13.4尺规作图(含五种基本作图).解析
八年级华数上 13.4 尺规作图教案

13.4 尺规作图尺规作图的定义:尺规作图是指用没有刻度的直尺和圆规作图。
最基本,最常用的尺规作图,通常称基本作图。
一些复杂的尺规作图都是由基本作图组成的。
五种基本作图:1、作一条线段等于已知线段;2、作一个角等于已知角;3、作已知线段的垂直平分线;4、作已知角的角平分线;5、过一点作已知直线的垂线;知识点一:作一条线段等于已知线段。
已知:如图,线段a .求作:线段AB,使AB = a .作法:(1)作射线AP;(2)在射线AP上截取AB=a .则线段AB就是所求作的图形。
知识点二:作一个角等于已知角。
知识点三:作已知线段的(垂直平分线)中点。
已知:如图,线段MN.求作:点O ,使MO=NO (即O 是MN 的中点). 作法:(1)分别以M 、N 为圆心,大于的相同线段为半径画弧, 两弧相交于P ,Q ; (2)连接PQ 交MN 于O .则点O 就是所求作的MN的中点。
PQ 就是MN 的垂直平分线知识点四:作已知角的角平分线。
已知:如图,∠AOB ,求作:射线OP, 使∠AOP =∠BOP (即OP 平分∠AOB )。
作法:(1)以O 为圆心,任意长度为半径画弧,分别交OA ,OB 于M ,N ;(2)分别以M 、N为圆心,大于的相同线段为半径画弧,两弧交∠AOB 内于P; (3) 作射线OP 。
则射线OP 就是∠AOB 的角平分线。
知识点5,过一点作已知直线的垂线;分直线外和直线上过程参考垂直平分线,其区别在于先找到直线上的一条线段,再作垂直平分线。
直线上线段的确定可以先以这点为圆心,合适的长度画圆与直线有交点。
典型例题:例1、已知线段a 、b ,画一条线段,使其等于b a 2+.分析 所要画的线段等于b a 2+,实质上就是b b a ++.画法:1.画线段a AB =.2.在AB 的延长线上截取b BC 2=.线段AC 就是所画的线段.说明1.尺规作图要保留画图痕迹,画图时画出的所有点和线不可随意擦去.2.其它作图都可以通过画基本作图来完成,写画法时,只需用一句话来概括叙述基本作图.例2、如下图,已知线段a和b,求作一条线段AD使它的长度等于2a-b.图(1)图(2)正解如图(2),(1)作射线AM;(2)在射线AM上,顺次截取AB=BC=a;(3)在线段CA上截取CD=b,则线段AD就是所求作的线段.例3、如图(1),已知直线AB及直线AB外一点C,过点C作CD∥AB(写出作法,画出图形).分析根据两直线平行的性质,同位角相等或内错角相等,故作一个角∠ECD=∠EFB 即可.作法如图(2).图(1)图(2)(1)过点C作直线EF,交AB于点F;(任意的直线EF,选取合适角度)(2)以点F为圆心,以任意长为半径作弧,交FB于点P,交EF于点Q;(3)以点C为圆心,以FP为半径作弧,交CE于M点;(4)以点M为圆心,以PQ为半径作弧,交前弧于点D;(5)过点D作直线CD,CD就是所求的直线.说明作图题都应给出证明,但按照教科书的要求,一般不用写出,但要知道作图的原由.课堂练习:用尺规作一条线段等于已知线段的倍数:1、已知:线段AB . 求作:线段A′B′,使得A′B′=2AB.用尺规作一条线段等于已知线段的和:2、已知:线段a、b ,求作:线段AD,使得AD=a+b .3、已知线段a,b.求2a-b,保留画法痕迹A Ba b4. 如图,已知∠1,∠2,求作一个角,使它等于∠1-∠2,2∠1-∠2215、如图,已知∠1,∠2,求作一个角,使它等于∠1+∠2。
尺规作图 知识归纳+真题解析

