相反数,正确;B . 只有符号不同的两个数互为相反数,故B 错误;C . 在一个数的前面添上“-”,就得到它的相反数,正确;D.在数轴上到原点距离相等的两个点所表示的数是互为相反数,正确.故选B.【变式5】已知+(﹣73)的相反数是x,﹣(+3)的相反数是y,z的相反数是z,求x+y+z的相反数.【答案】16 3−【分析】根据相反数的概念求出x,y,z的值,代入x+y+z即可得到结果.【详解】解:∵+(73−)的相反数是x,-(+3)的相反数是y,z相反数是z,∴x=73,y=3,z=0,∴x+y+z=73+3+0=163,∴x+y+z的相反数是163−.【变式6】5x+与–7互为相反数,求x的值.【答案】2.试题分析:根据相反数的意义得出(x+5)+(-7)=0,求出x即可.试题解析:解:∵x+5与-7互为相反数,∴(x+5)+(-7)=0,解得:x=2.题型二:相反数的几何意义例2. (1)数轴上离原点3个单位长度的点所表示的数是________,它们的关系为____________.(2)在数轴上,若点A和点B A在点B的左侧,并且这两个数的距离是12.8,则A=______,B=______.解析:(1)左边距离原点3个单位长度的点是-3;右边距离原点3个单位长度的点是3,∴距离原点3个单位长度的点所表示的数是3或-3.它们互为相反数;(2)∵点A和点B分别表示互为相反数的两个数,∴原点到点A与点B的距离相等,∵A、B两点间的距离是12.8,∴原点到点A和点B的距离都等于6.4.∵点A 在点B的左侧,∴这两点所表示的数分别是-6.4,6.4.方法总结:本题考查了相反数的几何意义,解题时应从相反数的意义入手,明确互为相反数的两数到原点距离相等,这种“利用概念解题,回到定义中去”是一种常用的解题技巧.【变式1】互为相反数的两数在数轴上的两点间的距离为11,这两个数为________ .【答案】5.5与-5.5【详解】解:设一个正数为x,则x-(-x)=11,解得,x=5.5,∴-x=-5.5,故答案为5.5和-5.5.题型三:相反数与数轴相结合的问题例3.如图,图中数轴(缺原点)的单位长度为1,点A、B表示的两数互为相反数,则点C所表示的数为( )A.2 B.-4 C.-1 D.0解析:由题意如图,数轴向右为正方向,数轴(缺原点)的单位长度为1,∴点C所表示的数为-1,故应选C.方法总结:先在数轴上找到原点,从而确定点C所表示的数,同时牢记互为相反数的两个点到原点的距离相等.【变式1】结合数轴思考:0的相反数是_____.一个正数的相反数是一个___.一个负数的相反数是一个___.一个数的相反数是它本身的数是 ______.【答案】0 负数正数 0【变式2】如图,已知A,B,C,D四个点在数轴上.(1)若点A和点C表示的数互为相反数,则原点在点_____的位置;(2)若点B和点D表示的数互为相反数,则原点在点_____的位置;(3)若点B和点C表示的数互为相反数,请在数轴上表示出原点的位置.【答案】(1)B;(2)C;(3)见解析.【分析】(1)根据相反数的定义可求原点;(2)根据相反数的定义可求原点;(3)根据相反数的定义可求原点,再在数轴上表示出原点O的位置即可.【详解】(1)若点A和点C表示的数互为相反数,则原点为B;(2)若点B和点D表示的数互为相反数,则原点为C;(3)如图所示:题型四:化简多重符号例4.化简下列各数.(1)-(-8)=________; (2)-(+1518)=________; (3)-[-(+6)]=________; (4)+(+35)=________. 解:(1)-(-8)=8;(2)-(+1518)=-1518; (3)-[-(+6)]=-(-6)=6;(4)+(+35)=35. 【变式1】﹣(﹣6)的相反数是( )A .15B .13C .﹣6D .6【答案】C 【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.﹣(﹣6)=6,故﹣(﹣6)的相反数是﹣6.故选:C .【变式2】化简下列各数:③ -(-82) = ________ ②-|-5| = _______③()100−+−⎡⎤⎣⎦ = ________ ④135⎡⎤⎛⎫−−− ⎪⎢⎥⎝⎭⎣⎦= ___________. 