模拟滤波器
电路中的电子滤波器数字滤波与模拟滤波的比较

电路中的电子滤波器数字滤波与模拟滤波的比较电路中的电子滤波器:数字滤波与模拟滤波的比较概述:电子滤波器作为电路中的重要组成部分,广泛应用于各种电子设备中,用于滤除噪声和调节信号频率。
随着科技的不断发展,数字滤波器逐渐取代了传统的模拟滤波器,成为电子滤波器的主流技术。
本文将对数字滤波器和模拟滤波器进行比较,探讨它们各自的特点和适用场景。
一、模拟滤波器的特点和应用模拟滤波器是使用传统的模拟电路构成的滤波器,其特点如下:1. 连续信号处理:模拟滤波器对输入信号进行连续处理,能够精确地处理输入信号中的每个时刻的数值。
2. 宽带信号处理:模拟滤波器能够处理宽频带信号,适用于频率范围较宽的应用场景。
3. 较低的处理延迟:模拟滤波器在处理信号时的延迟较低,适用于实时性要求较高的应用。
模拟滤波器广泛应用于音频设备、射频通信、医疗仪器等领域,但也存在一些缺点。
模拟滤波器的设计和制造成本较高,体积较大,并且受到环境的影响比较大,容易受到温度、湿度等因素的影响,从而导致性能下降。
二、数字滤波器的特点和应用数字滤波器是通过数字信号处理技术实现的滤波器,其特点如下:1. 离散信号处理:数字滤波器对输入信号进行离散处理,将连续信号转换为离散信号,然后进行处理。
2. 精确度高:数字滤波器具有较高的精确度,可以通过调整数字滤波器的参数进行精确的滤波处理。
3. 稳定性好:数字滤波器在不受环境温度、湿度等因素的干扰,具有较好的稳定性。
4. 适应性强:数字滤波器可以根据输入信号的特点进行动态调整,适用于不同的应用场景。
数字滤波器广泛应用于音频处理、图像处理、通信系统等领域。
随着数字信号处理技术的不断发展,数字滤波器的性能和适用范围也在不断扩展。
三、数字滤波器与模拟滤波器的比较数字滤波器和模拟滤波器各自有其独特的特点和优势,下面将对两者进行比较:1. 精度:数字滤波器由于使用离散信号处理技术,能够实现更高的精度和准确度。
而模拟滤波器受到电子元器件和环境因素的限制,精度相对较低。
常用模拟滤波器的设计方法

常用模拟滤波器的设计方法设计模拟滤波器常用的方法有很多种,如巴特沃斯滤波器、切比雪夫滤波器、脉冲响应滤波器等。
这些方法各有特点,适用于不同的滤波器设计需求。
下面将逐步介绍常用模拟滤波器的设计方法。
1. 巴特沃斯滤波器的设计方法巴特沃斯滤波器是一种最常用的模拟滤波器,其主要特点是通频带的频率响应是平坦的,也就是说在通过的频率范围内的信号不会被衰减或增强。
巴特沃斯滤波器的设计方法包括以下步骤:1.1 确定滤波器类型首先,根据滤波器的设计需求,确定滤波器的类型,包括低通滤波器、高通滤波器、带通滤波器和带阻滤波器。
不同类型的滤波器在频率响应和陡度上有一些差异。
1.2 确定滤波器模型根据滤波器类型,选择相应的滤波器模型。
比如,低通滤波器通常选择Butterworth滤波器模型、Elliptic滤波器模型或者Chebyshev滤波器模型。
1.3 确定滤波器参数确定滤波器的相关参数,包括截止频率、阻带衰减和通带波纹等。
这些参数的选择需要根据特定的滤波器性能需求决定。
1.4 开始设计根据确定的滤波器模型和参数,开始进行滤波器的设计。
可以使用电路设计软件进行模拟,或者手动计算和画图设计。
1.5 仿真和优化设计完成后,对滤波器进行仿真,检查其频率响应和时域特性。
根据仿真结果,可以调整一些参数以优化滤波器的性能。
1.6 实际搭建和测试在电路板上搭建设计好的滤波器电路,并进行实际测试。
测试结果比较与设计要求进行评估和调整,最终得到满足要求的滤波器。