尺规作图知识归纳+真题解析【知识归纳】一)尺规作图1.定义只用没有刻度的和作图叫做尺规作图.2.步骤①根据给出的条件和求作的图形,写出已知和求作部分;②分析作图的方法和过程;③用直尺和圆规进行作图;④写出作法步骤,即作法.二)五种基本作图1.作一条线段等于已知线段;2.作一个角等于已知角;3.作已知角的平分线;4.过一点作已知直线的垂线;5.作已知线段的垂直平分线.三)基本作图的应用1.利用基本作图作三角形(1)已知三边作三角形;(2)已知两边及其夹角作三角形;(3)已知两角及其夹边作三角形;(4)已知底边及底边上的高作等腰三角形;(5)已知一直角边和斜边作直角三角形.2.与圆有关的尺规作图(1)过不在同一直线上的三点作圆(即三角形的外接圆).(2)作三角形的内切圆.【知识归纳答案】一)尺规作图1.定义只用没有刻度的直尺和圆规作图叫做尺规作图.2.步骤①根据给出的条件和求作的图形,写出已知和求作部分;②分析作图的方法和过程;③用直尺和圆规进行作图;④写出作法步骤,即作法.二)五种基本作图1.作一条线段等于已知线段;2.作一个角等于已知角;3.作已知角的平分线;4.过一点作已知直线的垂线;5.作已知线段的垂直平分线.三)基本作图的应用1.利用基本作图作三角形(1)已知三边作三角形;(2)已知两边及其夹角作三角形;(3)已知两角及其夹边作三角形;(4)已知底边及底边上的高作等腰三角形;(5)已知一直角边和斜边作直角三角形.2.与圆有关的尺规作图(1)过不在同一直线上的三点作圆(即三角形的外接圆).(2)作三角形的内切圆.真题解析一.选择题(共8小题)1.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG,若AD=5,DE=6,则AG的长是()A.6 B.8 C.10 D.12【考点】N2:作图—基本作图;L5:平行四边形的性质.【分析】连接EG,由作图可知AD=AE,根据等腰三角形的性质可知AG是DE的垂直平分线,由平行四边形的性质可得出CD∥AB,故可得出∠2=∠3,据此可知AD=DG,由等腰三角形的性质可知OA=AG,利用勾股定理求出OA的长即可.【解答】解:连接EG,∵由作图可知AD=AE,AG是∠BAD的平分线,∴∠1=∠2,∴AG⊥DE,OD=DE=3.∵四边形ABCD是平行四边形,∴CD∥AB,∴∠2=∠3,∴∠1=∠3,∴AD=DG.∵AG⊥DE,∴OA=AG.在Rt△AOD中,OA===4,∴AG=2AO=8.故选B.2.如图,在△AEF中,尺规作图如下:分别以点E,点F为圆心,大于EF的长为半径作弧,两弧相交于G,H两点,作直线GH,交EF于点O,连接AO,则下列结论正确的是()A.AO平分∠EAF B.AO垂直平分EF C.GH垂直平分EF D.GH平分AF【考点】N2:作图—基本作图;KG:线段垂直平分线的性质.【分析】直接根据线段垂直平分线的作法即可得出结论.【解答】解:由题意可得,GH垂直平分线段EF.故选C.3.如图,已知线段AB,分别以A、B为圆心,大于AB为半径作弧,连接弧的交点得到直线l,在直线l上取一点C,使得∠CAB=25°,延长AC至M,求∠BCM的度数为()A.40°B.50°C.60°D.70°【考点】N2:作图—基本作图;KG:线段垂直平分线的性质.【分析】根据作法可知直线l是线段AB的垂直平分线,故可得出AC=BC,再由三角形外角的性质即可得出结论.【解答】解:∵由作法可知直线l是线段AB的垂直平分线,∴AC=BC,∴∠CAB=∠CBA=25°,∴∠BCM=∠CAB+∠CBA=25°+25°=50°.故选B.4.下列四种基本尺规作图分别表示:①作一个角等于已知角;②作一个角的平分线;③作一条线段的垂直平分线;④过直线外一点P作已知直线的垂线,则对应选项中作法错误的是()A.①B.②C.③D.④【考点】N2:作图—基本作图.【分析】利用作一个角等于已知角;作一个角的平分线;作一条线段的垂直平分线;过直线外一点P 作已知直线的垂线的作法进而判断得出答案.【解答】解:①作一个角等于已知角的方法正确;②作一个角的平分线的作法正确;③作一条线段的垂直平分线缺少另一个交点,作法错误;④过直线外一点P作已知直线的垂线的作法正确.故选:C.5.如图,在△ABC中,∠ACB=90°,∠A=30°,BC=4,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于BD的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,则AF的长为()A.5 B.6 C.7 D.8【考点】N2:作图—基本作图;KO:含30度角的直角三角形.