【答案】82 -5 100 135− 【分析】分别根据相反数的定义进行化简即可.【详解】解:①-(-82)=82,②-|-5|=-5,③()100−+−⎡⎤⎣⎦=100, ④135⎡⎤⎛⎫−−− ⎪⎢⎥⎝⎭⎣⎦=135−.故答案为:82,-5,100,135−.【过关检测】一、单选题 1.(2023·陕西榆林·统考二模)下列各数中,相反数是它本身的数是( )A .2−B .1−C .0D .1 【答案】C【分析】根据相反数的意义,只有符号不同的数为相反数.【详解】解:相反数等于本身的数是0.故选:C .【点睛】本题考查了相反数的意义.注意掌握只有符号不同的数为相反数,0的相反数是0. 2.(2023秋·山东滨州·七年级统考期末)若不为0的有理数a 与b 互为相反数,同学们化简a b +后得出了下列不同的结果:①2b −;②2a −;③2a ;④0.其中结果错误的个数为( )A .1B .2C .3D .4 【答案】C【分析】根据互为相反的两个数的和是0即可得到正确选项.【详解】解:∵不为0的有理数a 与b 互为相反数,∴0a b +=,∴①②③错误,④正确;故选C .【点睛】本题考查了相反数的定义和性质,熟记相反数的性质以及定义是解题的关键.3.(2023·河北唐山·统考二模)()3−+=( )A .3−B .3C .2−D .1 【答案】A【分析】根据相反数的定义解答即可.【详解】解:()33−+=−,故选:A .【点睛】本题考查了相反数的定义,知道“只有符号不同的两个数叫做互为相反数”是解题的关键. 4.(2023·浙江·七年级假期作业)如图,数轴上的单位长度为1,有三个点A 、B 、C ,若点A 、B 表示的数互为相反数,则图中点C 对应的数是( )A .2−B .0C .1D .4【答案】C【分析】首先确定原点位置,进而可得C 点对应的数.【详解】解:点A 、B 表示的数互为相反数, ∴原点在线段AB 的中点处,∴点C 对应的数是1.故选:C .【点睛】此题主要考查了数轴,关键是正确确定原点位置.5.(2023秋·江苏无锡·七年级统考期末)在()2.5−+,()2.5−−,()2.5+−,()2.5++中,正数的个数是( )A .1B .2C .3D .4 【答案】B【分析】根据多重符号化简原则逐一进行判断即可得到答案.【详解】解:()2.5 2.5−+=−Q ,()2.5 2.25−−=,()2.5 2.5+−=−,()2.5 2.5++=,∴正数的个数是2个,故选B .【点睛】本题考查了多重符号化简,解题关键是掌握多重符号化简的原则:若一个数前有多重符号,则看该数前面的符号中,符号“−”的个数来决定,即奇数个符号则该数为负数,偶数个符号,则该数为正数.【答案】C【分析】根据只有符号不同的两个数互为相反数,0的相反数是0;即可解答.【详解】解:A 、0与0互为相反数,不符合题意;B 、12与0.5−互为相反数,不符合题意;C 、6与16互为倒数,不是相反数,符合题意;D 、a 与 –a 互为相反数,不符合题意;故选C .【点睛】本题考查了相反数,解决本题的关键是熟记相反数的定义. 7.(2023·浙江·七年级假期作业)下列说法中正确的个数为( )①符号不相同的两个数互为相反数;②一个数的相反数一定是负数;③两个相反数的和等于0;④若两个数互为相反数,则这两个数一定一正一负.A .1个B .2个C .3个D .4个【答案】A 【分析】根据相反数的定义和性质,逐一判断,即可.【详解】∵只有符合不同的两个数叫做相反数∴2+,1−不是相反数∴①错误;∵1−的相反数是1,∴②一个数的相反数一定是负数,错误;∵互为相反数的两个数,相加等于0,∴③两个相反数的和等于0,正确;∵0的相反数是0,∴④错误;∴正确的只有③.故选:A .【点睛】本题考查相反数的知识,解题的关键是掌握相反数的定义和性质.8.(2022秋·江苏南通·七年级校联考期末)有理数a b ,在数轴上的位置如图所示,则数a b a b −−,,,的大小关系为()A .a b b a −<−<<B .a b a b −<<<−C .a b b a −<<−<D .a b a b −<−<<【答案】C【分析】先根据相反数的意义把a −,b −在数轴上表示出来,然后根据数轴上右边的数比左边的数大即得答案. 