2. 切比雪夫滤波器的设计方法切比雪夫滤波器是一种在通频带内具有较窄的波纹和较快的过渡带的滤波器。
其设计方法如下:2.1 确定滤波器类型和阶数选择滤波器的类型和阶数,通常切比雪夫滤波器可以选择类型Ⅰ和类型Ⅱ。
阶数的选择取决于滤波器对波纹的要求和频率范围。
2.2 确定滤波器参数确定滤波器的相关参数,包括截止频率、阻带衰减、通带波纹和过渡带宽度等。
这些参数的选择需要根据特定的滤波器性能需求决定。
数字滤波器与模拟滤波器的对比分析

数字滤波器与模拟滤波器的对比分析一、引言滤波器是信号处理中常用的工具之一,用于去除信号中的噪声或者对信号进行形态调整。
数字滤波器和模拟滤波器是滤波器的两种主要类型。
本文将从原理、实现方式以及应用场景等方面对数字滤波器和模拟滤波器进行对比分析。
二、数字滤波器1. 原理与实现方式数字滤波器是通过数字信号处理技术对信号进行滤波处理。
它将信号离散化后,采用算法对每个采样点进行滤波计算,然后再进行插值或重构恢复成连续信号。
常见的数字滤波器类型包括无限脉冲响应(infinite impulse response, IIR)滤波器和有限脉冲响应(finite impulse response, FIR)滤波器等。
2. 优点(1)灵活性高:数字滤波器可以自由调整滤波器参数,如截止频率、滤波特性等,以适应不同的应用需求。
(2)精确性高:数字滤波器可以提供较高的滤波精度,并且可以通过增加采样点数来进一步提高精度。
3. 应用场景数字滤波器广泛应用于数字通信、音频处理、图像处理等领域。
例如,在语音信号中去除环境噪声、在音频设备中进行均衡器调节、在数字相机中进行图像去噪等。
三、模拟滤波器1. 原理与实现方式模拟滤波器是基于电路原理对信号进行滤波处理。
它通过电容、电感、电阻等元件组成的RC或RLC电路来实现滤波功能。
常见的模拟滤波器类型包括低通滤波器、高通滤波器、带通滤波器等。
2. 优点(1)实时性好:模拟滤波器能够处理连续信号,无需离散化处理,因此具有较好的实时性能。
(2)低噪声性能:模拟滤波器在信号处理过程中噪声较小,适用于对信号质量要求较高的场景。
3. 应用场景模拟滤波器常用于电子仪器中,如模拟电视机、模拟音响等。
此外,在一些对信号处理要求较高的场景,如无线通信、雷达信号处理等,也会使用模拟滤波器。
四、数字滤波器与模拟滤波器的对比1. 实现方式数字滤波器通过数字信号处理算法实现滤波效果,而模拟滤波器通过电路中的电子元件来实现滤波效果。
滤波器设计中的数字滤波器和模拟滤波器的比较

滤波器设计中的数字滤波器和模拟滤波器的比较在信号处理和电子工程领域中,滤波器是非常重要的一类设备。
滤波器的作用是去除信号中的杂散成分,使得输出信号更接近于所期望的信号。
根据滤波器的工作原理和实现方式的不同,可以将滤波器分为数字滤波器和模拟滤波器两种类型。
本文将对这两种类型的滤波器进行比较和分析。
一、数字滤波器数字滤波器是基于数字信号处理的原理设计和实现的。
它将连续时间信号转换为离散时间信号,并利用数字信号处理算法来处理信号。
数字滤波器的主要特点如下:1. 数字化处理:数字滤波器将信号进行采样,将连续信号转换为离散信号。
这种数字化的处理方式能够使得滤波器具备更高的灵活性和可调性。
2. 稳定性:数字滤波器具有较好的稳定性,能够在无失真的情况下处理信号。
而且数字滤波器易于实现自适应滤波算法,能够对输入信号的变化做出及时的响应。
3. 精确性:数字滤波器的处理过程是以数字化精度为基础的,因此可以实现较高的精确性。
通过调整数字滤波器的采样频率和滤波算法,可以实现更精细的滤波效果。
4. 实时性:由于数字滤波器的工作是基于离散时间信号的处理,所以数字滤波器具备较高的实时性能。
