温度与温度裂缝
混凝土结构中裂缝的种类

混凝土结构中裂缝的种类
混凝土结构是现代建筑中常见的一种结构形式,它具有强度高、耐久性好等优点,但是在使用过程中,由于各种原因,会出现各种裂缝。
下面我们来看一下混凝土结构中裂缝的种类。
1.收缩裂缝
混凝土在硬化过程中会发生收缩,这种收缩会导致混凝土表面出现裂缝,这种裂缝称为收缩裂缝。
收缩裂缝通常是细小的,呈现网状分布,对混凝土结构的强度影响较小。
2.温度裂缝
混凝土结构在受到温度变化的影响时,会出现温度裂缝。
温度裂缝通常是沿着混凝土结构的长度方向出现的,裂缝宽度较小,但是对混凝土结构的强度影响较大。
3.弯曲裂缝
混凝土结构在受到外力作用时,会出现弯曲裂缝。
弯曲裂缝通常是沿着混凝土结构的长度方向出现的,裂缝宽度较大,对混凝土结构的强度影响较大。
4.扭曲裂缝
混凝土结构在受到扭曲力作用时,会出现扭曲裂缝。
扭曲裂缝通常
是沿着混凝土结构的长度方向出现的,裂缝宽度较小,但是对混凝土结构的强度影响较大。
5.沉降裂缝
混凝土结构在受到地基沉降的影响时,会出现沉降裂缝。
沉降裂缝通常是沿着混凝土结构的长度方向出现的,裂缝宽度较大,对混凝土结构的强度影响较大。
混凝土结构中裂缝的种类有很多,不同的裂缝对混凝土结构的强度影响也不同。
因此,在设计和施工混凝土结构时,需要考虑各种因素,以减少裂缝的出现。
同时,在使用过程中,也需要及时发现和处理裂缝,以保证混凝土结构的安全和稳定。
裂缝产生的原因及处理方法

裂缝产生的原因及处理方法
裂缝产生的原因及处理方法如下:
一、裂缝产生的原因
1.温度变化:由于温度变化导致的热胀冷缩,会使墙面、地面等
处出现裂缝。
这种情况下,要请专业人员评估并修复裂缝,防止其扩大。
2.施工不当:施工过程中的一些问题,如材料使用不当、施工工
艺不规范等,都可能导致裂缝的产生。
3.建筑物的沉降:由于地基处理不当或外力影响,建筑物的沉降
也可能导致裂缝的产生。
4.建筑材料问题:如果使用的材料质量不好,或者材料之间的兼
容性不好,也可能导致裂缝的产生。
二、裂缝的处理方法
1.表面修复法:对于一些较小的裂缝,可以采用表面修复的方法。
例如,可以用水泥、石膏等材料对裂缝进行填充,然后对表面进行处理,使其看起来更加美观。
2.注浆法:对于一些较大的裂缝,可以采用注浆的方法。
具体来
说,就是将水泥浆或其他适当的填充物注入到裂缝中,然后通过压力使填充物硬化并填补裂缝。
3.加固法:对于一些非常严重的裂缝,可能需要采用加固的方法。
例如,可以在裂缝周围增加钢筋网,或者在墙体内部增加支撑,以增强结构的稳定性。
4.拆除重建:如果裂缝非常严重,或者由于建筑物的沉降等原因
导致裂缝无法修复,那么可能需要拆除重建。
总之,对于不同类型的裂缝,需要采用不同的处理方法。
在处理裂缝之前,一定要仔细评估裂缝的性质和严重程度,以便选择最合适的方法进行处理。
同时,也要注意施工安全和质量,避免因操作不当而导致更大的损失。
混凝土施工中的温度与裂缝控制

混凝土施工中的温度与裂缝控制摘要:温度控制及温度应力对于大体积混凝土而言极为重要。
在施工过程中,不可避免就会出现混凝土裂缝问题。
但是我们可以通过多种措施,将温度裂缝控制在可控范围内,不会出现较为严重的危害。
该文首先阐述了混凝土的温度裂缝及其危害,其次,分析了温度应力,同时,就温度控制和防止裂缝的措施进行了深入的探讨,具有一定的参考价值。
关键词:温度控制裂缝控制混凝土施工温度控制及温度应力对于大体积混凝土而言极为重要。
原因主要有两个方面,第一,混凝土结构的应力状态会受到温度变化的影响;第二,混凝土在施工过程中会出现温度裂缝,对于结构的耐久性和整体性都会造成影响。
