化工原理第一章_流体力学
化工原理-1章流体流动

yi为各物质的摩尔分数,对于理想气体,体积分数与摩尔分数相等。
②混合液体密度计算
假设液体混合物由n种物质组成,混合前后体积
不变,各物质的质量百分比分别为ωi,密度分 别为ρi
n 1 2 混 1 2 n
1
例题1-1 求甲烷在320 K和500 kPa时的密度。
第一节 概述
流体: 指具有流动性的物体,包括液体和气体。
液体:易流动、不可压缩。 气体:易流动、可压缩。 不可压缩流体:流体的体积不随压力及温度变化。
特点:(a) 具有流动性 (b) 受外力作用时内部产生相对运动
流动现象:
① 日常生活中
② 工业生产过程中
煤气
填料塔 孔板流量计
煤气
水封
泵 水池
水
煤 气 洗 涤 塔
组分黏度见---附录9、附录10
1.2.1 流体的压力(Pressure) 一.定义
流体垂直作用于单位面积上的力,称为流体 的压强,工程上一般称压力。
F [N/m2] 或[Pa] P A
式中 P──压力,N/m2即Pa(帕斯卡);
F──垂直作用在面积A上的力,N;
A──作用面积,m2。
工程单位制中,压力的单位是at(工程大气压)或kgf/cm2。 其它常用的压力表示方法还有如下几种: 标准大气压(物理大气压)atm;米水柱 mH2O; 毫米汞柱mmHg; 流体压力特性: (1)流体压力处处与它的作用面垂直,并总是指向流体 的作用面。
液体:T↑,μ↓(T↑,分子间距↑,范德华力↓,内摩擦力↓) 气体:T↑,μ↑(T↑,分子间距有所增大,但对μ影响不大, 但T↑,分子运动速度↑,内摩擦力↑)
压力P 对气体粘度的影响一般不予考虑,只有在极高或极 低的压力下才考虑压力对气体粘度的影响。
化工原理复习题1~6章

第一章 流体力学与应用一、填空(1)流体在圆形管道中作层流流动,如果只将流速增加一倍,则阻力损失为原来的 2 倍;如果只将管径增加一倍而流速不变,则阻力损失为原来的 1/4 倍。
(2)离心泵的特性曲线通常包括 H-Q 曲线、 η-Q 和 N-Q 曲线,这些曲线表示在一定 转速 下,输送某种特定的液体时泵的性能。
(3) 处于同一水平面的液体,维持等压面的条件必须是 静止的 、 连通着的 、 同一种连续的液体 。
流体在管内流动时,如要测取管截面上的流速分布,应选用 皮托 流量计测量。
(4) 如果流体为理想流体且无外加功的情况下,写出: 单位质量流体的机械能衡算式为常数=++=ρp u gz E 22; 单位重量流体的机械能衡算式为常数=++=gp g u z E ρ22; 单位体积流体的机械能衡算式为;常数=++=p u gz E 22ρρ(5) 有外加能量时以单位体积流体为基准的实际流体柏努利方程为z 1ρg+(u 12ρ/2)+p 1+W s ρ= z 2ρg+(u 22ρ/2)+p 2 +ρ∑h f ,各项单位为 Pa (N/m 2) 。
(6)气体的粘度随温度升高而 增加 ,水的粘度随温度升高而 降低 。
(7) 流体在变径管中作稳定流动,在管径缩小的地方其静压能 减小 。
(8) 流体流动的连续性方程是 u 1A ρ1= u 2A ρ2=······= u A ρ ;适用于圆形直管的不可压缩流体流动的连续性方程为 u 1d 12 = u 2d 22= ······= ud 2 。
(9) 当地大气压为745mmHg 测得一容器内的绝对压强为350mmHg ,则真空度为 395mmHg 。
测得另一容器内的表压强为1360 mmHg ,则其绝对压强为2105mmHg 。
(10) 并联管路中各管段压强降 相等 ;管子长、直径小的管段通过的流量 小 。
化工原理——带答案

第一章流体力学1.表压与大气压、绝对压的正确关系是(A )。