【详解】解:由题意可得a b a b −−,,,在数轴上的位置如图所示:则a b a b −−,,,的大小关系为a b b a −<<−<, 故选:C【点睛】本题考查了相反数的意义、数轴以及有理数的大小比较,属于基础题型,掌握解答的方法是关键.【分析】根据0a b +=,结合数轴,即可求解.【详解】解:∵点A 、B 分别表示数a 、b ,且0a b +=,A 、B 两点间的距离为6,∴26b a a a a −=−−=−=∴3a =−,故选:C .【点睛】本题考查了求数轴上两点距离,相反数的意义,数形结合是解题的关键.10.(2022秋·云南红河·七年级校考阶段练习)如图,数轴上点A 、B 、C 、D 表示的数中,表示互为相反数的两个点是( )A .点B 和点C B .点A 和点C C .点B 和点D D .点A 和点D【答案】D【分析】一对相反数在数轴上的位置特点:分别在原点的左右两旁,并且到原点的距离相等.【详解】解:点A 和点D 分别在原点的左右两旁,到原点的距离相等,∴它们表示的两个数互为相反数.故选D .【点睛】本题主要考查一对相反数在数轴上的位置特点,灵活运用所学知识求解是解决本题的关键.二、填空题11.(2022秋·广东广州·七年级校考阶段练习)如果2a −=−,那么=a ________.【答案】2【分析】根据相反数的定义:只有符号不同的两个数叫做互为相反数化简即可.【详解】解:∵2a −=−,∴2a =,故答案为:2.【点睛】本题考查了相反数,解题的关键是掌握相反数的定义.【答案】1【分析】根据题意求得a 与b 的关系,c ,d 的值,代入代数式求值.【详解】∵a ,b 互为相反数,∴0a b +=,∵c 是最小的非负数,∴0c =,∵d 是最小的正整数,∴1d =.∴()0101a b d d c ++−=+−=.【点睛】本题主要考查互为相反数的定义,掌握相反数的定义是解题的关键.13.(2023·浙江·七年级假期作业)化简下列各数的符号:()1.3−−=______,()3−+−=⎡⎤⎣⎦______.【答案】 1.3 3【分析】根据相反数的性质,即可求解.【详解】解:()1.3 1.3−−=; ()()333−+−=−−=⎡⎤⎣⎦. 故答案为:1.3,3【点睛】本题考查了相反数,熟练掌握在一个数的前面加上负号就是这个数的相反数,在一个数的前面加上正号是原数是解题的关键. 14.(2023秋·福建泉州·七年级统考期末)已知有理数a 在数轴上的位置如图所示,则a−___________3.(填“>”、“<”或“=”)【答案】<【分析】结合数轴得出a 的符号,再根据相反数的定义即可得到a −的值.【详解】解:由数轴可知,1a −-2<< ,∴12a −<<,∴3a −<故答案:<.【点睛】本题主要考查相反数和数轴,根据数轴得到数的正负和比较大小是解题的关键.15.(2023·全国·七年级假期作业)如果4a −和2−互为相反数,那么=a ___________.【答案】6【分析】根据相反数的定义求解即可.【详解】∵4a −和2−互为相反数∴42a −=解得6a =故答案为6.【点睛】本题主要考查了相反数的定义,熟知只有符号不同的两个数互为相反数是解题的关键.16.(2023·浙江·七年级假期作业)如图,数轴上点A 所表示的数的相反数是_________.【答案】3【分析】根据数轴得出A 点表示的数,根据相反数的定义即可求解.【详解】解:∵A 点表示的数为3−,∴数轴上点A 所表示的数的相反数是3,故答案为:3.【点睛】本题考查了相反数的定义,在数轴上表示有理数,数形结合是解题的关键.17.(2023·浙江·七年级假期作业)已知23x +与5−互为相反数,则x 等于______.【答案】1【分析】根据互为相反数的两个数的和为0列式计算即可.【详解】∵23x +与5−互为相反数,∴()2350x ++−=解得1x =.故答案为:1.0是解题的关键.【答案】 a b −− 12−/32−【分析】根据相反数的定义即可求解.