本文就混凝土施工中的温度与裂缝控制进行探讨。
1 混凝土的温度裂缝及其危害在施工过程中,不可避免就会出现混凝土裂缝问题。
但是我们可以通过多种措施,将温度裂缝控制在可控范围内,不会出现较为严重的危害。
混凝土的温度裂缝可分为宏观裂缝、微观裂缝。
宏观裂缝是受到外力的作用而产生的裂缝,微观裂缝是肉眼不易看见、也不受任何外力影响的裂缝。
微观的裂缝包括32种,一种裂缝存在于骨料上面,另外一种裂缝是存在于水泥粘合面,还有一种是水泥石自身的裂缝。
宏观裂缝主要是由于外来力量作用而产生的,此外收缩、温度等因素也会使之变形,尤其是混凝土的浇灌初期,水泥的热量很大,就很容易会造成混凝土出现裂缝问题。
混凝土属于典型的脆性材料,抗压强度是抗拉强度的10倍。
极限拉伸变形在长期加荷时为(1.2-2.0)×104,短期加荷时为(0.6-1.0)×104。
再加上浇筑、运输中出现离析、水灰比不稳定、原材料不均匀等原因,很容易使得混凝土的抗拉能力较差,很容易就会出现裂缝薄弱部位。
钢筋混凝土中,混凝土通常只会承受压应力,而由钢筋来承担拉应力。
而在钢筋混凝土的边缘部位或者素混凝土内,通常需要由混凝土来独自承担拉应力。
混凝土在施工过程中,由于温度变化较大,就很容易出现较大的拉应力。
混凝土裂缝的五种主要形式

混凝土裂缝的五种主要形式包括:塑性坍落裂缝:这类裂缝主要发生在混凝土浇注后,还处于塑性状态时,由于天气炎热、蒸发量大、大风或混凝土本身水化热高等原因而产生。
塑性收缩(干缩)裂缝:这类裂缝一般多在混凝土浇注后,还处于塑性状态时,由于天气炎热、蒸发量大、大风或混凝土本身水化热高等原因,而产生裂缝。
温度裂缝:温度裂缝是混凝土裂缝中较为复杂的一类。
水化热裂缝:这类裂缝一般多在大体积混凝土或高强混凝土施工过程中,由于混凝土水化热很高土内部温度与混凝土表面温度以及外部环境温度相差较大,加之有约束的存在水化热裂缝。
地基沉陷裂缝:当混凝土结构主体和基础刚度较大时,其抵抗地基沉陷的能力还是较强的。
大体积砼温度与裂纹的控制

大体积砼温度与裂纹的控制在现代建筑工程中,大体积砼的应用越来越广泛。
然而,由于其体积大、水泥水化热高,大体积砼在施工过程中容易出现温度裂缝,这不仅会影响结构的外观和耐久性,还可能危及结构的安全性。
因此,如何有效地控制大体积砼的温度和裂纹,成为了工程技术人员面临的重要课题。
一、大体积砼温度裂缝产生的原因大体积砼在浇筑后,水泥水化反应会释放出大量的热量,导致砼内部温度迅速升高。
由于砼的热传导性能较差,内部热量难以迅速散发,从而形成较大的内外温差。
当温差超过一定限度时,砼内部产生压应力,外部产生拉应力。
而砼的抗拉强度较低,当拉应力超过砼的抗拉强度时,就会产生温度裂缝。
此外,砼的收缩也是导致温度裂缝的一个重要原因。
砼在硬化过程中会发生体积收缩,包括自收缩、干燥收缩和碳化收缩等。
如果收缩受到约束,也会产生拉应力,从而引发裂缝。
二、大体积砼温度的控制措施1、优化配合比选用低水化热的水泥,如矿渣水泥、粉煤灰水泥等。
减少水泥用量,可适当掺入粉煤灰、矿粉等掺和料,以降低砼的水化热。
同时,控制骨料的级配和含泥量,选用粒径较大、级配良好的骨料,以减少水泥浆的用量。
2、降低砼的入模温度在砼搅拌过程中,可采用加冰屑或冰水的方法降低水温,从而降低砼的出机温度。
在运输和浇筑过程中,对砼罐体和输送管道进行遮阳、保温处理,减少温度回升。
3、分层浇筑大体积砼可采用分层浇筑的方法,每层厚度不宜过大,一般控制在300 500mm 之间。
这样可以增加散热面积,降低砼内部的温度峰值。
4、埋设冷却水管在大体积砼内部埋设冷却水管,通循环冷水进行降温。
