2016年浙江财经大学601高等数学考研真题硕士研究生入学考试试题
2016-2019年全国硕士研究生入学考试数学(数二)真题及答案解析精编

(B)1
(C)2
(D)3
【解析】由于 AX 0 的基础解系有只有两个解向量,则由4 R( A) 2可得R( A) 2 3,
故R( A*) 0.
(8)设 A 是 3 阶实对称矩阵,E 是 3 阶单位矩阵,若 A2 A 2E ,且| A | 4 ,则二次型 xT Ax
的规范形为
二、填空题:914 小题,每小题 4 分,共 24 分,请将答案写在答.题.纸.指定位置上.
数学二(3)
2
(9)
lim
x0
(x
2
x
)
x
______
.
【答案】 4e2
2
【解析】 lim( x 2x ) x
lim 2( x2x 1)
ex0
x
2 lim ( x 2x 1)
e x0 x x
y '(t) x '(t)
t 3 2
sin t 1 cos t
t 3 2
1
则曲线在 t 3 对应点处的切线方程为 y 1 (x 3 1)
2
2
令x 0得 y 3 2 2
(11)设函数 f (u) 可导, z yf ( y2 ) ,则 2x z y z =__________.
lim
xa
f
(x) g(x) (x a)2
0 的(
)
(A)充分非必要条件
(B)充分必要条件
(C)必要非充分条件
(D)既非充分也非必要条件
【答案】(C)
【解析】因 lim xa
f
(x) g(x) (x a)2
2016年考研数学一试题及解答

B
有唯一解,
X
=
1 0
3a
a a a
+ − +
2 4 2
.
−1 0
21.(本题满分 11 分)
0 −1 1
已知矩阵 A = 2 −3 0 .
000
( I ) 求 A99;
( II ) 设 3 阶矩阵 B = (α1, α2, α3) 满足 B2 = BA, 记 B100 = (β1, β2, β3), 将 β1, β2, β3 分别表示为 α1, α2, α3 的线性组合.
002
0 00
−2 + 299 1 − 299
A99 = (P ΛP −1)99 = P Λ99P −1 = −2 + 2100 1 − 2100
2 − 298 2 − 299 .
0
0
0
( II ) 解 B2 = BA ⇒ B100 = BA99, 即
β1 = (−2 + 299) α1 + (−2 + 2100) α2,
˚Σ (
)
=
∂ (x2 + 1) − ∂ (2y) + ∂ (3z) dV
˚Ω ∂x
∂y
∂z
= (2x + 1) dV ,
注意到 dV
Ω
= (1 − x)2 dx, 于是 I
ˆ =
1
(2x + 1)(1 − x)2 dx =
1 .
0
2
19.(本题满分 10 分)
已知函数
f (x)
可导,
且
f (0)
=
( ξn−1介于xn, xn−1之间 ) ( ξn−2介于xn−1, xn−2之间 )
2016年全国硕士研究生入学考试数学二真题及答案

(12)已知函数 f (x) 在 (, ) 上连续,且 f (x) (x 1)2 2 x f (t)dt ,则当 n 2 时,f (n) (0) 0
____________.
2
由考研云助手整理( 专注免费考研资料 微信公众号提供更多资讯)
(13)已知动点 P 在曲线 y x3 上运动,记坐标原点与点 P 间的距离为 l .若点 P 的横坐标时间
【详解】u( x, y) 在平面有界闭区域 D 上连续,所以 u( x, y) 在 D 内必然有最大值和最小值.并且如果在
内部存在驻点 ( x0 ,
y0 ) ,也就是
u x
u y
0
,在这个点处
A
2u x 2
,C
2u y 2
,B
2u xy
2u yx
,由条
件,显然 AC B2 0 ,显然 u( x, y) 不是极值点,当然也不是最值点,所以 u( x, y) 的最大值点和最小值
Page 5 of 15
x t 2 7,
4.曲线
y
t
2
4t
1
上对应于 t 1的点处的曲率半径是(
)
(A) 10 (B) 10
50
100
(C)10 10 (D) 5 10
【详解】 曲线在点 ( x, f ( x)) 处的曲率公式 K
y" ,曲率半径 R 1 .
(1 y'2 )3
K
2
本题中 dx 2t, dy 2t 4 ,所以 dy 2t 4 1 2 , d 2 y t 2 1 ,
的变化率为常数 v0 ,则当点 P 运动到点 (1,1) 时, l 对时间的变化率是 _______ .
2016考研数学一真题完整版

