解直角三角形(1)
解直角三角形(1)(知识讲解)九年级数学下册基础知识专项讲练(浙教版)

专题1.8解直角三角形(1)(知识讲解)【学习目标】1.了解解直角三角形的含义,会综合运用平面几何中有关直角三角形的知识和锐角三角函数的定义解直角三角形;2.会运用有关解直角三角形的知识解决实际生活中存在的解直角三角形问题.【要点梳理】要点一、解直角三角形在直角三角形中,由已知元素(直角除外)求未知元素的过程,叫做解直角三角形.在直角三角形中,除直角外,一共有5个元素,即三条边和两个锐角.设在Rt△ABC中,∠C=90°,∠A、∠B、∠C所对的边分别为a、b、c,则有:①三边之间的关系:a2+b2=c2(勾股定理).②锐角之间的关系:∠A+∠B=90°.③边角之间的关系:,,,,,.④,h为斜边上的高.要点诠释:(1)直角三角形中有一个元素为定值(直角为90°),是已知值.(2)这里讲的直角三角形的边角关系指的是等式,没有包括其他关系(如不等关系).(3)对这些式子的理解和记忆要结合图形,可以更加清楚、直观地理解.求∠A,(如∠A,a),斜边、锐角(如c,∠A)∠B=90°-∠A,,要点诠释:1.在遇到解直角三角形的实际问题时,最好是先画出一个直角三角形的草图,按题意标明哪些元素是已知的,哪些元素是未知的,然后按先确定锐角、再确定它的对边和邻边的顺序进行计算.2.若题中无特殊说明,“解直角三角形”即要求出所有的未知元素,已知条件中至少有一个条件为边.【典型例题】类型一、解直角三角形1.如图,△ABC中,AD⊥BC,垂足是D,若BC=14,AD=12,tan∠BAD=3 4则sin C=_______.【点拨】此题考查了解直角三角形,勾股定理,锐角三角函数,求出BD是解本题的关键.举一反三:【变式1】在Rt△ABC中,∠C=90°,点D是BC边的中点,CD=2,tan B=3 4(1)求AD和AB的长;(2)求∠B的正弦、余弦值.【变式2】如图,已知Rt△ABC中,∠C=90°,AD为∠BAC的平分线,且AD=2,AC解这个直角三角形.类型二、解非直角三角形2.如图,在ABC △中,6AB =,1sin 2B =,1tan 3C =,求ABC △的面积.1AD 举一反三:【变式1】如图,一艘货船以20n mile /h 的速度向正南方向航行,在A 处测得灯塔B 在南偏东40 方向,航行5h 后到达B 在北偏东60 方向,求C 处距离灯塔B的距离BC (结果精确到0.1,参考数据:sin 400.64≈ ,cos400.77≈ ,tan 400.84≈ 1.73≈).【答案】65.4nmile【分析】过点B 作BH AC ⊥,在Rt △CBH 和Rt △BAH 中,根据三角函数的定义即可计算出C 处距离灯塔B 的距离BC .【点拨】本题考查的是解直角三角形的应用,化为解直角三角形的问题是解题的关键.【变式2】如图,已知一居民楼AD 前方30m 处有一建筑物BC ,小敏在居民楼的顶部D 处和底部A 处分别测得建筑物顶部B 的仰角为19︒和41︒,求居民楼的高度AD 和建筑物的高度BC (结果取整数).(参考数据:tan190.34︒≈,tan 410.87︒≈)【答案】居民楼的高度AD约为16米,建筑物的高度BC约为26米.【分析】通过作垂线,构造直角三角形,分别在Rt△BDE和RtABC中,根据锐角三角函数的意义求出BC、BE,进而求出AD,得出答案.解:过点D作DE⊥BC于点E,则DE=AC=30,AD=EC,由题意得,∠BDE=19︒,∠BAC=41︒,在Rt△ABC中,BC=AC•tan∠BAC=30×tan41︒≈26.1≈26,在Rt△BDE中,BE=DE•tan∠BDE=30×tan19︒≈10.2,∴AD=BC−BE=26.1−10.2=15.9≈16.答:居民楼的高度AD约为16米,建筑物的高度BC约为26米.【点拨】考查直角三角形的边角关系,锐角三角函数,构造直角三角形利用锐角三角函数是解决问题的关键.类型三、构造直角三角形求不规则图形的边长或面积3.如图,四边形ABCD中,∠B=∠D=90°,∠A=120°,AB=12,CD=求AD的长.