冷却水管的布置间距和管径应根据砼的体积、厚度和水化热等因素进行计算确定。
5、保温保湿养护砼浇筑完成后,及时进行保温保湿养护,以减少砼的内外温差和收缩。
可采用覆盖塑料薄膜、草帘、麻袋等保温材料,并定期浇水养护,保持砼表面湿润。
三、大体积砼裂纹的控制措施1、合理设置施工缝和后浇带在大体积砼施工中,合理设置施工缝和后浇带,可有效地释放砼的收缩应力,减少裂缝的产生。
简述砌体结构裂缝的类型,并简要概括其特点

砌体结构裂缝是建筑工程中常见的问题,其类型和特点多种多样。
以下是一些常见的砌体结构裂缝类型及其特点:
1.温度裂缝:由于环境温度的变化,砌体结构会产生热胀冷缩,导致
裂缝的产生。
这种裂缝通常在建筑物的外墙、屋顶等部位出现,形状为垂直或水平的直线。
2.收缩裂缝:砌体在硬化过程中,由于水分的蒸发和材料的收缩,会
产生裂缝。
这种裂缝通常在墙体的中部或上部出现,形状为垂直或斜向的直线。
3.荷载裂缝:当砌体承受过大的荷载时,如地震、爆炸等,会导致砌
体结构的破坏,产生裂缝。
这种裂缝的形状和位置取决于荷载的大小和方向。
4.沉降裂缝:由于地基的不均匀沉降,会导致砌体结构的倾斜和裂缝
的产生。
这种裂缝通常在建筑物的底部或角部出现,形状为斜向的直线。
5.材料裂缝:由于砌体材料的质量问题,如砖块的强度不足、砂浆的
质量差等,会导致砌体结构的裂缝。
这种裂缝的形状和位置取决于材料的问题。
6.施工裂缝:由于施工过程中的问题,如砌筑不规范、砂浆配比不合
理等,会导致砌体结构的裂缝。
这种裂缝的形状和位置取决于施工的问题。
以上各种裂缝的特点主要是:裂缝的位置、形状和大小与砌体结构的材料、施工工艺、使用环境和荷载等因素有关;裂缝的出现会影响砌体结构的稳定性和使用功能,甚至可能导致结构的破坏;因此,对砌体结构的裂缝进行及时的检测和处理是非常重要的。
总的来说,砌体结构裂缝的类型和特点是多种多样的,需要根据具体情况进行分析和处理。
同时,通过改进施工工艺、提高材料质量、合理设计等措施,可以有效地减少砌体结构裂缝的产生。
大体积混凝土温度裂缝裂缝控制

大体积混凝土温度裂缝裂缝控制在现代建筑工程中,大体积混凝土的应用越来越广泛。
然而,大体积混凝土在施工过程中,由于其体积较大,水泥水化热释放集中,内部温度升高较快,而表面散热较快,从而形成较大的内外温差,导致混凝土产生温度裂缝。
温度裂缝不仅会影响混凝土的外观质量,还会降低混凝土的耐久性和承载能力,严重影响建筑物的安全和使用寿命。
因此,如何有效地控制大体积混凝土的温度裂缝,是建筑工程中一个亟待解决的重要问题。
一、大体积混凝土温度裂缝的产生原因1、水泥水化热水泥在水化过程中会释放出大量的热量,由于大体积混凝土结构断面较厚,水泥水化热聚集在结构内部不易散失,使得内部温度升高较快。
当混凝土内部与表面的温差过大时,就会产生温度应力,当温度应力超过混凝土的抗拉强度时,就会产生温度裂缝。
2、外界气温变化大体积混凝土在施工期间,外界气温的变化对混凝土的开裂有着重要的影响。
混凝土的内部温度是由水泥水化热的绝热温升、浇筑温度和散热温度三者的叠加。
如果外界气温下降较大,会使混凝土表面温度急剧下降,而内部温度下降较慢,从而形成较大的内外温差,导致温度裂缝的产生。
3、混凝土的收缩混凝土在硬化过程中会发生体积收缩,包括化学收缩、干湿收缩和温度收缩等。
对于大体积混凝土,由于其体积较大,收缩受到约束时产生的拉应力也较大,容易导致裂缝的产生。
4、约束条件大体积混凝土在浇筑后,由于基础、垫层或相邻结构的约束,使其不能自由变形。
当混凝土内部产生的温度应力超过其约束应力时,就会产生裂缝。