(2)已知函数
f
(x)
2(x 1), x 1,
ln x, x 1.
则
f
(x)
的一个原函数是(
)
(A)
F
(
x)
(x 1)2 , x 1,
x(ln
x
1),
x
1.
(B)
F
(
x)
Hale Waihona Puke (x 1)2 x(ln x 1)
, x 1, 1, x
1.
(C)
((9) (10)向量场
(11)设函数
可微,
. 的旋度
由方程
. 确定,则
=.
2
(12)设函数
f
x = arctan
x
x 1 ax2
,且
,则 a= .
(13)行列式
=
.
(14)设
为来自总体
的简单随机样本,样本均值 =9.5,参数 的置信
度为 0.95 的双侧置信区间的置信上限为 10.8,则 的置信度为 0.95 的双侧置信区间为 .
(D) A A1 与 B B1 相似
(6)设二次型 f (x1, x2 , x3 ) x12 x22 x32 4x1x2 4x1x3 4x2 x3 ,则 f (x1, x2 , x3 ) 2
在空间直角坐标下表示的二次曲面为( (A)单叶双曲面 (C)椭球面
) (B)双叶双曲面 (D)柱面
(Ⅱ)
lim
n
xn
存在,且
0
lim
n
xn
2
.
(20)(本题满分 11 分)
2016年考研数学一真题及答案