【答案】6【分析】延长DA交CB的延长线于E,根据已知条件得到∠ABE=90°,根据邻补角的定义得到∠EAB=60°,得到∠E=30°,根据直角三角形的性质即可得到结论.解:延长DA交CB的延长线于E,∵∠ABC=90°,【点拨】本题考查了含30°角的直角三角形,正确的作出辅助线是解题的关键.举一反三:【变式1】如图,AB是长为10m,倾斜角为30°的自动扶梯,平台BD与大楼CE垂直,且与扶梯AB的长度相等,在B处测得大楼顶部C的仰角为65°,求大楼CE的高度(结果保留整数).【参考数据:sin65°=0.90,tan65°=2.14】【答案】大楼CE的高度是26m.【分析】作BF⊥AE于点F,根据三角函数的定义及解直角三角形的方法求出BF、CD即可.解:作BF⊥AE于点F.则BF=DE.【变式2】一种可折叠的医疗器械放置在水平地面上,这种医疗器械的侧面结构如图实线所示,底座为ABC ,点B 、C 、D 在同一条直线上,测得90ACB ∠=︒,60ABC ∠=︒,32cm AB =,75BDE ∠=︒,其中一段支撑杆84cm CD =,另一段支撑杆70cm DE =,(1)求BC 的距离;(2)求支撑杆上的E 到水平地面的距离EF 是多少?(用四舍五入法对结果取整数,参考数据sin150.26︒≈,cos150.97︒≈,tan150.27︒≈ 1.732≈)【答案】(1)16cm (2)105cm【分析】(1)根据直角三角形中60°角解直角三角形即可;(2)如图作DG ⊥EF ,PQ EF ∥,证明EF =EG +QC +CP ,再分别运用解直角三角形求出EG 、QC 、CP 即可.∵DG ⊥EF ,AF ⊥EF ,PQ ∴DG ⊥PQ ,AF ⊥PQ ,∴四边形FPQG 是矩形,∴3sin 60842CQ CD =⋅︒=⨯∵75,60BDE BDQ ∠=︒∠=︒∴∠EDG =75°-60°=15°。
教学课件_解直角三角形(第1课时)_2

∴∠A=60° , ∠B=90°-∠A=90°- 60°=30°, AB=2AC=2 2 .
巩固练习
1.在下列直角三角形中不能求解的是( D ) A.已知一直角边一锐角 B.已知一斜边一锐角
C.已知两边
D.已知两角
2.在Rt△ABC中,∠C=90°,若BC=1,AB= 5 ,则
tan A的值为( C )
新知讲解
对于问题(2),当梯子底端距离墙面2.4m时,求梯子与
地面所成的角a的问题,可以归结为:在Rt△ABC中,已
知AC=2.4,斜边AB=6,求锐角a的度数
由于 cosa
AC AB
2.4 6
0.4
B
利用计算器求得 a≈66° ∴当梯子底墙距离墙面2.4m时,梯子与地面
α AC
所成的角大约是66°
巩固练习
5.如图,BD是△ABC的高,AB=6, AC=5 3 ,∠A=30°.
(1)求BD和AD的长; (2)求tan C的值.
解:(1)∵BD⊥AC,∴∠ADB=∠BDC=90°
∴sin A= BD,cos A= AD
AB
∵AB=6∠A=30°
AB
∴BD=3,AD=3 3
(2)∵AC=5 3 ∴CD=2 3 在Rt△BCD中,tan C=
(2)锐角之间的关系: ∠ A+ ∠ B= 90º;
(3)边角之间的关系:
A
a sinA= c
b cosA= c
tanA= a
b (4)面积公式:S▲ABC
1 2
a•b
1 2
c•h
B
c a
bC
例题讲解
例1 如图,在Rt△ABC中,∠C=90°,AC= ,2BC= ,6解这个直 角三角形.
26.4 解直角三角形的应用 - 第1课时仰角、俯角、方位角问题课件(共23张PPT)

例1 如图,小明在距旗杆4.5 m的点D处,仰视旗杆顶端A,仰角(∠AOC)为50°;俯视旗杆底部B,俯角(∠BOC)为18°.求旗杆的高.(结果精确到0.1 m)
例题示范
知识点2 方向角方位角:由正南或正北方向线与目标方向线构成的锐角叫做方位角.如下图中的目标方向OA,OB,OC,OD的方向角分别表示________60°,________45°(或__________),_________80°及_________30°.