A.表压=绝对压-大气压B.表压=大气压-绝对压C.表压=绝对压+真空度2.压力表上显示的压力,即为被测流体的(B )。
A.绝对压B.表压C.真空度D.大气压3.压强表上的读数表示被测流体的绝对压强比大气压强高出的数值,称为(B )。
A.真空度B.表压强C.绝对压强D.附加压强4.设备内的真空度愈高,即说明设备内的绝对压强(B )。
A.愈大B.愈小C.愈接近大气压D.无法确定5.一密闭容器内的真空度为80kPa,则表压为(B )kPa。
A. 80B. - 80C. 21.3D.181.36.某设备进、出口测压仪表中的读数分别为p1(表压)=1200mmHg和p2(真空度)=700mmHg,当地大气压为750mmHg,则两处的绝对压强差为(D )mmHg。
A.500B.1250C.1150D.19007.当水面压强为一个工程大气压,水深20m处的绝对压强为(B )。
A. 1个工程大气压B. 2个工程大气压C. 3个工程大气压 D. 4个工程大气压8.某塔高30m,进行水压试验时,离塔底10m高处的压力表的读数为500kpa,(塔外大气压强为100kpa)。
那么塔顶处水的压强(A)。
A. 403 . 8kpaB. 698. 1kpaC. 600kpaD. 100kpa9.在静止的连续的同一液体中,处于同一水平面上各点的压强(A )A.均相等B.不相等C.不一定相等10.液体的液封高度的确定是根据(C ).A.连续性方程B.物料衡算式C.静力学方程D.牛顿黏性定律11.为使U形压差计的灵敏度较高,选择指示液时,应使指示液和被测流体的密度差(P指-P)的值(B )。
A.偏大B.偏小C.越大越好12.稳定流动是指流体在流动系统中,任一截面上流体的流速、压强、密度等与流动有关的物理量(A )。
A.仅随位置变,不随时间变B.仅随时间变,不随位置变C.既不随时间变,也不随位置变D.既随时间变,也随位置变13.流体在稳定连续流动系统中,单位时间通过任一截面的(B )流量都相等。
《化工原理》第二版 邹华生主编 第一章习题

超压; (2)防止气体外泄; 水封
0 P 0 h0 水 气体
4.远距离液位测定 4.远距离液位测定
例:为测量腐性液体贮槽中的存液量,采用图示的 为测量腐性液体贮槽中的存液量, 装置.测量时通入压缩空气, 装置.测量时通入压缩空气,控制调节阀使空气缓 慢地鼓泡通过观察瓶.今测得U形压差计读数为R 慢地鼓泡通过观察瓶.今测得U形压差计读数为R= 130mm,通气管距贮槽底面h=20cm 贮槽直径为2m h=20cm, 2m, 130mm,通气管距贮槽底面h=20cm,贮槽直径为2m, 液体密度为980kg 980kg/ 液体密度为980kg/m3,试求贮槽内液体的储存量为 多少吨? 多少吨?
1.1 几个概念 一.连续介质模型 二.流体的性质 三、流体所受到的力 1.2 流体静力学方程及其应用 1.2.1 静止流体所受的力 1.2.2 流体静力学基本方程 1.2.3 流体静力学基本方程的应用
第一章 流体力学基础 1
1.2.3 流体静力学基本方程的应用
1.压力计 .
(1)U 形压力计
ρ A 1穧 h R pa
p1 + ρgh = pa + ρ 0 gR
p1 = p a + ρ 0 gR − ρgh
2
3 ρ0
指示液
(2)单管压力计 单管压力计 单管压力计是U形压力计的 单管压力计是 形压力计的 变形,用一只杯形代替U形压强 变形,用一只杯形代替 形压强 计中的一根管子,如图2所示 所示。 计中的一根管子,如图 所示。 由于杯的截面S杯远大于玻璃 管的截面S玻(一般情况下S杯/S玻 ),所以其两端有压强差 ≥200),所以其两端有压强差 ), 根据等体积原理, 时,根据等体积原理,细玻璃管 一边的液柱升高值h1远大于杯内 液面下降h2,即h1>>h2,这样h2 可忽略不计, 可忽略不计,在读数时只需读一 边液柱高度,误差比U形压差计 边液柱高度,误差比 形压差计 3 第一章 流体力学基础 减少一半