2016考研数学一真题及答案一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)若反常积分()11badx x x +∞+⎰收敛,则( )()()()()11111111A a bB a bC a a bD a a b <>>><+>>+>且且且且(2)已知函数()()21,1ln ,1x x f x x x -<⎧⎪=⎨≥⎪⎩,则()f x 的一个原函数是( )()()()()()()()()()()()()()()()()22221,11,1ln 1,1ln 11,11,11,1ln 11,1ln 11,1x x x x A F x B F x x x x x x x x x x x C F x D F x x x x x x x ⎧⎧-<-<⎪⎪==⎨⎨-≥+-≥⎪⎪⎩⎩⎧⎧-<-<⎪⎪==⎨⎨++≥-+≥⎪⎪⎩⎩(3)若()()222211y x y x =+-=++是微分方程()()y p x y q x '+=的两个解,则()q x =( )()()()()()()2222313111xx A x x B x x C D x x +-+-++(4)已知函数(),0111,,1,2,1x x f x x n n n n ≤⎧⎪=⎨<≤=⎪+⎩K ,则( ) (A )0x =是()f x 的第一类间断点 (B )0x =是()f x 的第二类间断点 (C )()f x 在0x =处连续但不可导 (D )()f x 在0x =处可导 (5)设A ,B 是可逆矩阵,且A 与B 相似,则下列结论错误的是( ) (A )TA 与TB 相似 (B )1A -与1B -相似 (C )TA A +与TB B +相似 (D )1A A -+与1B B -+相似(6)设二次型()222123123121323,,444f x x x x x x x x x x x x =+++++,则()123,,2f x x x =在空间直角坐标下表示的二次曲面为( )(A )单叶双曲面 (B )双叶双曲面 (C )椭球面 (C )柱面(7)设随机变量()()0,~2>σσμN X ,记{}2σμ+≤=X P p ,则( )(A )p 随着μ的增加而增加 (B )p 随着σ的增加而增加 (C )p 随着μ的增加而减少 (D )p 随着σ的增加而减少 (8)随机试验E 有三种两两不相容的结果321,,A A A ,且三种结果发生的概率均为31,将试验E 独立重复做2次,X 表示2次试验中结果1A 发生的次数,Y 表示2次试验中结果2A 发生的次数,则X 与Y 的相关系数为( )二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸...指定位置上. (9)()__________cos 1sin 1ln lim200=-+⎰→x dt t t t xx(10)向量场()()zk xyj i z y x z y x A ++++=,,的旋度_________=rotA(11)设函数()v u f ,可微,()y x z z ,=由方程()()y z x f x y z x ,122-=-+确定,则()_________1,0=dz(12)设函数()21arctan axxx x f +-=,且()10''=f ,则________=a (13)行列式100010014321λλλλ--=-+____________. (14)设12,,...,n x x x 为来自总体()2,Nμσ的简单随机样本,样本均值9.5x =,参数μ的置信度为0.95的双侧置信区间的置信上限为10.8,则μ的置信度为0.95的双侧置信区间为______. 三、解答题:15—23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分10分)已知平面区域()(),221cos ,22D r r ππθθθ⎧⎫=≤≤+-≤≤⎨⎬⎩⎭,计算二重积分Dxdxdy ⎰⎰.(16)(本题满分10分)设函数()y x 满足方程'''20,y y ky ++=其中01k <<.()I 证明:反常积分0()y x dx +∞⎰收敛;()II 若'(0)1,(0)1,y y ==求0()y x dx +∞⎰的值.(17)(本题满分10分)设函数(,)f x y 满足2(,)(21),x y f x y x e x-∂=+∂且(0,)1,tf y y L =+是从点(0,0)到点(1,)t 的光滑曲线,计算曲线积分(,)(,)()tL f x y f x y I t dx dy x y∂∂=+∂∂⎰,并求()I t 的最小值(18)设有界区域Ω由平面222=++z y x 与三个坐标平面围成,∑为Ω整个表面的外侧,计算曲面积分()zdxdyydzdx dydz xI 3212+-+=⎰⎰∑(19)(本题满分10分)已知函数()f x 可导,且(0)1f =,10'()2f x <<,设数列{}n x 满足1()(1,2...)n n x f x n +==,证明: (I )级数11()n n n xx ∞+=-∑绝对收敛;(II )lim n n x →∞存在,且0lim 2n n x →∞<<.(20)(本题满分11分)设矩阵1112221,11112A a B a a a --⎛⎫⎛⎫⎪⎪== ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭当a 为何值时,方程AX B =无解、有唯一解、有无穷多解?(21)(本题满分11分)已知矩阵011230000A -⎛⎫⎪=- ⎪ ⎪⎝⎭(I )求99A(II )设3阶矩阵23(,,)B ααα=满足2B BA =,记100123(,,)B βββ=将123,,βββ分别表示为123,,ααα的线性组合。
2016年研究生入学考试数学一、二、三(合并整理)参考解答

(
)
x ln 1 + 3 x , α3 = 3 x + 1 − 1 ,当 x → 0+ 时,以上 3 个无穷小量按
C. α 2 , α1 , α3 D. α 3 , α 2 , α1
(
)
【解析】本题考查无穷小的比较. 5 x2 x 当 x → 0 时, α1 ~ , α 2 ~ x 6 , α 3 ~ ,所以应选 B. 2 3
x ≤ 0, x, 2(Ⅰ)已知函数 f ( x ) = 1 则 1 1 < x ≤ , n = 1, 2,⋯ , , n n n +1 f ( x ) (A) x = 0 是 的第一类间断点. (B) x = 0 是 f ( x ) 的第二类间断点. (C) f ( x ) 在 x = 0 处连续但不可导. (D) f ( x ) 在 x = 0 处可导.
【解析】本题考查曲线的凹凸性与二阶导数的关系、曲率的几何含义。 由曲线 y = f1 ( x ), y = f 2 ( x ) 在 ( x0 , y0 ) 有公共切线及 y ′′ < 0 可知,两条曲线向上凸且都在切线 y = g ( x ) 之
2016 硕士研究生入学考试数学一二三(合并)参考解答
x <1 ,取 C = 0 得,即得选项D. x ≥1
6(Ⅰ)若 y = (1 + x 2 ) 2 − 1 + x 2 , y = (1 + x 2 ) 2 + 1 + x 2 是微分方程 y ′ + p ( x ) y = q( x ) 的两个解,则
2016 年全国硕士研究生入学统一考试(数学)真题及答案解析