拓展提升
1.热气球的探测器显示,从热气球看一栋楼顶部的仰角为30°,看这栋楼底部的俯角为60°,热气球与楼的水平距离为120 m,这栋楼有多高(结果取整数)?
分析:如图,α=30°,β=60°.在Rt△ABD中,α =30°,AD=120,所以利用解直角三角形的知识求出BD;类似地可以求出CD,进而求出BC.
第二十六章 解直角三角形
26.4 解直角三角形的应用
第1课时 仰角、俯角、方位角问题
学习目标
学习重难点
重点
难点
1.巩固解直角三角形有关知识,了解仰角、俯角、方向角的概念.2.运用解直角三角形知识解决与仰角、俯角和方位角有关的实际问题.
运用解直角三角形知识解决与仰角、俯角和方位角有关的实际问题.
将某些实际问题中的数量关系,归结为直角三角形中元素之间的关系,从而解决问题.
回顾复习
《解直角三角形》PPT课件 (公开课获奖)2022年青岛版 (1)

1 2
B 30°
BQ AB
3 3
3
答:······
青岛版九年级数学
青岛版九年级数学
总结提升
通过例1,例2的学习,如果让你设计一个关 于解直角三角形的题目,你会给出几个条件?如 果只给出两个角,可以吗?解直角三角形有几种 情况?
解直角三角形,有下面两种情况:(其中至少有一边)
解: 因为函数过A(-1,0),B(1,0)两点 : 所以设所求的二次函数为y=a(x+1)(x-1)y
由条件得: 点M( 0,1 )在抛物线上
x o
所以:a(0+1)(0-1)=1
得: a=-1 故所求的抛物线表达式为 y=- (x+
1即):(xy-=1-) x2+1
封面 例题
小组探究
1、已知二次函数对称轴为x=2,且过(3,2)、 (-1,10)两点,求二次函数的表达式。
青岛版九年级数学
B
c a
A
bC
1、了解解直角三角形的意义,能运用直角三角形的角与角
(两锐角互余),边与边(勾股定理)、边与角关系(锐角三角比)
解直角三角形;
2、探索发现解直角三角形所需的最简条件,体会用化归的
思想方法将未知问题转化为已知问题去解决;
3、通过对问题情境的讨论,培养学生在实际生活中的问题
(1) 已知两条边(一直角边一斜边;两直角边)
(2) 已知一条边和一个锐角(一直边一锐角;一 斜边一锐角)
青岛版九年级数学
CB
高的斜塔偏离
垂直中心线的距离
为米。
求塔身偏离中
心线的角度。
α
A
青岛版九年级数学
达标测试
青岛版九年级数学
解直角三角形(一)

探究新知: 在直角三角形ABC中, ∠C=90°,a、b、c, ∠A、 ∠B这五个元素之间有哪些等 量关系呢? 它们之间的关系是:
边边关系: a2+b2=c2 角角关系: ∠A+∠B=90°
A
b
C
c a
B
a b a 边角关系: sin A = , cosA= , tanA= c c b
B
A
C
3、如图, ∠ACB=90°,CD⊥AB于D, 若BC=2,tanA= 3 ,求AC、CD的值。 C
3
A
D
B
课堂小结
1、在直角三角形中,除直角外还有五个元素,知道两个 元素(至少有一个为边),就可以求出另三个元素。 2、在直角三角形中,由已知元素求未知元素的过程叫做 解直角三角形。 3、解直角三角形的方法不止一种,在面临选择时,我们 应遵循以下原则:
B
35°
a
C
b ∵sinB= c
b a
b 20 = ∴ a= ≈28.6 tan B tan 35° b 20 ∴c= ≈35.1 = sin B sin 35°
∴∠A=55°,a ≈28.6 , b ≈35.1.
已知一边一角,解直角三角形的方法为:先求另外一角, 求出第三条边;然后选取适当的函数关系式求出边.