这使得数字滤波器广泛应用于实时信号处理和通信系统中。
二、模拟滤波器模拟滤波器是基于电路和模拟信号处理的原理设计和实现的。
它通过电子元器件来实现信号处理和滤波的功能。
模拟滤波器的主要特点如下:1. 连续处理:模拟滤波器通过连续时间信号传输和处理来实现信号滤波。
这种连续处理的方式能够使得模拟滤波器具备更高的带宽和动态范围。
2. 近似性:对于非常复杂的滤波算法,模拟滤波器可以提供较好的近似性能。
模拟滤波器能够较好地对信号进行平滑和抑制噪声等处理,适用于一些对滤波效果要求较高的应用场景。
3. 廉价性:由于模拟滤波器是基于电路的设计和实现,因此相对来说成本更低。
这使得模拟滤波器在某些应用中具有优势,比如对于信号干扰要求较高的环境。
4. 实现复杂度:模拟滤波器的设计和实现过程相对复杂,需要考虑电路的稳定性、元器件的性能和参数等因素。
模拟滤波器基本概念和分类

模拟滤波器基本概念和分类引言:模拟滤波器是信号处理中常用的一种工具,可以对信号进行滤波和频率选择。
本文将介绍模拟滤波器的基本概念和分类,帮助读者了解其原理和应用。
一、模拟滤波器的基本概念1.1 信号滤波信号滤波是指对输入信号进行频率选择,从而去除或改变信号中的某些频率成分。
滤波器可以通过改变信号的频谱来实现这一目的。
1.2 模拟滤波器模拟滤波器是一种对连续时间信号进行滤波的滤波器。
它由一组模拟电路组成,能够对输入信号进行频率选择,输出经过滤波后的信号。
与数字滤波器相比,模拟滤波器直接处理连续时间信号,具有较高的精度和较低的延迟。
二、模拟滤波器的分类根据滤波器的特性和工作原理,模拟滤波器可以分为以下几种常见分类。
2.1 低通滤波器低通滤波器具有传递低频信号而削减高频成分的特性。
它在截止频率以下将信号通过,而在截止频率以上对信号进行削弱。
2.2 高通滤波器高通滤波器的特点是能够传递高频信号并削弱低频成分。
它在截止频率以下削弱信号,而在截止频率以上将信号通过。
2.3 带通滤波器带通滤波器能够传递一定范围内的频率信号,而削弱其他频率成分。
它在一个频率范围内对信号进行增益,而在其他频率范围内对信号进行削弱。
2.4 带阻滤波器带阻滤波器的作用是削弱一定范围内的频率信号,而传递其他频率成分。
它在一个频率范围内对信号进行削弱,而在其他频率范围内对信号进行增益。
2.5 其他类型的滤波器除了以上常见类型的滤波器外,还有一些特殊的滤波器,如全通滤波器、陷波滤波器等。
这些滤波器在特定应用中具有重要的作用。
结论:模拟滤波器是对连续时间信号进行滤波的重要工具,在信号处理和电子电路设计中具有广泛的应用。
本文介绍了模拟滤波器的基本概念和分类,希望读者对其有更深入的了解。
通过对模拟滤波器的学习,可以更好地理解滤波原理和选择适合的滤波器应用于实际工程中。
模拟滤波器与数字滤波器的优缺点分析

模拟滤波器与数字滤波器的优缺点分析滤波器在信号处理领域中扮演着重要的角色,可以去除或者弱化信号中的噪声,滤波器的种类繁多,其中模拟滤波器和数字滤波器是应用较广泛的两类。
模拟滤波器主要基于模拟电路的原理进行设计和实现,而数字滤波器则是基于数字信号处理的理论和技术进行设计和实现。
本文将对比分析模拟滤波器和数字滤波器的优缺点。
一、模拟滤波器的优点1. 宽频带特性:模拟滤波器可以处理宽频带信号,因为模拟电路可以实现高速运算和宽频带放大。
2. 低延迟:由于模拟滤波器的工作原理与传统模拟电路相似,信号的处理过程几乎没有延迟,非常适合对实时性要求较高的应用场景。
3. 高精度:模拟滤波器的性能受到器件的精度和参数的限制,可以获得较高的精度和稳定性。