11
(B)
dx .
1 1 x2
(D)
1 0
1 x2
1
e x dx
.
()
(5) 函数 f x,g x 都有二阶连续导数且满足 f 0 0, g 0 0, f 0 g0 0 ,则
函数 z f x g y 在 0, 0 处取得极小值的一个充分条件是
()
(A) f 0 0, g0 0 .
(B) x 2 是 y f (x) 的极小值点.
(C) 2, f (2) 是 y f (x) 的拐点.
(D) x 2 不是 y f (x) 的极值点,且 2, f (2) 也不是 y f (x) 的拐点.
(4) 下列积分中发散的是
(A) ex2 dx . 0
(C) 1 ln xdx . 0x
向量组线性无关,则 r(B* ) ________.
(14)
设 X1, X 2,, X n 为 来 自 总 体 X
~ N(, 2) 的简单随机样本,记 X
1n n i1 X i
,
S 2
1 n 1
n i 1
(Xi
X )2
,则 E(S 4)
.
三、解答题:15~23 小题,共 94 分.请将解答写在答.题.纸.指定的位置上.解答应写出文字说明、 证明过程或演算步骤. (15) (本题满分 10 分)
数学(一)试题 第 2 页 (共 4 页)
1
已知 lxim01
x2 f x esin x ex
ln cos x
e12 ,求 lim x0
fx x3
.
(16) (本题满分 10 分)
(I)证明柯西中值定理:设函数 f ( x), g ( x) 在闭区间[a, b] 上连续,在开区间 (a, b) 内可 导,且 g ( x) 0 ,则至少存在一点 (a,b) ,使得
2016考研数学一真题及解析参考答案

2016考研数学(一)真题及答案解析一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸指定位置上.(((()q x =(,则()(的第一类间断点(B )(处连续但不可导(D ) (5)设A ,B 是可逆矩阵,且A 与B 相似,则下列结论错误的是()(A )TA 与TB 相似(B )1A -与1B -相似(C )TA A +与TB B +相似(D )1A A -+与1B B -+相似 (6)设二次型()222123123121323,,444f x x x x x x x x x x x x =+++++,则()123,,2f x x x =在空间直角坐标下表示的二次曲面为()(A )单叶双曲面(B )双叶双曲面(C )椭球面(C )柱面(7)设随机变量()()0,~2>σσμN X ,记{}2σμ+≤=X P p ,则() (A )p 随着μ的增加而增加(B )p 随着σ的增加而增加(少(22(((11)设函数()v u f ,可微,()y x z z ,=由方程()()y z x f x y z x ,122-=-+确定,则()_________1,0=dz(12)设函数()21arctan ax x x x f +-=,且()10''=f ,则________=a(13)行列式1000100014321λλλλ--=-+____________.(14)设12,,...,nx x x 为来自总体()2,N μσ的简单随机样本,样本均值9.5x =,参数μ的置信度为0.95的双侧置信区间的置信上限为10.8,则μ的置信度为0.95的双侧置信区间为______.三、解答题:15—23小题,共94分.请将解答写在((D ⎧=⎨⎩(0,ky +=()I ()II (21),x ye-+且f 积分(,)(,)()tL f x y f x y I t dx dy x y∂∂=+∂∂⎰,并求()I t 的最小值(18)设有界区域Ω由平面222=++z y x 与三个坐标平面围成,∑为Ω整个表面的外侧,计算曲面积分()zdxdyydzdx dydz x I 3212+-+=⎰⎰∑(19)(本题满分10分)已知函数()f x 可导,且(0)1f =,10'()2f x <<,设数列{}nx 满足1()(1,2...)n n xf x n +==,证明:(I )级数11()n n n xx ∞+=-∑绝对收敛;(II )lim nn x →∞存在,且0lim 2nn x→∞<<.(22a ⎫⎪⎪⎪-⎭当a ((I ()将12,,ββ(域D (I (U X (III )求Z U X =+的分布函数()F z . (23)设总体X 的概率密度为()⎪⎩⎪⎨⎧<<=其他,00,3,32θθθx x x f ,其中()∞+∈,0θ为未知参数,321,,X X X 为来自总体X 的简单随机样本,令()321,,m ax X X X T =。