练一练
1、在在Rt△ABC中,∠C=90°,AC= 解这个直角三角形. ∠A=∠B=45°,BC=
2
,BA=2 ,
2
2、在△ABC中,∠C为直角,∠A、∠B、∠C的所对 边分别为a、b、c,且c=287.4,∠B=42°6′,解这个 直角三角形(精确到1′,保留四个有效数字) ∠A=47°54′,a≈213.3,b≈192.7
人教版初中数学九年级下册 28.2 解直角三角形课件1 【经典初中数学课件】

∠BCA=900, ∠CAB=300
∴BC=AB·sin∠CAB
=14·sin300=14×1/2=7
∴ ∠1=600
∠2=300
北
600
A
M C
1 2 150
B
东
在Rt⊿BCM中,BC=7 ∠CBM=∠2+150=450, ∴∠M=900- ∠CBM=450 ∴ CM=BC=7
B M C2 M B 2 C 7 2 7 2 72
Bα
Dβ
C
A
(三)练一练
如图所示,一渔船上的渔民在A处看见灯塔M在北偏东
60°方向,这艘渔船以28海里/时的速度向正东航行,半
小时至B处,在B处看见灯塔M在北偏东15°方向,此时灯
塔M与渔船的距离是 (
)
A7. 2海里 B. 1海4 里2 C.7海里 D.14海里
解:作BC⊥AM,垂足为C.
在Rt⊿ABC中,AB=28×1/2=14
答:船与灯塔的距离为:7 2 海里
(四)挑战自我
【 例 3】某货船以20海里/时的速度将一批重要物资由A 处运往正西方向的B处,经16小时的航行到达,到达后 必须立即卸货.此时,接到气象部门通知,一台风中心正 以40海里/时的速度由A向北偏西60°方向移动,距台风 中心200海里的圆形区域(包括边界)均会受到影响. (1)问:B处是否会受到台风的影响?请说明理由. (2)为避免受到台风的影响,该船应在多少小时内卸完货 物?(供选用数据:
回顾与思考
1.在Rt△ABC中,∠C=90°,BC= a,AC=b,AB=c,
则 sinA=
,sinB=
,cosA=
,
cosB=
, tanA=
, tanB=
1.3解直角三角形(1)教案

1.3 解直角三角形(1)一、教学内容解析:本节是在学习锐角三角函数之后,结合已学过的勾股定理和三角形内角和定理,研究解直角三角形的问题.本课内容既能加深对锐角三角函数概念的理解,又为后续解决与其相关的实际问题打下基础,在本章起到承上启下作用.二、教学目标:1、使学生理解直角三角形中五个元素的关系,会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形.2、通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题、解决问题的能力.3、渗透数形结合的数学思想,培养学生良好的学习习惯.三、教学重难点重点:直角三角形的解法.难点:三角函数在解直角三角形中的灵活运用.四、教学手段与教学方法教学手段:多媒体教学.教学方法:启发式教学、小组合作学习.五、教学过程:(一)、设疑,激发兴趣1、组织教学,激情口号:我自信、我出色,我努力、我成功.2、情景导入:同学们,幻灯片上的这幅图片是意大利著名的比萨斜塔,它已经有800多年的历史了,在它落成的时候由于地基等问题就已经发生了倾斜,但是在1972年比萨地区发生地震,造成塔顶中心点偏离垂直中心线达到了5.2米.比萨斜塔的高为54.5米,根据以上信息,我们可以把这道实际问题抽象成什么样的几何图形呢?在这个直角三角形中,AB代表比萨斜塔的高54.5米.BC代表塔顶到垂直中心线的距离5.2米,我们能否根据已知条件求出比萨斜塔的倾斜角∠A,或者∠B以及AB的长呢?你们有多少种求法?这就是本节课我们要学习的内容,解直角三角形.3、板书课题:1.3解直角三角形(1)4、请同学们齐读本节课的学习目标.(二)、活动一:自学初探各组组长检查各小组导学案第二部分主“动”展示完成情况.由各小组举牌主动展示以下三个问题.1、什么叫做解直角三角形?2、在一个直角三角形中,一共有几个元素,这五个元素分别是什么?那这五个元素之间有没有什么关系呢?哪组同学愿意主动展示一下第2道题?(1)三边之间关系:(2)两锐角之间关系:(3)边角之间关系:以上三点就是解直角三角形的依据,我们熟知后就可以拿来运用了.3、在直角三角形中,知道几个已知元素就可以求其余未知元素?(三)、活动二:合作再探现在我们回到比萨斜塔这道题,哪名同学愿意上黑板上写出已知元素和要求的未知元素,把它变成解直角三角形的问题.(教师通过这个过程可以观察到学生是否真的理解了什么叫做解直角三角形。