二、大体积混凝土温度裂缝的控制措施1、优化混凝土配合比(1)选用低水化热的水泥品种,如矿渣水泥、粉煤灰水泥等,以减少水泥水化热的产生。
(2)掺入适量的粉煤灰、矿渣粉等掺和料,不仅可以降低水泥用量,减少水化热,还可以改善混凝土的和易性和耐久性。
(3)优化骨料级配,选用粒径较大、级配良好的骨料,减少水泥和水的用量,降低混凝土的收缩。
(4)掺入适量的减水剂、缓凝剂等外加剂,延长混凝土的凝结时间,降低水化热的释放速度,减少温度裂缝的产生。
混凝土施工温度与裂缝控制

浅谈混凝土施工温度与裂缝控制摘要:通过多年的施工实践对混凝土施工温度与裂缝产生过程原因进行分析,探讨了混凝土温度裂缝产生的原因及预防其产生的温度控制和防止裂缝措施的方法。
关键词:混凝土温度应力裂缝分析控制措施在工程建设中,常常出现温度裂缝,影响到结构的整体性和耐久性,因此控制和消除由于施工温度而产生的裂缝,对进一步提高工程质量极其重要。
本文中针对此类情况进行了粗浅的探讨。
1 裂缝产生的原因混凝土中产生裂缝有多种原因,主要是温度和湿度的变化,混凝土的脆性和不均匀性,结构不合理,原材料不合格,模板变形,基础不均匀沉降等。
混凝土硬化期间水泥放出大量水化热,混凝土是热的不良导体,散热缓慢,因此内部温度不断上升,在表面引起拉应力。
后期在降温过程中,由于受到基础或混凝土的约束,又会在混凝土内部出现拉应力。
气温的降低也会在混凝土表面引起很大的拉力。
当这些拉应力超出混凝土的抗拉能力时,即会产生裂缝。
2 温度应力的分析根据温度应力的形成过程可分为以下三个阶段:1)早期:自浇筑混凝土开始至水泥放热基本结束,一般约30天。
这个阶段的两个特征,一是水泥放出大量的水化热,二是混凝土弹性模量的急剧变化。
由于弹性模量的变化,这一时期在混凝土内形成残余应力。
2)中期:自水泥放热作用基本结束时起至混凝土冷却到稳定温度时止,这个时期中,温度应力主要是由于混凝土的冷却及外界气温变化所引起,这些应力与早期形成的残余应力相叠加,在此期间混凝土的弹性模量变化不大。
3)晚期:混凝土完全冷却以后的运转时期。
温度应力主要是外界气温变化所引起,这些应力与前两种的残余应力相迭加。
产生温度应力引起的原因可分为两类:1)自生应力:边界上没有任何约束或完全静止的结构,如果内部温度是非线性分布的,由于结构本身互相约束而出现的温度应力。
2)约束应力:结构的全部或部分边界受到外界的约束,不能自由变形而引起的应力。
这两种温度应力往往和混凝土的干缩所引起的应力共同作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
温度与温度裂缝
→_→砼学研究所2017-11-02
在大体积混凝土施工过程中,温度控制具有重要意义。
大体积混凝土主要的特点就是体积大,一般实体最小尺寸大于或等于1m,它的表面系数比较小,水泥水化热释放比较集中,内部温升比较快。
当混凝土内外温差较大时,会使混凝土产生温度裂缝,影响结构安全和正常使用。
所以必须从根本上分析它,来保证施工的质量。
在运转使用过程中,温度变化对结构的应力状态具有显著的影响,必须予以重视和加以控制。
我们通常遇到的主要是施工中的温度裂缝,因此本文仅对施工中混凝土温度裂缝的成因和处理措施做一浅述。
一、产生温度裂缝的原因
因为水泥在水化过程中要释放出一定的热量,而大体积混凝土结构断面较厚,表面系数相对较小,所以水泥发生的热量聚集在结构内部不易散失。
这样混凝土内部的水化热无法及时散发出去,以至于越积越高,使内外温差增大,内部温度不断上升,在表面引起拉应力。
后期在降温过程中,由于受到基础或老混凝土的约束,又会在混凝土内部出现拉应力。
大体积混凝土在施工阶段,它的浇筑温度随着外界气温变化而变化。