【分析】连接CD,根据在△ABC中,∠ACB=90°,∠A=30°,BC=4可知AB=2BC=8,再由作法可知BC=CD=4,CE是线段BD的垂直平分线,故CD是斜边AB的中线,据此可得出BD的长,进而可得出结论.【解答】解:连接CD,∵在△ABC中,∠ACB=90°,∠A=30°,BC=4,∴AB=2BC=8.∵作法可知BC=CD=4,CE是线段BD的垂直平分线,∴CD是斜边AB的中线,∴BD=AD=4,∴BF=DF=2,∴AF=AD+DF=4+2=6.故选B.6.如图,用尺规作图作∠AOC=∠AOB的第一步是以点O为圆心,以任意长为半径画弧①,分别交OA、OB于点E、F,那么第二步的作图痕迹②的作法是()A.以点F为圆心,OE长为半径画弧B.以点F为圆心,EF长为半径画弧C.以点E为圆心,OE长为半径画弧D.以点E为圆心,EF长为半径画弧【考点】N2:作图—基本作图.【分析】根据作一个角等于一直角的作法即可得出结论.【解答】解:用尺规作图作∠AOC=∠AOB的第一步是以点O为圆心,以任意长为半径画弧①,分别交OA、OB于点E、F,第二步的作图痕迹②的作法是以点E为圆心,EF长为半径画弧.故选D.学科网7.如图,已知钝角△ABC,依下列步骤尺规作图,并保留作图痕迹.步骤1:以C为圆心,CA为半径画弧①;步骤2:以B为圆心,BA为半径画弧②,交弧①于点D;步骤3:连接AD,交BC延长线于点H.下列叙述正确的是()A.BH垂直平分线段AD B.AC平分∠BADC.S△ABC=BC•AH D.AB=AD【考点】N2:作图—基本作图;KG:线段垂直平分线的性质.【分析】根据已知条件可知直线BC是线段AD的垂直平分线,由此一一判定即可.【解答】解:A、正确.如图连接CD、BD,∵CA=CD,BA=BD,∴点C、点B在线段AD的垂直平分线上,∴直线BC是线段AD的垂直平分线,故A正确.B、错误.CA不一定平分∠BDA.C、错误.应该是S△ABC=•BC•AH.D、错误.根据条件AB不一定等于AD.故选A.8.下列尺规作图,能判断AD是△ABC边上的高是()A.B.C.D.【考点】N2:作图—基本作图.【分析】过点A作BC的垂线,垂足为D,则AD即为所求.【解答】解:过点A作BC的垂线,垂足为D,故选B.学科网二.填空题(共5小题)9.如图,在平行四边形ABCD中,按以下步骤作图:①以A为圆心,任意长为半径作弧,分别交AB,AD于点M,N;②分别以M,N为圆心,以大于MN的长为半径作弧,两弧相交于点P;③作AP 射线,交边CD于点Q,若DQ=2QC,BC=3,则平行四边形ABCD周长为15.【考点】N2:作图—基本作图;L5:平行四边形的性质.【分析】根据角平分线的性质可知∠DAQ=∠BAQ,再由平行四边形的性质得出CD∥AB,BC=AD=3,∠BAQ=∠DQA,故可得出△AQD是等腰三角形,据此可得出DQ=AD,进而可得出结论.【解答】解:∵由题意可知,AQ是∠DAB的平分线,∴∠DAQ=∠BAQ.∵四边形ABCD是平行四边形,∴CD∥AB,BC=AD=3,∠BAQ=∠DQA,∴∠DAQ=∠DQA,∴△AQD是等腰三角形,∴DQ=AD=3.∵DQ=2QC,∴QC=DQ=,∴CD=DQ+CQ=3+=,∴平行四边形ABCD周长=2(DC+AD)=2×(+3)=15.故答案为:15.10.如图所示,已知∠AOB=40°,现按照以下步骤作图:①在OA,OB上分别截取线段OD,OE,使OD=OE;②分别以D,E为圆心,以大于DE的长为半径画弧,在∠AOB内两弧交于点C;③作射线OC.则∠AOC的大小为20°.【考点】N2:作图—基本作图.【分析】直接根据角平分线的作法即可得出结论.【解答】解:∵由作法可知,OC是∠AOB的平分线,∴∠AOC=∠AOB=20°.故答案为:20°.11.如图,依据尺规作图的痕迹,计算∠α=56°.【考点】N2:作图—基本作图.