人教版数学九年级下册-28.2.1 解直角三角形-教案

28.2.1解直角三角形(第1课时)教学设计一、教材分析本节课内容是新人教版教材九年级下册,第二十八章《锐角三角函数》的第二节《解直角三角形》第一课时,是在学习了勾股定理、锐角三角函数的基础上进行的。
本节课既是前面所学知识的运用,也是高中继续学习三角函数和解斜三角形的重要预备知识。
教材首先从实际生活比萨斜塔入手,创设问题情境,抽象出数学问题,从而引出解直角三角形的概念,归纳解直角三角形的一般方法。
本节课的学习还蕴涵着深刻的数学思想方法:数学建模和转化化归,在本节教学中有针对性的对学生进行这方面的能力培养。
通过本节课的学习,不仅可以巩固勾股定理和锐角三角函数等相关知识,初步获得解直角三角形的方法和经验,而且还让学生进一步体会数学与实际生活的密切联系。
二、教学目标(一)知识与技能1.理解直角三角形中五个元素的关系,什么是解直角三角形;2.运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形.(二)过程与方法目标通过探索讨论发现解直角三角形所需的最简条件,了解体会用化归的思想方法将未知问题转化为已知问题去解决,在解决问题的过程中渗透“数学建模”和“转化”思想。
(三)情感、态度和价值观通过学习解直角三角形的应用,认识到数与形相结合的意义和作用,体验到学好知识能应用于社会实践。
并让学生体验到学习是需要付出努力和劳动的。
三、学情分析九年级学生已经牢固掌握了勾股定理,也刚刚学习过锐角三角函数,但锐角三角函数的运用不一定熟练,综合运用所学知识解决问题,将实际问题抽象为数学问题的能力都有待提高,因此要在本节课进行有意识的培养。
四、教学重难点教学重点:正确运用直角三角形中的边角关系解直角三角形教学难点:选择适当的关系式解直角三角形五、教法与学法1、教学方法:利用多媒体辅助教学,通过观察,引导学生思考、讨论,通过归纳、概括等方法启发、诱导,帮助学生理解内容的本质,从而突破教学难点。
2、学习方法:观察、归纳、概括和讨论的学习方法,使他们不仅理解和掌握本节课的内容,而且进一步培养和提高他们各方面的能力,从而逐步由“学会”向“会学”迈进。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
之间的距离,沿着与AB垂直的方向走
了m米,到达点C,测得∠ACB=α,
那么AB等于( B )
B
(A) m·sinα米 (B) m·tanα米
(C) m·cosα米 (D) m 米
tan
4. (2011∙滨州中考)边长为6cm的等边三角形中,其一
边上高的长度为________cm.
【解析】一边上的高=6×sin60°= 3 3 【答案】 3 3
素吗? 不能
在直角三角形的六个元素中,除直角外,如果知道两个元 素(其中至少有一个是边),就可以求出其余三个元素.
在直角三角形中,由已知元素求未知元素的过程,叫解直 角三角形.
解直角三角形的依据
(1)三边之间的关系: a2+b2=c2(勾股定理);
(2)锐角之间的关系: ∠ A+ ∠ B= 90º;
1、在直角三角形中,除直角外还有五个元素,知道两个元素(至 少有一个是边),就可以求出另三个元素. 2、解决问题要结合图形。
3、解直角三角形的关键是找到与已知和未知相关联的直角 三角形,当图形中没有直角三角形时,要通过作辅助线构造
直角三角形(作某边上的高是常用的辅助线);
4、一些解直角三角形的问题往往与其他知识联系,所以在 复习时要形成知识结构,要把解直角三角形作为一种工具,
B
(3)边角之间的关系:
sinA=
a c
tanA=
a b
cosA=
b c
c a
A
bC
例1.在Rt△ABC中,∠C=90°,AC= 2,BC = 6 ,
解这个直角三角形.
A
2
C
6
B
例2.在Rt△ABC中,∠C=90°,∠B=35°,b=20,解 这个直角三角形.(精确到0.1)
A
20
C
35°B,
1.在Rt△ABC中,∠C=90°,根据下列条件解直角三角形
(1) a=30 ,b=20 (2) ∠B=72°, c=14
A
20
C
B
30
B 72° 14
C
A
2、在下列直角三角形中不能求解的是( D ) (A)已知一直角边一锐角 (B)已知一斜边一锐角 (C)已知两边 (D)已知两角
3.(2010·东营中考)如图,小明为
了测量其所在位置,A点到河对岸B点 A m C
一角一边 A
30
2
在Rt△ABC中,
(1)根据∠A= 60°,斜边AB=30,
你能求出这个三角形的其他元素吗?