【详解】解:a b +的相反数是()a b a b −+=−−,112⎛⎫−− ⎪⎝⎭的相反数是111122⎡⎤⎛⎫−−−=− ⎪⎢⎥⎝⎭⎣⎦, 故答案为:①a b −−,②112−.【点睛】本题考查求一个数的相反数,掌握相反数的定义是解题的关键.三、解答题【答案】(1)68(2)0.75−(3)35(4)3.6【分析】(1)先去括号,然后根据负号的个数为偶数个,即可化简求值;(2)先去括号,然后根据负号的个数为奇数个,即可化简求值;(3)先去括号,然后根据负号的个数为偶数个,即可化简求值;(4)先去括号,然后根据负号的个数为偶数个,即可化简求值.【详解】(1)解:()6868−−=; (2)解:()0.750.75−+=−; (3)解:3355⎛⎫−−=⎪⎝⎭;(4)解:()3.6 3.6⎡⎤−+−=⎣⎦. 【点睛】本题考查了多重符号化简,解题关键是掌握若一个数前有多重符号,则由该数前面的符号中“−”的个数来决定,即奇数个“−”符号则该数为负数,偶数个“−”符号,则该数为正数.20.(2021秋·陕西渭南·七年级统考阶段练习)在数轴上,点A 表示的数是23a +,点B 表示的数是4,若点A 、B 位于原点两侧且到原点的距离相等,求a 的值.【答案】2−【分析】根据原点两侧且到原点的距离相等对应的数是相反数,可得234a +=−,求出即可;【详解】解:因为点A 、B 位于原点两侧且到原点的距离相等,所以234a +=−,解得2a =−.【点睛】本题考查数轴上表示相反数的点的特征,位于原点两侧且到原点的距离相等,解题关键是判断出相反数的关系. 21.(2023·浙江·七年级假期作业)在一条不完整的数轴上有A 、B 两点,A 、B 表示的两个数a 、b 是一对相反数.(1)如果A 、B 之间的距离是3,写出a 、b 的值(2)有一点P 从B 向左移动5个单位,到达Q 点,如果Q 点表示的数是2−,写出a 、b 的值【答案】(1) 1.5a =−、 1.5b =;(2)3a =−,3b =【分析】(1)由相反数的定义及两点间的距离公式可得a 、b 的值;(2)求出OB 、OA 的长即可求出a 、b 的值.【详解】(1)∵点A 、B a ,()b a b <,且A 、B 之间的距离为3,∴ 1.5a =−、 1.5b =;(2)∵5BQ =,2O Q =, ∴3OB =,∴3OA =,∴3a =−,3b =【点睛】本题考查了数轴和相反数,关键是掌握只有符号不同的两个数叫做互为相反数.22.(2022秋·辽宁抚顺·七年级校考阶段练习)如图,一个单位长度表示2,解答下列问题:(1)若点B 点D 所表示的数互为相反数求点D 所表示的数;(2)若点A 与点B 所表示的数互为相反数,求点D 所表示的数;(3)若点B 与点F 所表示的数互为相反数,求点D 所表示的数的相反数,【答案】(1)4(2)9(3)2−【分析】(1)“B 与D 所表示的数互为相反数”由B 与D 之间有四个单位长度得点C 所表示的数是原点,由此得点D 表示的数为4.(2)方法同(1)可得点D 表示的数为5.(3)方法同(1)可得点D 表示的数为2,它的相反数为-2.【详解】(1)∵B 与D 所表示的数互为相反数,且B 与D 之间有4个单位长度,一个单位长度表示2, ∴可得点D 所表示的数为4;(2)∵A 与B 所表示的数互为相反数,且它们之间距离为2,则B 表示的数为1,一个单位长度表示2, ∴点D 表示的数为9;(3)∵B 与F 所表示的数互为相反数,B 、F 两点间距离为12,∴C 、D 中间的点为原点,∴D 表示的数为2,它的相反数为2−.【点睛】在答题中要注意数轴的一个单位长度是多少,同时要根据两点之间单位长度来确定点所表示的数字. 23.(2021秋·河南南阳·七年级校考阶段练习)数轴上有三个数A ,B ,C .写出,,,0,,,A B C A B C −−−,7个数的大小关系.【答案】0A C B B C A −−−<<<<<<【分析】如图,利用相反数的含义在数轴上分别描出,,A B C −−−对应的点,再利用数轴比较大小即可.【详解】解:如图,利用相反数的含义在数轴上分别描出,,A B C −−−对应的点,∴0A C B B C A −−−<<<<<<.