【分析】先根据矩形的性质得出AD∥BC,故可得出∠DAC的度数,由角平分线的定义求出∠EAF的度数,再由EF是线段AC的垂直平分线得出∠AEF的度数,根据三角形内角和定理得出∠AFE的度数,进而可得出结论.【解答】解:∵四边形ABCD是矩形,∴AD∥BC,∴∠DAC=∠ACB=68°.∵由作法可知,AF是∠DAC的平分线,∴∠EAF=∠DAC=34°.∵由作法可知,EF是线段AC的垂直平分线,∴∠AEF=90°,∴∠AFE=90°﹣34°=56°,∴∠α=56°.故答案为:56.学科网12.如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧在第二象限内交于点P(a,b),则a与b的数量关系是a+b=0.【考点】N2:作图—基本作图;D5:坐标与图形性质;J5:点到直线的距离.【分析】根据作图方法可得点P在第二象限的角平分线上,根据角平分线的性质和第二象限内点的坐标符号,可得a与b的数量关系为互为相反数.【解答】解:根据作图方法可得,点P在第二象限角平分线上,∴点P到x轴、y轴的距离相等,即|b|=|a|,又∵点P(a,b)第二象限内,∴b=﹣a,即a+b=0,故答案为:a+b=0.13.图1是“作已知直角三角形的外接圆”的尺规作图过程已知:Rt△ABC,∠C=90°,求作Rt△ABC的外接圆.作法:如图2.(1)分别以点A和点B为圆心,大于的长为半径作弧,两弧相交于P,Q两点;(2)作直线PQ,交AB于点O;(3)以O为圆心,OA为半径作⊙O.⊙O即为所求作的圆.请回答:该尺规作图的依据是到线段两端点的距离相等的点在这条线段的垂直平分线上;两点确定一条直线;90°的圆周角所对的弦是直径;圆的定义..【考点】N3:作图—复杂作图;MA:三角形的外接圆与外心.【分析】由于90°的圆周角所对的弦是直径,所以Rt△ABC的外接圆的圆心为AB的中点,然后作AB 的中垂线得到圆心后即可得到Rt△ABC的外接圆.【解答】解:该尺规作图的依据是到线段两端点的距离相等的点在这条线段的垂直平分线上;90°的圆周角所对的弦是直径.故答案为到线段两端点的距离相等的点在这条线段的垂直平分线上;两点确定一直线;90°的圆周角所对的弦是直径;圆的定义.三.解答题(共8小题)14.如图,△ABC中,∠ACB>∠ABC.(1)用直尺和圆规在∠ACB的内部作射线CM,使∠ACM=∠ABC(不要求写作法,保留作图痕迹);(2)若(1)中的射线CM交AB于点D,AB=9,AC=6,求AD的长.【考点】N2:作图—基本作图;S9:相似三角形的判定与性质.【分析】(1)根据尺规作图的方法,以AC为一边,在∠ACB的内部作∠ACM=∠ABC即可;(2)根据△ACD与△ABC相似,运用相似三角形的对应边成比例进行计算即可.【解答】解:(1)如图所示,射线CM即为所求;(2)∵∠ACD=∠ABC,∠CAD=∠BAC,∴△ACD∽△ABC,∴=,即=,∴AD=4.15.如图,在Rt△ABC中,∠B=90°,∠A=30°,AC=2.(1)利用尺规作线段AC的垂直平分线DE,垂足为E,交AB于点D,(保留作图痕迹,不写作法)(2)若△ADE的周长为a,先化简T=(a+1)2﹣a(a﹣1),再求T的值.【考点】N2:作图—基本作图;KO:含30度角的直角三角形.【分析】(1)根据作已知线段的垂直平分线的方法,即可得到线段AC的垂直平分线DE;(2)根据Rt△ADE中,∠A=30°,AE=,即可求得a的值,最后化简T=(a+1)2﹣a(a﹣1),再求T的值.【解答】解:(1)如图所示,DE即为所求;(2)由题可得,AE=AC=,∠A=30°,∴Rt△ADE中,DE=AD,设DE=x,则AD=2x,∴Rt△ADE中,x2+()2=(2x)2,解得x=1,∴△ADE的周长a=1+2+=3+,∵T=(a+1)2﹣a(a﹣1)=3a+1,∴当a=3+时,T=3(3+)+1=10+3.16.如图,已知△ABC,请用圆规和直尺作出△ABC的一条中位线EF(不写作法,保留作图痕迹).【考点】N3:作图—复杂作图;KX:三角形中位线定理.