4. 灵活性:模拟滤波器的参数可以通过电路的调整和改变来实现,具有较高的灵活性。
可以实现各种滤波器类型,如低通滤波器、高通滤波器、带通滤波器等。
二、模拟滤波器的缺点1. 抗干扰性差:模拟滤波器对于噪声和干扰信号的抑制能力较差,因为模拟电路易受环境、工艺和温度等因素的影响。
2. 易受器件参数变化影响:模拟滤波器的性能受到器件参数的影响,当器件参数变化时,滤波器的频率响应可能会发生偏移,导致性能下降。
三、数字滤波器的优点1. 抗干扰性强:数字滤波器可以采用数字信号处理算法对信号进行处理,具有较强的抗干扰性能。
2. 稳定性好:数字滤波器的性能受到数字系统的稳定性保证,不受环境和温度等因素的影响,保持较好的性能稳定性。
3. 容易实现复杂功能:数字滤波器可以基于现有的数字信号处理算法实现复杂的滤波器功能,如FIR滤波器和IIR滤波器等。
4. 参数可调性强:数字滤波器的参数可以通过软件编程来调整和改变,具有较高的灵活性。
四、数字滤波器的缺点1. 需要采样和量化:数字滤波器在处理模拟信号时需要对信号进行采样和量化,这会引入采样误差和量化误差。
2. 延迟较大:数字滤波器的处理过程需要一定的时间延迟,对于实时性要求较高的应用场景可能不太适用。
模拟滤波器和数字滤波器

数字滤波器用于离散系统;模拟滤波器用于连续时间系统,也可以用在离散时间系统中,比如SC(开关电容)滤波器。
数字滤波器由数字乘法器、加法器和延时单元组成的一种算法或装置。
数字滤波器的功能是对输入离散信号的数字代码进行运算处理,以达到改变信号频谱的目的。
数字滤波器可用计算机软件实现,也可用大规模集成数字硬件实现。
模拟滤波器有有源和无源的,有源滤波器主要是有运放,或者跨到运放,及电阻,电容构成。
无源的滤波器主要是R,L,C构成。
模拟滤波器会有电压漂移、温度漂移和噪声等问题,而数字滤波器不存在这些问题,因而可以达到很高的稳定度和精度。
从实现手段上看,模拟滤波器一般用电容,电感这些模拟器件搭建的,数字滤波器可以通过软件或者数字芯片来实现。
模拟滤波器参数改变时要更换电容、电感,很麻烦。
数字滤波器参数改变时有时只需要修改一下系数就可以做到了(如软件实现时)。
从技术指标上看,举个例子模拟滤波器要达到-60dB就非常困难了,而数字滤波器可以比较容易地达到这个指标。
沟通模拟和数字滤波器的桥梁我觉得是采样定理。
一般是将模拟信号x(t)进行采样(如A/D变换)得到数字信号x(n),再将这些数字信号通过数字滤波器,此时滤波器输出的是数字信号y(n),y(n)再进行一个D/A转换器就得到了y(t)。
从x(t)到y(t)可以理解为模拟滤波。
1。
数字滤波器对外界环境不太敏感,具有更高的可靠性。
2。
数字滤波器可以实现精确的线性相位和多速率处理等模拟滤波器无法实现的功能。
3。
数字滤波器只要提高字长,可以实现任意精度的信号处理。
4。
数字滤波器实现更加灵活,并能同时进行信号的存储。
5,当然,数字处理的信号的频域宽度要受到采样率的限制模拟滤波器和数字滤波器最大的区别是数字滤波器关于Fs/2频率是翻转的,也就是对称的;而模拟滤波器不是。
所以在DAC之中会选择大量插值滤波,把镜频频率放到很远的频点上,之后在射频段用声表这样的模拟滤波器滤掉镜频。
模拟滤波器的原理和设计方法

模拟滤波器的原理和设计方法模拟滤波器是电子工程领域中常用的一种电路设备,它能够对电信号进行滤波和频率选择处理。
本文将介绍模拟滤波器的基本原理和常见的设计方法。
一、模拟滤波器的原理模拟滤波器是一种对连续信号进行频域处理的电路,其基本原理是利用电容、电感和电阻等元件对不同频率的信号进行衰减或放大,从而实现对特定频率范围内信号的选择性传输。