【点睛】本题考查的是相反数的含义,利用数轴比较有理数的大小,掌握“利用相反数的含义在数轴上分别描出,,A B C −−−对应的点”是解本题的关键.【答案】3或3【分析】根据互为相反数的两数之和为0,互为倒数的两数之积为1,绝对值为2的数为2或2−,得到关系式,代入所求式子中计算即可求出值.【详解】∵a ,b 互为相反数,x ,y 互为倒数,c 的绝对值是2,∴0a b +=,1xy =,2c =或2c =−,当2c =时,121012333a b xy c ++−=+−=, 当2c =−时,125012333a b xy c ++−=++=, ∴代数式123a b xy c ++−的值为:13或53 【点睛】本题考查了代数式求值,相反数,绝对值,以及倒数,熟练掌握相反数、绝对值及倒数定义是解答本题的关键.【答案】(1)4−,2(2)2或10(3)2,6【分析】(1)根据相反数到原点的距离相等,即可得出点B 和点C 表示的数,再根据单位长度为1,即可解答;(2)当点B 为原点,则可得点A 和点D 表示的数,根据点M 到点A 的距离是点M 到点D 的距离的2倍,分为点M 在点A 和点D 之间和点M 在点D 的右边两种情况,进行分类讨论即可;(3)设经过t 秒后相遇,根据题意找出等量关系列出方程求解即可.【详解】(1)解:∵点B ,D 表示的数互为相反数,点B 和点D 距离4个单位长度,∴点B 和点D 距离原点2个单位长度,∴点B 表示2−,点D 表示2,∵点A 在点B 左边两个单位长度,∴点A 表示的数为:224−−=−,故答案为:4−,2.(2)∵点B 为原点,∴点A 表示2−,点D 表示4,①当点M 在点A 和点D 之间时:点M 到点A 的距离为:(2)2M M −−=+,点M 到点D 的距离为:4M −,∴()224M M +=−,解得:2M =,②当点M 在点D 右边时:点M 到点A 的距离为:(2)2M M −−+,点M 到点D 的距离为:4M −,∴()224M M +=−,解得:10M =,故答案为:2或10.(3)由图可知,点B 和点C 距离3个单位长度,设经过t 秒后相遇,∵B 、C 两点分别以2个单位长度/秒和0.5个单位长度/秒同时向右运动,∴()20.53t −=,解得:2t =,此时点P 表示的数为:2226+⨯=,故答案为:2,6.【点睛】本题主要考查了用数轴上的点表示数,解题的关键是掌握有理数和数轴上的点是一一对应的关系,根据题意进行分类讨论.【答案】(1)2−; (2)5;(3)B 点向左平移一个单位;(4)3,3−;(5)A 点移动到B 点右侧.【分析】(1)由图可知,A 点表示的数为1−,B 点表示的数2,所以将A点向左平移12个单位长度后,表示的数是32−; (2)B 点向右平移3个单位长度后,表示的数是5;(3)A 点的相反数是1,故B 点向左平移一个单位后表示的是为1,与A 点表示的数互为相反数;(4)根据两点间的距离公式可求A 和B 的距离,根据数轴的定义可知原点移到B 点,A 点表示的数;(5)根据数轴上右边的数大于左边的数即可得到答案.【详解】(1)解:13122−−=−,即表示的数是32−故答案为:32−; (2)解:235+=,即表示的数是5,故答案为:5;(3)解:A点的相反数是1,B∴点向左平移一个单位后与A点表示的数互为相反数,(4)解:()213−−=,即A点和B点相距3个单位长度,∴将图中数轴的原点移到B点,A点表示的数是3−,故答案为:3,3−;(5)解:A点表示的数永远都大于B点表示的数,即A点移动到B点右侧.【点睛】本题考查了数轴,相反数,熟练掌握数轴的相关知识是解题关键.。

七年级上册数学课件《相反数,绝对值》

七年级上册数学课件《相反数,绝对值》

-3 -2 -1 0
1
2
3
4
5
6
一个数a的绝对值就是数
轴上表示这个数的点与原点之
间的距离。
例如:大象离原点4个单位长度: │4│=4
那么两只小狗呢?
如果一个数为-5,则它的绝对值呢?
想一想:
互为相反数的两个数的绝对 值有什么关系?
相等
例1 求下列各数的绝对值:
-21, +4/9, 0, -7.8 .