【分析】作线段AB的垂直平分线得到AB的中点E,作AC的垂直平分线得到线段AC的中点F.线段EF即为所求.【解答】解:如图,△ABC的一条中位线EF如图所示,方法:作线段AB的垂直平分线得到AB的中点E,作AC的垂直平分线得到线段AC的中点F.线段EF即为所求.17.如图,已知△ABC,∠B=40°.(1)在图中,用尺规作出△ABC的内切圆O,并标出⊙O与边AB,BC,AC的切点D,E,F(保留痕迹,不必写作法);(2)连接EF,DF,求∠EFD的度数.【考点】N3:作图—复杂作图;MI:三角形的内切圆与内心.【分析】(1)直接利用基本作图即可得出结论;(2)利用四边形的性质,三角形的内切圆的性质即可得出结论.【解答】解:(1)如图1,⊙O即为所求.(2)如图2,连接OD,OE,∴OD⊥AB,OE⊥BC,∴∠ODB=∠OEB=90°,∵∠B=40°,∴∠DOE=140°,∴∠EFD=70°.18.在数学课本上,同学们已经探究过“经过已知直线外一点作这条直线的垂线“的尺规作图过程:已知:直线l和l外一点P求作:直线l的垂线,使它经过点P.作法:如图:(1)在直线l上任取两点A、B;(2)分别以点A、B为圆心,AP,BP长为半径画弧,两弧相交于点Q;(3)作直线PQ.参考以上材料作图的方法,解决以下问题:(1)以上材料作图的依据是:线段垂直平分线上的点到线段两端点的距离相等(3)已知,直线l和l外一点P,求作:⊙P,使它与直线l相切.(尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔描黑)【考点】N3:作图—复杂作图;MD:切线的判定.【分析】(1)根据线段垂直平分线的性质,可得答案;(2)根据线段垂直平分线的性质,切线的性质,可得答案.【解答】解:(1)以上材料作图的依据是:线段垂直平分线上的点到线段两端点的距离相等,故答案为:线段垂直平分线上的点到线段两端点的距离相等;(2)如图.19.“直角”在初中几何学习中无处不在.如图,已知∠AOB,请仿照小丽的方式,再用两种不同的方法判断∠AOB是否为直角(仅限用直尺和圆规).【考点】N3:作图—复杂作图;KS:勾股定理的逆定理;M5:圆周角定理.【分析】(1)根据勾股定理的逆定理,可得答案;(2)根据圆周角定理,可得答案.【解答】解:(1)如图1,在OA,OB上分别,截取OC=4,OD=3,若CD的长为5,则∠AOB=90°(2)如图2,在OA,OB上分别取点C,D,以CD为直径画圆,若点O在圆上,则∠AOB=90°.20.如图,已知正七边形ABCDEFG,请仅用无刻度的直尺,分别按下列要求画图.(1)在图1中,画出一个以AB为边的平行四边形;(2)在图2中,画出一个以AF为边的菱形.【考点】N3:作图—复杂作图;L5:平行四边形的性质;L8:菱形的性质.【分析】(1)连接AF、BE、CG,CG交AF于M,交BE于N.四边形ABNM是平行四边形.(2)连接AF、DF,延长DC交AB的延长线于M,四边形AFDM是菱形.【解答】解:(1)连接AF、BE、CG,CG交AF于M,交BE于N.四边形ABNM是平行四边形.(2)连接AF、DF,∠延长DC交AB的延长线于M,四边形AFDM是菱形.21.图①、图②、图③都是由边长为1的小等边三角形构成的网格,每个小等边三角形的顶点称为格点.线段AB的端点在格点上.(1)在图①、图2中,以AB为边各画一个等腰三角形,且第三个顶点在格点上;(所画图形不全等)(2)在图③中,以AB为边画一个平行四边形,且另外两个顶点在格点上.【考点】N4:作图—应用与设计作图;KI:等腰三角形的判定;KK:等边三角形的性质;L6:平行四边形的判定.【分析】(1)根据等腰三角形的定义作图可得;(2)根据平行四边形的判定作图可得.【解答】解:(1)如图①、②所示,△ABC和△ABD即为所求;(2)如图③所示,▱ABCD即为所求.。
五种基本的尺规作图

在建筑设计中,尺规作图被广泛 应用于绘制平面图、立面图和剖 面图等,以确保建筑的准确性和
美观性。
机械工程