常见的模拟滤波器有两种类型:低通滤波器和高通滤波器。
低通滤波器能够传递低频信号而阻断高频信号,而高通滤波器则相反,可以传递高频信号而阻断低频信号。
在电路设计中,模拟滤波器通常由放大器、电容和电感等元件组成。
其中,放大器承担信号放大的功能,电容和电感则分别对应着电路的频率选择和衰减作用。
通过合理选择元件的数值和连接方式,可以实现不同频率范围内的信号滤波。
二、模拟滤波器的设计方法1. 确定滤波器类型在进行滤波器设计时,首先需要明确所需的滤波器类型,是需要低通滤波器还是高通滤波器,还是其他类型的滤波器。
2. 确定滤波器的频率响应根据滤波器的应用需求,确定所需的频率响应,即确定需要传递的频率范围。
3. 选择滤波器的拓扑结构根据滤波器类型和频率响应的要求,选择合适的滤波器拓扑结构。
常见的滤波器结构有活性滤波器和无源滤波器两种,其中活性滤波器较为常用。
4. 设计滤波器的元件数值根据所选的滤波器结构,确定电容和电感的数值。
这可以通过使用合适的设计软件或公式进行计算得出。
5. 进行滤波器的电路分析和模拟使用仿真软件对设计的滤波器电路进行分析和模拟,以验证其性能和满足设计需求。
6. 选择合适的元器件根据电路分析和模拟的结果,选择合适的元器件进行实际搭建和测试。
在选择元器件时,需考虑到其性能参数、可获得性以及成本等因素。
7. 进行滤波器的实际测试和调整搭建完成滤波器电路后,进行实际的测试和调整,以进一步优化滤波器的性能。
三、总结模拟滤波器是一种常用的电路设备,其原理基于电容、电感和电阻等元件对信号进行频率选择性传输。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
信号 输出
滤波网络举例:
R
C
Vin
C Vout Vin
R Vout
C
Vin L
Vout Vin C
L Vout
低通 网络
高通 网络
带阻 网络
带通 网络
二、时域滤波
利用时间序列过滤的网络,称之为时域滤波, 数学模型:
y(t) h(t) f (t)
f (t)in
a0
a1
a2
aN 1
相加
横向滤波器
二、模拟滤波和数字滤波含义:
模拟滤波器: 如果构成滤波器的电子器件是模拟元件,则
称这种滤波器为模拟滤波器。
模拟滤波器
无源滤波器:无源元件(R、L、C) 有源滤波器:含有源器件(运放等)
无源滤波器器件
数字滤波器:
如果构成滤波器的电子器件是数字元件或数 字信号处理器。或利用计算机对离散信号直接 处理都称数字滤波器。 1.集成数字滤波器
一、网络函数一般式:
H
s
P( s ) amsm am1sm1 a1s a0 Q( s ) bnsn bn1sn1 b1s b0
其中:a和b都是实系数。
网络的传递函 数
二、零点和极点
零点:P(s)=0的根就称为H(s)的零点。
极点:Q(s)=0的根就称为H(s)的极点。
因此: H
模拟滤波器原理与技术
丁士圻 编著
学习目的:
1、更加清晰地理解滤波器技术; 2、滤波器网络分析方法; 3、掌握三种典型的滤波器的原理和特点; 4、给出滤波器所要求的技术指标,能够设计
模拟滤波器的传输函数; 5、有源滤波器的设计方法和应注意的问题; 6、典型模拟滤波器集成芯片的使用方法; 7、其他滤波器的原理。
E y( t ) d( t ) 2 min
2、条件: 白色噪声和d(t)的平稳性;
设有一个线性系统,它的单位冲击响应是:h(n) ,当输入一个观测到的随机信号x(n),简称观测 值,且该信号包含噪声w(n)和有用信号s(n),简 称信号,也即
则输出:
希望输出得到的y(n)与有用信号s(n)尽量接 近,因此称y(n)为s(n)的估计值.