那么上述五件产品中,哪些是正品?哪些是次品?哪些是废品?
|0.1|<0.18; |-0.15|<0.18; |0.05|<
0.18<|0.2|< 0.22
|0.25|> 0.22
复习:
1、什么是数轴?
数轴是规定了原点、正方向、单位长度的直线
-2 -1 0 1 2
2、数轴的三要素
原点、正方向、单位长度
做一做
3、画出数轴、并用数轴上的点表示 下列各数: -1.5 , 0 , -6 ,2 , +6 ,-3 ,3
解:
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
新课
大象距原 点多远?
两只小狗分别 距原点多远?
- - - 01234 32 1
绝对值: │-5│=5 A
│4│=4
B
-6 -5 4
1 相反数及其表示
1 相反数及其表示
有下列语句: ①-8是相反数; ②-6与+3互为相反数; ③-7是7的相反数; ④+9与-9互为相反数.
2 其中一定正确的有_____个
★ 相反数是成对出现的, 不能单独说某个数是相反数 ★不能把符号不同的两个数 当成相反数,符号不同,其 它均相同才可以

《相反数》PPT课件 人教版七年级数学

《相反数》PPT课件 人教版七年级数学

巩固练习
结合数轴考虑: 0的相反数是___0__. 一个正数的相反数是一个 负数 . 一个负数的相反数是一个 正数 .
探究新知 探究二 相反数的几何意义
【思考】在数轴上,画出几组表示相反数的点,并观察 这两个点具有怎样的特征.
–5 –a –1 0 1 a 5
位于原点两侧,且与原点的距离相等.
探究新知
课堂检测
能力提升题
(1)若a=3.2,则–a=–3.2 ;
(2)若–a= 2,则a= –2 ; (3)若–(–a)=3,则–a= –3 ; (4) –(a–b)= b–a .
课堂小结
通过本课时的学习,需要我们掌握:
相反数
概念
只有符号不同的两个数叫做互为 相反数;特别地,0的相反数是0.
在数轴上,表示互为相反数的两个点, 位于原点两侧,且到原点距离相等.
代数意义
探究新知
素养考点 1
指出有理数的相反数
例1 写出下列各数的相反数.
9,
-0.3, -2,
1
3.
-9
0.3
2
1
3
巩固练习
判断题: (1)–5是5的相反数;﹙ √ ﹚ (2)–5是相反数;﹙× ﹚ 相反数是成对出现的,不能单独存在 (3) – 5与15 互为相反数;﹙× ﹚勿将相反数与倒数相混淆 (4) –5和5互为相反数;﹙√ ﹚ (5)相反数等于它本身的数只有0;﹙ √ ﹚ (6)符号不同的两个数互为相反数.﹙× ﹚缺少“只有”
2. 互为相反数的两个数到原点的距离相等.
3. 一般地,设a是一个正数,数轴上与原点的距 离是a的点有两个,它们分别在原点的左右,表 示a和–a,我们说这两点关于原点对称.
几何意义

七年级数学上册《相反数》优秀教学案例

七年级数学上册《相反数》优秀教学案例
(二)问题导向
在教学过程中,我将采用问题导向的教学方法,引导学生主动思考、探索。设计一系列由浅入深的问题,让学生在解决问题的过程中,逐步掌握相反数的知识。例如,我会提问:“什么是相反数?它们有什么性质?如何求一个数的相反数?”通过这些问题,激发学生的好奇心和求知欲,培养他们的逻辑思维能力。
(三)小组合作
2.问题导向的教学方法
本案例采用问题导向的教学方法,引导学生主动思考、探索相反数的性质和规律。设计具有启发性的问题,激发学生的好奇心和求知欲,培养他们的逻辑思维能力和解决问题的能力。
3.小组合作与交流
案例中充分运用小组合作的学习方式,让学生在小组内讨论、交流,共同解决难题。这种教学策略有助于培养学生的团队协作精神、沟通能力和共享意识,提高学习效果。
2.提问:“我们已经学过正数和负数,那么什么是相反数呢?它们之间有什么关系?”让学生带着问题进入新课的学习。