化工原理第一章流体力学基础

第一章 流体力学基础
m GA uA
17/37
1.3.1 基本概念
三、粘性——牛顿粘性定律
y x
v
内部存在内摩擦力或粘滞力
v=0
内摩擦力产生的原 因还可以从动量传 递角度加以理解:
v
单位面积上的内摩擦力,N m2
dv x
dy
动力粘度 简称粘度
速度梯度
----------------牛顿粘性定律
(2)双液柱压差计
p1
1略小于2
z1
p1 p2 2 1 gR
p1
R
p2
R
p2
1
z1
R 2
0
倾斜式压差计
浙江大学本科生课程 化工原理
第一章 流体力学基础
读数放大
14/14
幻灯片2目录
1.3 流体流动的基本方程 1.3.1 基本概念 1.3.2 质量衡算方程 1.3.3 运动方程 一、作用在流体上的力 二、运动方程 三、N-S方程 四、欧拉方程 五、不可压缩流体稳定层流时的N-S 方程若干解
v x v y vz 0
t x
y
z
t
vx
x
vy
y
vz
z
v x x
v y y
v z z
0
D
Dt
v x x
v y y
v z z
0
-------连续性方程微分式
若流体不可压缩,则D/Dt=0
v x v y v z 0 x y z
浙江大学本科生课程 化工原理
第一章 流体力学基础
dy
N m2 ms
Ns m2
Pa s
m
1Pa s 10P 1000cP
化工原理(上册)—化工流体流动与传热第三版柴诚敬习题答案

化工原理(上册) - 化工流体流动与传热第三版柴诚敬习题答案第一章:引言习题1.1答案:该题为综合性问题,回答如下:根据流体力学原理,液体在容器中的自由表面是一个等势面,即在平衡时,液体表面上各点处的压力均相等。
所以整个液体处于静止状态。
习题1.2答案:该题为计算题。
首先,根据流速的定义:流体通过某个截面的单位时间内通过的体积与截面积之比,可得流速的公式为:v = Q / A,其中v表示流速,Q表示流体通过该截面的体积,A表示截面积。
已知流速v为10m/s,截面积A为0.5m²,代入公式计算得:Q = v × A = 10m/s × 0.5m² = 5m³/s。
所以,该管道内的流体通过的体积为5立方米每秒。
习题1.3答案:该题为基础性知识题。
流体静压头表示流体的静压差所能提供的相当于重力势能的高度。
根据流体的静压力与流体的高度关系可知,流体静压力可以通过将流体的重力势能转化为压力单位得到。
由于重力势能的单位可以表示为m·g·h,其中m为流体的质量,g为重力加速度,h为高度。
而流体的静压头就是将流体静压力除以流体的质量得到的,即流体静压力除以流体的质量。
所以,流体静压头是等于流体的高度。
第二章:流体动力学方程习题2.1答案:该题是一个计算题。
根据题意,已知流体的密度ρ为1.2 kg/m³,截面积A为0.4 m²,流速v为2 m/s,求流体的质量流量。
根据质量流量公式:Q = ρ × A × v,代入已知数值计算得:Q = 1.2 kg/m³ × 0.4 m² × 2 m/s = 0.96 kg/s。
所以,流体的质量流量为0.96 kg/s。
习题2.2答案:该题为综合性问题,回答如下:流体动量方程是描述流体运动的一个重要方程,其中包含了流体的质量流量、速度和压力等参数。
化工原理_第三版_陈敏恒_课件_华东理工内部 第01章

=1.204×105Pa(绝压) 5 5 4 pA=1.204×10 -1.013×10 =1.91×10 Pa(表压)
1.2.4.2 烟囱拔烟
pA=p2+ρ冷gh pB=p2+ρ热gh 由于ρ冷>ρ热,则pA>pB 所以拔风 烟囱拔风的必要条件是什么?