∠B AC BC
两边
(2)根据AC= 2 ,BC= 6
C
6 B 你能求出这个三角形的其他元素吗?
∠A
∠B
AB
你发现 了什么
(3)根∠A=60°,∠B=30°, 你能求出这个三角形的其他元
两角
解直角三角形(1)
要想使人安全地攀上斜靠在墙面上的梯子的顶端,梯子 与地面所成的角α一般要满足50°≤ α ≤75°.现有一个长 6m的梯子.问:
(1)使用这个梯子最高可以安全攀上
B
多高的平房?(精确到0.1m)
角α越大,攀上的高度就越高.
这个问题归结B=6,求BC的长
5.(2010·重庆中考)已知:如图,在Rt△ABC中,∠C =90°,AC= 3 .点D为BC边上一点,且BD=2AD, ∠ADC=60°求△ABC的周长(结果保留根号)
【解析】要求△ABC的周长,只要 求得BC及AB的长度即可.根据 Rt△ADC中∠ADC的正弦值,可以 求得AD的长度,也可求得CD的长 度;再根据已知条件求得BD的长 度,继而求得BC的长度;运用勾 股定理可以求得AB的长度,求得 △ABC的周长.
能在解决各种数学问题时合理运用.
A
C
要想使人安全地攀上斜靠在墙面上的梯子的顶端,梯子 与地面所成的角α一般要满足50°≤ α ≤75°.现有一个长 6m的梯子.问:
(2)当梯子底端距离墙面2.4m时,梯子
B
与地面所成的角α等于多少(精确到
1°)?这时人能否安全使用这个梯子?
这个问题归结为:
在Rt△ABC中,已知AC=2.4m,斜边 AB=6, 求锐角α的度数?
7.(4 分)如图,在把易拉罐中的水倒入一个圆水杯的过程中,若水杯中的水在点P 与易
拉罐刚好接触,则此时水杯中的水深为(
)
A.2 cm B.4 cm C.6 cm D.8 cm
8.(4 分)如图,在平面直角坐标系中,Rt△OAB 的顶点A 的坐标为( 3,1),若将△OAB
逆时针旋转60°后,B 点到达B?后,则 B?点的坐标是_
三、解答题(共 30 分) 15.(14 分)(2013·丽水)一个长方体木箱沿斜面下滑,当木箱滑至如图位置时,AB=3 m.已 知木箱高 BE= 3 m,斜面坡角为 30°,求木箱端点 E 距地面 AC 的高度 EF.
解:连接 AE,在 Rt△ABE 中,已知 AB=3,BE= 3,∴AE= AB2+BE2=2 3,又 ∵tan∠EAB=ABEB= 33,∴∠EAB=30°,在 Rt△AEF 中,∠EAF=∠EAB+∠BAC=60°, ∴EF=AE·sin∠EAF=2 3×sin60°=2 3×23=3(m).答:木箱端点 E 距地面 AC 的高度是 3 m.
_.
二、填空题(每小题 5 分,共 15 分) 12.将直角边长为 5 cm 的等腰直角△ABC 绕点 A 逆时针旋转 15°后,得到△AB′C′,
.
则图中阴影部分的面积是_
_cm2.
6.(4 分)如图,在△ABC中,若∠A=75°,∠C=45°,AB=2,则AC的长等于( )
A.2 2
B.2 3
C. 6
2 D.3 6
13.长为 4m 的梯子搭在墙上与地面成 45°角,作业时调整为 60°角(如图),则梯子的 顶端沿墙面升高了_ m.
14.在等腰三角形 ABC 中,∠A=30°,AB=8,则 AB 边上的高 CD 的长是_ 或 _.
③
如图,AB=AC=4,CADC=sin30°=12,∴CD=4.
A
C
在Rt△ABC中,
B
(1)根据∠A= 75°,斜边AB=6,
你能求出这个三角形的其他元素吗?
(2)根据AC=2.4m,斜边AB=6, 你能求出这个三角形的其他元素吗?
A
C
三角形有六个元素,分 别是三条边和三个角.
(3)根据∠A=60°,∠B=30°, 你能求出这个三角形的其他元素吗?
在直角三角形的六个元素中,除直角外, 如果知道两个元素(,其中至少有一个是边), 就可以求出其余三个元素.