(二)讲授新知
1.讲解相反数的定义:在学生了解正负数的基础上,给出相反数的定义,即两个数互为相反数,当且仅当它们的和为零。
2.解释相反数的性质:引导学生发现,相反数的符号相反,绝对值相同;任何实数都有相反数,0的相反数是0。
4.注重学生反思与评价
在本案例中,教师引导学生进行学习反思和评价,帮助他们总结学习过程中的收获和不足。同时,鼓励学生互相评价、互相鼓励,培养他们的自我监作业设计与作业小结
本案例的作业设计富有针对性和实践性,旨在巩固所学知识,提高学生的应用能力。在作业小结环节,要求学生进行自我反思,分享解题心得,以便在互相学习中共同提高。这一环节有助于培养学生的自主学习能力和反思意识。
小组合作是本节课的重要教学策略。我将学生分成若干小组,让他们在小组内进行讨论、交流,共同解决难题。在这个过程中,学生可以相互启发、取长补短,提高解决问题的能力。同时,小组合作也能培养学生的团队协作精神和沟通能力。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
德比球app下载
[问答题,简答题]如何设计定(减)径机的孔型? [填空题]各种车票的有效期从()起至有效期最后一日的()止计算。 [单选,A1型题]暑湿感冒,暑热偏盛,热盛烦渴者,治疗方剂宜首选()。A.新加香薷饮B.黄连香薷饮C.藿朴夏苓饮D.三物香薷饮E.藿香正气散 [问答题,简答题]药品监督管理部门违反《药品管理法》规定,为不符合GMP要求、或不符合条件发给GMP认证证书或《药品生产许可证》的,由那个部门责令收回违法发给的证书、撤销药品批准证明文件或依法给予行政处分、构成犯罪的,依法追究刑事责任? [单选]设在变形缝处附近的防火门,应设在楼层数较多的一侧,且门开启后()变形缝。A.不应跨越B.严禁跨越C.不宜跨越D.可以跨越 [单选]男性,64岁。因食管癌行手术治疗,留置胃管。手术后4d患者咳嗽,痰略带黄色,发热38.4℃,气急,右下肺闻及较多细湿啰音。X线胸片示右肺下大片炎性病变。推测其最可能的病原体是()A.金黄色葡萄球菌B.军团杆菌C.铜绿假单胞菌D.肠道革兰氏阴性杆菌E.流感嗜血杆菌 [单选]学生解题能够一题多解,说明他的()能力强A.再现思维B.求同思维C.辐合思维D.发散思维 [单选]船舶对水航程SL,对地航程SG,船速VE,航时t,若SG<SL<VEt,则船舶航行在()情况下。A.顺风顺流B.顶风顶流C.顺风顶流D.顶风顺流 [单选,A2型题,A1/A2型题]营养不良患儿皮下脂肪消减的顺序是()。A.躯干-臀部-四肢-腹部-面颊B.面颊部-腹部-躯干-臀部-四肢C.腹部-躯干-臀-四肢-面颊D.四肢-躯干-腹部-面颊E.躯干-臀部-腹部-面颊 [单选]甲为一保姆,受家庭指派前往买菜,在菜市场因价格与菜贩乙发生口角,并被乙打伤。对于保姆甲的受害的责任承担,下列表述正确的是:()A.应由乙承担责任B.接受劳务的家庭应承担连带责任C.接受劳务的家庭应承担补充责任D.保姆甲既可要求乙承担责任,也可要求接受劳务的家庭承 [单选]患者,60岁,男性,突发头痛、呕吐、视物旋转伴行走不稳2小时。查体:一侧肢体共济失调,眼球震颤,构音障碍。最可能的诊断是()A.脑栓塞B.小脑出血C.脑叶出血D.蛛网膜下腔出血E.壳核出血 [单选,A1型题]哪些部门参与组织制定了《医疗机构从业人员行为规范》?()A.卫生部医政司、国家食品药品监督管理局B.国家中医药管理局、卫生部主管部门C.卫生部、国家食品药品监督管理局、国家中医药管理局D.卫生部医政司、国家食品药品监督管理局、国家中医药管理局 [单选]痰液呈黄色,静置后分三层常见于A.细菌性肺炎B.肺结核C.慢性支气管炎D.支气管扩张症E.肺癌 [单选,A1型题]先进行动态显像获得局部灌注和血池影像,间隔一定的时间后再进行静态显像,这种联合显像的方法称为()。A.延迟显像B.