1.2.4.3 浮力的本质
物体上下所受压强不同 取微元: 压差力=(p2-p1)dA=ρghdA=ρgdV排 V排=ΣdV排
4)质量守恒方程(连续性方程) 取控制体作物料衡算(欧拉法)
1u1 A1 2 u 2 A2 .dV t V 定态流动: .dV 0 t V
1u1 A1 2 u 2 A2 c
即:q m 1 q m 2 c — —连续性方程式 对不可压缩流体: c,q v1 q v 2 c u1 A1 u 2 A2 c,
分析方法(数学分析法) ①取控制体 ②作力衡算 ③结合本过程的特点,解微分方程 1.2.1.4 静力学方程应用条件 ①同种流体且不可压缩(气体高差不大时仍可用) ②静止(或等速直线流动的横截面---均匀流) ③重力场 ④单连通 1.2.2 流体的总势能 总势能 (压强能与位能之和) 虚拟压强
1.2.3 压强的表示方法 1.2.3.1 单位
流线演示:
返回
流体黏性:
返回
1.3 流体流动中的守恒原理 1.3.1 质量守恒
1)流量、流速 流量——质量流量qm, kg/s (ρ· qv ) 体积流量qv, m3/s 流速——质量流速G, kg/m2s( qm /A) 体积流速u, m/s ( qv /A) 2)点速度u 圆管:粘性,速度分布 工程处理方法:平均值
积分得 p+ρgz=常数 或 p1 p2 gz1 gz 2 等高等压,等压面
化工原理完整教材课件 PPT

基本原理及其流动规律解决关问题。以
图1-1为煤气洗涤装置为例来说明: 流体动力学问题:流体(水和煤气)
在泵(或鼓风机)、流量计以及管道中 流动等;
流体静力学问题:压差计中流体、 水封箱中的水
图1-1 煤气洗涤装置
1.1 概述
确定流体输送管路的直径, 计算流动过程产生的阻力和 输送流体所需的动力。
根据阻力与流量等参数 选择输送设备的类型和型号, 以及测定流体的流量和压强 等。
流体流动将影响过程系 统中的传热、传质过程等, 是其他单元操作的主要基础。
图1-1 煤气洗涤装置
1.1.1 流体的分类和特性
气体和流体统称流体。流体有多种分类方法: (1)按状态分为气体、液体和超临界流体等; (2)按可压缩性分为不可压流体和可压缩流体; (3)按是否可忽略分子之间作用力分为理想流体与粘
化工原理完整教材课件
第一章 流体流动
Fluid Flow
--内容提要--
流体的基本概念 静力学方程及其应用 机械能衡算式及柏努 利方程 流体流动的现象 流动阻力的计算、管路计算
1. 本章学习目的
通过本章学习,重点掌握流体流动的基本原理、管 内流动的规律,并运用这些原理和规律去分析和解决流 体流动过程的有关问题,诸如:
气体的密度必须标明其状态。 纯气体的密度一般可从手册中查取或计算得到。当压
强不太高、温度不太低时,可按理想气体来换算:
(1-3)
式中
p ── 气体的绝对压强, Pa(或采用其它单位); M ── 气体的摩尔质量, kg/kmol;
性流体(或实际流体); (4)按流变特性可分为牛顿型和非牛倾型流体;
流体区别于固体的主要特征是具有流动性,其形状随容器形状 而变化;受外力作用时内部产生相对运动。流动时产生内摩擦从而 构成了流体力学原理研究的复杂内容之一
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
牛顿型流体
实际流体
④ 按流变特性分
非牛顿型流体
2020/8/4
4
二、 研究流体流动问题的重要性 流体流动与输送是最普遍的化工单元操作 之一; 研究流体流动问题也是研究其它化工单元 操作的重要基础。
2020/8/4
5
2020/8/4
6
2020/8/4
7
第一章流体力学
第二节流体静力学
一、流体的主要物理量
在垂直方向上作用于液柱的力有:
p1
1. 下底面所受之向上总压力为p2A;
G
2. 上底面所受之向下总压力为p1A;
z1
3. 整个液柱之重力G=ρgA(Z1-Z2)。
p2
z2
p0
静止液体中,上述三力之合力应为零
p1
h
即: p2A-p1A-ρgA(Z1-Z2)=0 G
z1
p2=p1+ρg(Z1-Z2) ........1) p2 z2
如果将液柱的上底面取在液面上,设液面上方的压力为Βιβλιοθήκη 0,液柱Z1-Z2=h,则上式可改写为
p2=p0+ρgh
) 上两式即为流体静力学基本方程式.