在机械制图中,尺规作图是绘制精 确零件图和装配图的重要工具,有 助于提高机械制造的精度和效率。
艺术设计
在美术、设计等艺术领域,尺规作 图也被用于创作具有几何美感的作 品,展现出独特的艺术魅力。
技巧分享
分享一些在尺规作图中常用的技巧和注意事项,如如何准确确定切点、如何绘制 垂直直线等,以提高作图的准确性和效率。同时,也可以介绍一些在实际应用中 可能会遇到的特殊情况和处理方法。
06 综合应用与拓展
五种基本尺规作图的综合应用
作一条已知线段的垂直平分线
利用直尺和圆规,可以准确作出已 知线段的垂直平分线,这在几何作 图中非常有用。
技巧分享
在绘制大圆时,可以将圆规两脚间距离调整得稍大一些,以提高绘制效率;在绘制小圆时 ,则需要更加精细地调整圆规两脚间距离,以确保绘制出的圆足够准确。
注意事项
在实例演示和技巧分享中,要强调保持圆规两脚间距离不变的重要性,以及注意调整圆规 两脚间距离的方法。同时,还可以分享一些在绘制过程中可能遇到的问题和解决方法,例 如如何避免圆规针尖滑动导致绘制出的圆不准确等问题。
五种基本的尺规作图
目 录
• 五种基本尺规作图概述 • 直线与角平分线作图 • 垂直平分线与平行线作图 • 圆的作图 • 圆弧连接与切线作图 • 综合应用与拓展
01 五种基本尺规作图概述
定义与分类
定义
尺规作图是指使用无刻度的直尺和圆 规进行作图的方法,是几何学中的基 本作图技能之一。
分类
五种基本的尺规作图包括作一条线段 等于已知线段、作一个角等于已知角 、作已知角的平分线、作线段的垂直 平分线以及作已知线段的中点。
八年级数学上册13.4尺规作图《尺规作图法作三角形》典型例析素材华东师大版(new)

《尺规作图法作三角形》典型例析限定用直尺和圆规来画图称为尺规作图。
学习了三角形全等的判定后,我们可以借助于全等三角形的判定方法,根据所给的条件,用尺规作图法作三角形.请看举例.一、已知两边及一边的对角作三角形例1 如图,已线段a、b及∠α.求作:△ABC,使其有一个角是∠α,且∠α的对边等于a,另一边等于b.思路点拨:根据已知条件,可先作一个∠MBN等于∠α,在∠MBN的一边上截取BA=b,然后以A为圆心,以线段a长为半径画弧即可.作法: 1.作∠MBN=α;2.在边BM上截取AB=b;3.以点A为圆心,a的长为半径作弧交BN于点C(或C′);4.连结AC(或AC′).则△ABC或△ABC′就是所求作的三角形(如图2).图1 图2二、已知斜边和一条直角边作三角形例2 如图3,已知线段c、b(c〉b)。
求作:△ABC,使∠C=Rt∠,AB=c,AC=b.思路点拨:根据已知条件,可先作∠C=Rt∠,然后在∠C的一边上截取CA=b,再以点A为圆心,线段c为半径画弧即可。
作法:1.作直线MN,并在直线MN上取点C;2.作MCN的平分线CE;3.在射线CE上截取CA=b;4.以A为圆心,c为半径画弧交直线CM于B点;5.连结AB。
则△ABC就是所求作的三角形(如图4)。
图3 图4三、已知两直角边求作直角三角形例3 如图5,已知两条线段a,b.求作:△ABC,使∠ACB=90°,AC=b,BC=a.思路点拨:可先借助作平角平分线的方法作出∠ECM=90°,然后再CE上截取CA=b,在CF 上截取CB=a,连接AB即可.作法:1.作直线MN,在直线MN上取点C;2.作∠MCN的平分线CE;3.在CE上截取CA=b,在CM上截取CB=a;4.连接AB.则△ABC为所作三角形(如图6)。
图5 图6四、求作两边相等的三角形例4 如图7,已知线段a,b,求作:△ABC,使BC=a,AC=AB=b。
(完整版)初中最基本的尺规作图总结