i
i
1
i
1
i
H(jω)
e j ( )
Di
i 1
因此传递函数幅度:
m
Ci
H(ω) =
H(jω)
C0
i 1 n
相角:
Di
i 1
n
m
() i i
i 1
i 1
特别提醒:
Ci , Di , i ,i
不是零极点本身的幅度和相角,而
令 s j 则:
m
( j ri )
H(
j ) H
(s) s j
C0
i 1 n
( j p j )
再令:
j 1
则:
j ri Cie ji , j pi Die ji
m
m
j i
Ci e i1
H ( j) C0 i1
n
n
j i
Di e i1
i 1
m
C0
Ci
i 1 n
m
n
e j
系统框图为:
若为因果系统则m=0,1,2,……则输出的可以 看成是由当前时刻的观测值x(n)和过去时刻 的观测值x(n-1)、x(n-2)、x(n-3)…的估计值 。
用过去的观测值来估计计得到的信号 和期望得到的有用信号 不可能完全相同,用 来表示真值和估
计值之间的误差 :
一、频域滤波 含义:
是指信号在频率范围内进行处理。也就 是设计一种频率选择网络,而该网络保留 信号有用的频率,抑制干扰频率。 数学表达式:
Fout () Fin ()H()
滤波器的幅频特性举例:
滤波器 Hin(ω)
H(ω)
Hin(ω) Hout(ω)
H(ω) ω
Hout(ω)
ω
ω
输入 信号
带通 网络
第一章 滤波概论
知识重点:
1、理解什么是滤波? 2、了解模拟滤波器在现代电子技术中的作
用。
信号波形
信噪比10dB
信噪比0dB
信噪比-10dB
信噪比10dB
信噪比0dB
信噪比-10dB
信噪比-20dB
§1.1 模拟滤波和数字滤波
一、滤波的含义 :
当信号通过某网络而使信号发生变化,这种 变化就是滤波的过程。而滤波的设备就是滤波器。
f (t)out
三、空间滤波
保留某个方向的信号,抑制其它方向信号的
信号处理方法 ,称之为空间滤波。 n d
x0 (t) e j0
x1 (t) e j
xN 1 (t) e j ( N-1)
相加
V t,
空间滤波器
四、信道滤波效应 信号通过不同介质到达接收点,而使信号
波形发生变化,把这种变化称为信道滤波 效应。 数学表达式:
三、匹配滤波 准则:
1.采用“输出信噪比(SNR)最大准则” ;
2.要求具有一定先验知识和限定条件。
本章小结
1、对模拟滤波器和数字滤波器的概念和原 理有初步的认识;
2、了解模拟滤波器的优势和特点; 3、学习信号处理中几种滤波理论的概念。
第二章 网络分析基础
§2.5 网络函数的零极点与网络的 频率特性
为了使误差最小,维纳滤波使用了最小均方 误差准则 :
二、卡尔曼滤波
1. 一种离散时间过程的递归滤波器 ; 2. 使用“线性无偏最小方差准则”得到过程
的最优估计。 3. 使用线性信号模型和状态分析求解估计量 4. 要求的先验知识和限定条件。 5. 卡尔曼滤波允许系统有多个输入和(或)多个
输出的情况。
f R (t) fT (t) hch (t)
§1.3 一维滤波和多维滤波
对多维的信号进行滤波的方法就成为多维 滤波。
主要应用: 图象处理、地震信号处理、卫星气象云图分析、机器人等
§1.5 常规滤波和最佳滤波
一、维纳滤波
维纳滤波器是在最小均方误差准则下,白色噪声 背景中平稳随机过程的最佳滤波器。 1、准则:最小均方误差。
s
P(
s
)
Q( s )
其中:
m
C0
(
( s r1 s p1
)( )(
s s
r2 p2
) )
( s rm ) ( s pn
)
C0
( s ri )
i 1 n
(s pj )
j 1
r1, r2 ,, rm是传递函数的零点; p1, p2 , , pn是传递函数的极点;
三、幅频和相频特性与零极点关系
影碟机:SM5847AF
2. 利用可编程逻辑器件进行数字滤波器的开 发,比如:FPGA、DSP等
3. 在计算机编程序,进行数字信号处理。
为什么数字滤波器并不能完全取代模拟滤波 器呢?
1、数字系统前端的信号预处理部分需要模拟滤波器。 2、模拟滤波器成本较低。 3、模拟滤波器是研究数字滤波器的基础。
§1.2 频域滤波和非频域滤波