多相显像C.介入显像D.负荷显像E.阳性显像 [问答题,简答题]消毒 [单选]图示静定梁及Mc的影响线,当梁承受全长向下均布荷载作用时,则弯矩Mc的值为:()A.Mc&gt;0B.Mc&lt;0C.Mc=0D.Mc不定,取决于a值 [单选]当边际产量大于平均产量时()A.平均产量增加;B.平均产量减少;C.平均产量不变;D.平均产量达到最低点。 [判断题]螺旋线圈属于机械式导线装臵。()A.正确B.错误 [名词解释]铁冒 [单选,A型题]下列哪种片剂用药后可缓缓释药、维持疗效几周、几月甚至几年()A、多层片B、植入片C、包衣片D、肠溶衣片E、缓释片 [名词解释]市场营销 [问答题,简答题]GMP的中文名称是? [单选]已将寻常性鱼鳞病的基因定位于()A.1q21B.1p22.3C.2q33-q35D.Xq25-1q32 [多选]与工程建设关系比较密切的刑事犯罪有()。A.重大责任事故罪B.受贿罪C.重大劳动安全事故罪D.渎职罪E.工程重大安全事故罪 [单选,A2型题,A1/A2型题]不符合恶性肿瘤所致贫血的是()A.肿瘤未侵犯骨髓时,不会发生溶血B.主要与出血有关C.营养不良D.造血功能减低E.除贫血外,血象和骨髓象无特殊改变 [单选]间接反映骨盆入口前后径的径线()A.髂棘间径B.髂嵴间径C.骶耻外径D.出口横径E.出口后矢状径 [单选]专供婴幼儿的主、辅食品,必须符合()判定的营养、卫生标准。A、国务院卫生行政部门B、生产厂家C、销售商店D、超级市场 [单选]按《铁路技术管理规程》附件的编号,绿色许可证是()。A.附件1B.附件2C.附件3D.附件4 [单选]()不属于按拣货单位分区。A.箱装拣货区B.单车拣货区C.拣货人员工作区D.台车拣货区 [单选]呼吸纯氧时,COHb的半衰期约为()A.0.5小时B.1小时C.1.5小时D.2小时E.2.5小时 [单选]管理信息系统有以下三个特点:在企业管理中全面使用计算机;采用决策模型解决结构化的决策问题和使用()。A、数据库技术B、数据库技术和计算机网络C、计算机网络技术D、通信技术 [单选,A2型题,A1/A2型题]下列错误的是()。A.发绀见于缺氧,缺氧一定有发绀B.发绀是皮肤、黏膜呈青紫色C.发绀常见的部位为口唇、指(趾)、甲床D.血液中存在异常血红蛋白的绝对量也可出现发绀E.发绀是血液中还原血红蛋白增多所致 [单选]关于传染病感染过程的各种表现,下列哪种说法是正确的()A.隐性感染极为少见B.病原体感染必引起发病C.每个传染病都存在潜伏性感染D.显性感染的传染病不过是各种不同的表现之一,而不是全部E.病原体必引起炎症过程和各种病理改变 [单选]铁路平面无线调车A型号电台,在调车作业中,连结员或制动员按下红键时,辅助语音提示为()。A.停车B.注意减速C.紧急停车(&times;号&times;号)D.&times;号解锁 [单选]下列哪种情况可采用腰麻()A.脊髓前角灰质炎B.脊髓肿瘤C.慢性贫血(血红蛋白700g/L以上)D.盆腔肿瘤E.严重高血压 [单选]某设备供应商,不按设备采购合同的约定交付设备,设备供应商应承担()。A.侵权责任B.刑事责任C.违约责任D.行政责任 [单选,A2型题,A1/A2型题]单纯性肾病常见的并发症是()A.感染B.严重循环充血C.凝血障碍D.贫血E.高血压脑病 [单选]对于髋关节置换术,下列哪种体位是适当的()A.髋屈曲超过90度B.下肢内收超过身体中线C.伸髋外旋D.屈髋内旋E.髋外展 [单选,A2型题,A1/A2型题]下列关于肋骨的说法正确的是()A.第7~10肋软骨连成肋弓B.分为真肋和假肋C.肋骨均以肋软骨与胸骨相连D.第1~8肋前端连于胸骨,称真肋E.第10~12肋前端游离 [单选]下列不属于心理发展规律性的是()。A.心理发展的不平衡性B.心理发展共性和个性统一C.心理发展的整体性D.心理发展的方向性和顺序性
相关文档
最新文档