尺规作图一、理解“尺规作图”的含义1.在几何中,我们把只限定用直尺(无刻度)和圆规来画图的方法,称为尺规作图.其中直尺只能用来作直线、线段、射线或延长线段;圆规用来作圆和圆弧.由此可知,尺规作图与一般的画图不同,一般画图可以动用一切画图工具,包括三角尺、量角器等,在操作过程中可以度量,但尺规作图在操作过程中是不允许度量成分的.2.基本作图:(1)用尺规作一条线段等于已知线段;(2)用尺规作一个角等于已知角. 利用这两个基本作图,可以作两条线段或两个角的和或差.二、熟练掌握尺规作图题的规范语言1.用直尺作图的几何语言:①过点×、点×作直线××;或作直线××;或作射线××;②连结两点××;或连结××;③延长××到点×;或延长(反向延长)××到点×,使××=××;或延长××交××于点×;2.用圆规作图的几何语言:①在××上截取××=××;②以点×为圆心,××的长为半径作圆(或弧);③以点×为圆心,××的长为半径作弧,交××于点×;④分别以点×、点×为圆心,以××、××的长为半径作弧,两弧相交于点×、×. 三、了解尺规作图题的一般步骤尺规作图题的步骤:1.已知:当作图是文字语言叙述时,要学会根据文字语言用数学语言写出题目中的条件;2.求作:能根据题目写出要求作出的图形及此图形应满足的条件;3.作法:能根据作图的过程写出每一步的操作过程.当不要求写作法时,一般要保留作图痕迹.对于较复杂的作图,可先画出草图,使它同所要作的图大致相同,然后借助草图寻找作法.在目前,我们只要能够写出已知,求作,作法三步(另外还有第四步证明)就可以了,而且在许多中考作图题中,又往往只要求保留作图痕迹,不需要写出作法,可见在解作图题时,保留作图痕迹很重要.尺规作图的定义:尺规作图是指用没有刻度的直尺和圆规作图。
【数学课件】2018年八年级数学上13.4尺规作图3作已知角的平分线导学新版华东师大版

13.4 尺规作图
目标突破
目标一 会作已知角的平分线
例 1 教材补充例题 如图 13-4-5 所示, 作出△ABC 三个内 角的平分线,并观察你作出的图形,有什么新的发条内角平分线相交于同一点.
13.4 尺规作图
【归纳总结】(1)作已知角的平分线是根据“三边对应相等的两个三
图 13-4-6
13.4 尺规作图
【解析】 先作∠A的平分线AE,以B为顶点作∠ABD=∠EAB,则 ∠ABD即为所求.
解:如图所示,∠ABD 即为所求.
13.4 尺规作图
【归纳总结】 作一个角等于已知角属于定量作图,而作角的平
分线则属于定位作图.在综合作图题中,有时既需要定量,又需
要定位,需认真分析,找到解决办法.
题的关键是作图,在正确作图的基础上进行相关的计算或证明.
13.4 尺规作图
总结反思
小结
知识点 作已知角的平分线
作法如下:
已知:∠AOB,如图13-4-8①所示.
求作:射线OC,使OC平分∠AOB. 图13-4-8
OD 作法:1.在射线OA,OB上,分别截取OD,OE,使________ = OE ________ ;
第13章 全等三角形
13. 4 尺规作图 3.作已知角的平分线
第13章 全等三角形
3. 作已知角的平分线
知识目标
目标突破
总结反思
13.4 尺规作图
知识目标
1.经过操作、思考、讨论,归纳总结用尺规作图作已知角的 平分线的方法及其依据. 2.在理解用尺规作已知角的平分线的基础上,能够解决一些 与角平分线有关的尺规作图问题.
角形全等”和“全等三角形的对应角相等”的原理来解决的. (2)在作图步骤的第二步一定要注意是以大于某条线段长度的为半 径作圆弧,否则两弧没有交点或两弧交点不明显. (3)通过作图了解三角形三个内角的平分线相交于一点.
最新华师版八上数学 13.4 尺规作图 上课课件(共44张PPT)

1
2
1
2
课堂小结
工具→没有刻度的直尺、圆规
尺
规 作
图 作图
1.作一条线段等于已知线段→作线段的和与差 2.作一个角等于已知角→作角的和与差
3.作三角形
华东师大版·八年级数学上册
2.尺规作图(2)
新课导入
用圆规和直尺能不能作 出正七边形、正九边形、正 十一边形、正十三边形、正 十七边形呢?
两千年来,这一直是个未解之谜.
练习
1.
如图,已知∠A,试作∠B=
1 2
∠A(不写作
法,保留作图痕迹)
A
B
2. 做出图中三角形的三个角的平分线。
内心
如何过一点 C 作已知直线 AB 的垂线呢?
C
点C与已知直线 AB 的位置关系有两种: 点C在直线 AB 上或点C在直线 AB 外.