........2
2、方程的讨论 p p0 gh
1)当容器液面上方压强P0一定时,静止液体内部的压强
P与垂直距离h和液体密度ρ有关。即: p f , h
取1kg液体,令液体混合物中各组分的质量分数分别为:
x1、x2、、xn ,
其中xi
mi m总
当m总 1 kg时,xi mi
假设混合后总体积不变,
V总
x1
1
x2
2
xn
n
m总
m
1 x1 x2 xn
m 1 2
n
2)气体混合物的密度
——液体混合物密度计算式
取1m3 的气体为基准,令各组分的体积分数为:
1.密度定义
单位体积的流体所具有的质量,ρ; SI单位kg/m3
。
m
V
2. 影响ρ的主要因素 不同的流体密度是不同的,对一定的流体,密度是
压力p和温度T的函数,可用下式表示 :
f t, p
液体的密度随压力的变化甚小(极高压力下除外), 可忽略不计,但其随温度稍有改变,查液体密度时必 须注意温度条件。气体的密度随压力和温度的变化较
度的比值,用 d 表示。
d
,
4 C水
4C水 1000kg / m3
6、压力
1)、静压强(压强) p
定义:流体垂直作用于单位面积上的压力。
p Fv S
N/m2或Pa
2)、常见压强单位及其换算关系
压强的SI单位是Pa,称为帕斯卡。习惯上还有一些常 用单位,如:标准大气压(atm)、液柱高度、bar (巴)及kgf/cm2等。这些单位间换算关系为:
5)p=p0+ρgh可改写
p p0
g
h
由此可知,压强差的大小可利用液体柱高度来表示,这就
是液体压强计的根据,在使用液柱高度来表示压强或压强
差时,需指明何种液体。
对于不可压缩流体,密度不随压力变化,其静力 学基本方程可用下述方法推导。
1、流体静力学方程
现从静止液体中任意划出一垂直液柱,如图所示。液
柱的横截面积为A,液体密度为ρ,若以容器器底为基准
水平面,则液柱的上、下底面与基准水平面的垂直距离
分 。别为Z1和Z2,以p1与p2分别表示高度为Z1及Z2p处0 的压力
真空度
p2
绝对压强
大气压
绝对真空
• 注意:1 大气压随海拔高度、温度、湿度而变; 2 绝对压力不必标注,表压和真空度必须注明。
二、流体静力学方程及应用 流体静力学是研究流体在外力(重力和压力)作用
下达到平衡的规律,这时流体处于静止状态。由于重 力是不变的,变化的是压力,
因此,流体静力学实际上是讨论静止流体内部压力 (压强)变化的规律。描述这一规律的数学表达式, 称为流体静力学基本方程式
——气体混合物密度计算式
当混合物气体可视为理想气体时, 也可按下式计算:
m
pM m RT
——理想气体混合物密度计算式
平均摩尔质量
5.与密度相关的几个物理量
1)比容:单位质量的流体所具有的体积,用υ表示,
单位为m3/kg。 在数值上: V 1 m
2)比重(相对密度):某物质的密度与4℃下的水的密
大。 液体: f t ——不可压缩性流体
气体: f t, p ——可压缩性流体
3.气体密度的计算 压强、温度的变化都会明显影响气体的密度。一般情
况下(压力不太高、温度不太低)可按理想气体状态
方程式计算:
pV
m
RT
m
pM
M
V
RT
(密度换算可用)
4.混合物的密度
1)液体混合物的密度ρm
2)当容器液面上方压强p0一定时,静止液体内部的压强P 仅与垂直距离h有关,即: p h 因此,在静止的、连续的同一液体内,处于同一水平面 上的各点的压力都相等。此压力相等的水平面,称为等 压面 3)当液面上方的压强改变时,液体内部的压强也随之改 变即:液面上所受的压强能以同样大小传递到液体内部的 任一点。
第一章流体力学
第一章流体力学
第一节概述
一、流体
气体
1. 定义:具有流动性质的物体。 液体
2. 特点:
流态化固体
① 流动性
② 流动时的连续性
③ 没有一定的形状,随容器而定
2020/8/4
3
3. 分类:
气体
① 按状态分 液体
超临界流体 可压缩流体
② 按是否可压缩分
不可压缩流体 理想流体
③ 按是否可以忽略分子间作用力分
1atm = 1.013×105Pa = 1.0133bar = 760mmHg = 10.33mH2O = 1.033at=1.033kgf/cm2
3)、压强的表示方法 绝对压强: 以绝对真空为基准测得的压强。
表压或真空度: 以大气压为基准测得的压强。
p1
表压
绝对压强
表 压 = 绝对压强 - 大气压强 真空度 = 大气压强 - 绝对压强
A
B
C
1
2
3
4
5
6
⑴因1、2、3虽在同一水平面上,但不是连通着的 液体,所以1、2、3处压力不相等。
⑵因4、5、6在静止的连通着的同一种液体的同 一水平面上,所以4、5、6处压力相等。
4)从流体静力学的推导可以看出,它们只能用于静止的 连通着的同一种流体的内部,对于间断的并非单一流体的 内部则不满足这一关系。
xi
Vi V总
i =1, 2, …., n
当V总=1m3时, xi Vi
由 m 知,
V
混合物中各组分的质量为:1x1, 2 x2 ,......, n xn
若混合前后,气体的质量不变,m总 1x1 2x2 ....... nxn mV总
当V总=1m3时,
m 1x1 2 x2 ...... n xn