特别是气温骤降,会大大增加内外层混凝土温差,这对大体积混凝土是极为不利的。
温度应力是由于温差引起温度变形造成的;温差愈大,温度应力也愈大。
同时,在高温条件下,大体积混凝土不易散热,混凝土内部的最高温度一般可达60∽65℃,并且有较长的延续时间。
因此也会在混凝土表面引起很大的拉应力。
当这些拉应力超出混凝土的抗裂能力时,即会出现裂缝。
混凝土是一种脆性材料,抗拉强度是抗压强度的1/10左右。
由于原材料不均匀,水灰比不稳定,及运输和浇筑过程中的离析现象,在同一块混凝土中其抗拉强度又是不均匀的,存在着许多抗拉能力很低,易于出现裂缝的薄弱部位。
在施工中混凝土由最高温度冷却到运转时期的稳定温度,往往在混凝土内部引起相当大的拉应力。
有时温度应力可超过其它外荷载所引起的应力,因此掌握温度应力的变化规律对于进行合理的结构设计和施工极为重要,必须予以重视和加以控制。
此外,许多混凝土的内部湿度变化很小或变化较慢,但表面湿度往往变化较大,易于蒸发,如养护不到位,表面干缩形变受到内部混凝土的约束,也往往导致裂缝。
其实适宜的温、湿度条件是相互关联的,混凝土的保温措施常常也有保湿的效果。
二、产生温度应力的原因分析
1、根据温度应力的形成过程可分为以下三个阶段:
(1)早期:自浇筑混凝土开始至水泥放热基本结束,一般约30天。
水泥放出大量的水化热,这一时期在混凝土内形成残余应力。
(2)中期:自水泥放热基本结束时起至混凝土冷却到稳定温度时止。
这个时期中,温度应力主要是由于混凝土的冷却及外界气温变化所引起,这些应力与早期形成的残余应力相叠加。
(3)后期:混凝土完全冷却以后的运转时期。
温度应力主要是外界气温变化所引起,这些
应力与前两种的残余应力相叠加。
2、根据温度应力引起的原因可分为两类:
(1)自生应力:边界上没有任何约束或完全静止的结构,如果内部温度是非线性分布的,由于结构本身互相约束而出现的温度应力。
例如,桥梁墩身,结构尺寸相对较大,混凝土冷却时表面温度低,内部温度高,在表面出现拉应力,在中间出现压应力。
(2)约束应力:结构的全部或部分边界受到外界的约束,不能自由变形而引起的应力。
如护栏混凝土。
这两种温度应力往往和混凝土的干缩所引起的应力共同作用。
要想根据已知的温度准确分析出温度应力的分布、大小是一项比较复杂的工作。
三、温度的控制和防止产生温度裂缝的控制措施
温度控制就是对混凝土的浇筑温度和混凝土内部的最高温度进行人为的控制。
1、控制温度的措施如下:
(1)尽量减少单位体积混凝土的水泥用量,实验证明,水泥用量每增减10kg,水化热使温度相应升降1℃。
如掺混合料,加引气剂或塑化剂等措施以减少混凝土中的水泥用量;
(2)在混凝土的各种原料中,石子的比热虽然小,但所占的重量最大。
水在混凝土中的重量比例虽小,但比热最大,因此对混凝土的出机温度影响最大的是石子和水的温度,砂温度次之。
所以在混凝土搅拌过程中,有条件的情况下采用深地下水搅拌的方法,使混凝土的入模温度得到有效的控制,但搅拌用水必须符合混凝土用水要求。
为了降低砂、石的温度,混凝土厂家应该预先将砂、石料入库,防止日光暴晒;
(3)水泥应尽量选用水化热低、凝结时间长的水泥,优先采用中热硅酸盐水泥、低热矿渣硅酸盐水泥、大坝水泥、矿渣硅酸盐水泥、粉煤灰硅酸盐水泥、火山灰质硅酸盐水泥等;
(4)高温天气浇筑混凝土时,采用斜面分层,薄层浇灌(每层厚40cm)的方法,减少浇筑厚度,利用浇筑层面散热;
(5)高温天气在施工现场配置水源,整个现场的混凝土输送管道上全部用湿麻袋包裹,并经常浇水湿润以帮助散热;
(6)规定合理的拆模时间,气温骤降时进行表面保温,在结构物外露的混凝土表面以及模板外侧覆盖保温材料(如塑料薄膜、草袋、麻袋、锯木、湿砂等),在缓慢的散热过程中,使混凝土获得必要的强度,以控制混凝土的内外温差小于20℃,以免混凝土表面发生急剧的温度梯度;
(7)在寒冷季节施工中长期暴露的混凝土浇筑块表面,应采取保温措施。
2、防止产生温度裂缝的控制措施
上述温度的控制措施也是防止产生温度裂缝的措施。
此外还有:
(1)我们首先在材料选用和配合比上要保证符合相关规范,要符合《普通混凝土配合比设计规程》(JGJ55-2000)、《混凝土泵送施工技术规程》(JGJ/T10-95);
(2)注意浇灌速度,我施工单位与混凝土厂积极配合,保证商品混凝土的供应,现场设临时指挥小组,加强车辆的调度、平衡,尽量减少商品混凝土的运输时间和等待时间;
(3)采用适当的骨料粒径,优良的级配以及严格控制砂、石中的含泥量,来减少混凝土养护硬化过程中的收缩。
(4)混凝土浇筑完成后,表面用铁锹等拍结实,刮尺刮平,木蟹搓毛,待混凝土收水后再第二次用木蟹搓平,随后再用竹扫帚扫毛;(开裂接触面变大了)
(5)混凝土表面收水搓平扫毛后,即用塑料薄膜及麻袋等保温材料加以覆盖,薄膜及麻袋皆要求搭接,不使混凝土外露。
(保温保湿)
此外,再做些必要说明,为防止混凝土的离析,当混凝土的自由倾落高度大于2m时,采用串桶或溜槽的方法,以免出现不均匀的薄弱部位,而易于出现裂缝。
在混凝土浇筑初期,由于水化热的散发,表面引起相当大的拉应力,此时表面温度通常较气温高,此时拆除模板,表面温度骤降,必然引起温度梯度,从而在表面附加一拉应力,与水化热应力叠加,再加上混凝土干缩,表面的拉应力达到很大的数值,就有导致裂缝的危险,但如果在拆除模板后及时在表面覆盖一些轻型保温材料,如泡沫、海棉、塑料薄膜等,对于防止混凝土表面产生过大的拉应力,具有显著的效果。
另外,提请大家注意的是大体积混凝土内出现的裂缝按深度的不同,可分为贯穿裂缝、深层裂缝及表面裂缝三种。
贯穿裂缝是由混凝土表面裂缝发展为深层裂缝,最终形成贯穿裂缝。
我们在施工中应特别注意避免产生贯穿裂缝,出现后要恢复其结构的整体性是十分困难的,因此施工中应以预防贯穿性裂缝的发生为主。
四、混凝土的早期保温保湿养护措施
其实在实践工程中混凝土常见的裂缝,大多数是不同深度的表面裂缝,其主要原因是温度梯度造成的。
由于混凝土结构表面可以自然散热,实际上内部的最高温度,多数发生在浇筑后的最初3~5天,因此混凝土浇筑后的最初几天是养护的关键时期,在施工中应切实重视起来。
因此,说明混凝土的保温对防止表面早期裂缝很重要。
保温保湿养护措施主要为了防止混凝土表面温、湿度的过快损失,控制混凝土中心最高温度与表面温度之差不大于25℃,使混凝土处于一个比较合理的降温速度,以免出现急剧的温差应力而造成裂缝。
混凝土的早期养护,主要目的在于保持适宜的温湿条件,使水泥水化作用顺利进行,以期达
到设计的强度和抗裂能力。
这是保证混凝土强度的一道重要工序。
我们施工中采用覆盖一层塑料薄膜和一层麻袋片的方法,由专人负责覆盖及洒水养护,确保7天的养护期,保证混凝土表面温度不至过快散失而产生表面裂缝,同时可使由混凝土的平均总温差所产生的拉应力小于其抗拉强度,避免产生贯穿裂缝。
根据现场温度实测,将混凝土的内外温差控制在25℃以内,较好地防止了尚处在强度发展阶段的混凝土表面产生干缩裂缝。
同时根据温差情况及时对混凝土表面覆盖厚度进行增减,混凝土内外温差及混凝土表面与大气温差均不得超过25℃,当发现内外温差达到25℃时,应立刻增加覆盖,当温差降到20℃以下时可拆除部分覆盖,以加速降温,如此反复,因注意速率不大于2℃/h。
我们工程中已浇注完成的大体积钢筋混凝土承台,至今已3个多月,尚未发生裂缝。