(1)当点 C 在直线 AB 上
① 做平角ACB的平分线CD;
华东师大版·八年级数学上册
1.尺规作图(1)
新课导入
三角尺 量角器
刻度尺
圆规
探究新知
没有刻度的直尺
只能使用圆规和 没有刻度的直尺这两 种工具作几何图形的 方法叫做尺规作图.
圆规
基本的尺规作图:
作一条线段等于已知线段
作一个角等于已知角 作已知角的平分线
尺规作图时通常 保留作图痕迹.
经过一已知点作已知直线的垂线
D
B
C
思考 如图,已知直线l是线段AB的垂 直平分线,则直线l是线段AB的对称轴, 对l上的任意两点C、D,总有:
A
CA=CB,DA=DB
由此,你能发现作垂直平分线的方法吗?
l C
B D
13.4 三角形的尺规作图(课件)冀教版数学八年级上册

求作:△ABC,使∠B=∠α,BC=a,BA=b.
步 作法
骤 ①作∠MBN=∠α
图示
②在射线 BN,BM 上分别 截取线段BC=a,BA=b
返回目录
13.4 三角形的尺规作图
考 点 清 步 ③连接 AC,△ABC 即为 单 解 骤 所求 读
返回目录
续表
13.4 三角形的尺规作图
返回目录
4. 已知两角及其夹边用尺规作三角形 考 点 已知:∠α,∠β,线段 a. 清 单 解 读
单 解
的三角形,否则三角形不唯一.
读
13.4 三角形的尺规作图
返回目录
考
对点典例剖析
点 清
典例 1 尺规作图(不写作法,保留作图痕迹).
单 解
已知:∠β 和线段 a(如图),求作△ABC,使得
读 ∠A=∠β,∠B=2∠β,AB=a.
13.4 三角形的尺规作图
考 [答案] 解:如图,△ABC 即为所求. 点 清 单 解 读
13.4 三角形的尺规作图
● 考点清单解读 ● 重难题型突破
13.4 三角形的尺规作图
返回目录
考 ■考点 用尺规作三角形
点 清
1. 尺规作图:只用直尺(没有刻度)和圆规也可以画出
单 解
一些图形,这种画图的方法被称为尺规作图.
读 2. 已知三边用尺规作三角形
已知:线段 a,b,c.
步 求作:△ABC,使 AB=c,BC=a,AC=b.
骤 作法
图示
①作线段 AB=c
13.4 三角形的尺规作图
考 点 清 ②以点 A 为圆心,b 为 单 解 半径画弧 读
步 ③以点 B 为圆心,a 为 骤 半径画弧,两弧交于点 C
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
m
(1)作一条线段等于已知线段 (2)作一个角等于已知角
你会平分一个平角吗?
直线CD与直线AB是什么关系? 结论:作平角的平分线即可平分平角,由此也 得到过直线上一点作这条直线的垂线的方法。
基本作图4. 经过一已知点作已知直线的垂线
(1)、如图,点C在直线上,试过点C画出直 线的垂线。
4、继续作下去, 在适当的区域涂上颜色, 你作出美丽的“邹菊图案” 吗?
什么叫做角平分线?
角平分线定义:把一个角分成两个相等的 角的射线,叫做这个角的平分线。
O
c
B
探索
基本作图3 "平分已知角".
(1)以O 为圆心,以适当长为半径画弧,交OA
于C 点,交OB 于D 点;
(2)分别以C、D
为圆心,以大于
交O’A’于点C’ (4) 以点C’为圆心C,D长为半径 画弧,
交前面的弧于点D’ ,
(5) 过点D’作射线O’B’.
则∠A’O’B’即为所求.
DB
O
CA
BB’’
D’
OO’ C
’
’
AA’ ’
B D
B` D`
O
A
C
O`
C`
A`
证明:
,由作法可知
△C`O`D`≌△COD(SSS),
∴∠C`O`D`=∠COD(全等三角形的对 应角相等),
•一些复杂的尺规作图都是由基本作图组成的.
例1、下列属于尺规作图的是( ) A、用量角器画∠AOB的平分线OC B、已知∠ 1,求作∠AOB =2 ∠ 1 C、作线段AC=3cm D、用三角板作AB的垂线
练习、下列属于尺规作图的是( ) A、作线段AB,使它等于4cm B、作∠ ABC=40° C、以点B为圆心,3cm的长度为半径画弧 D、作线段AB,使它等于已知线段m
即∠A`O`B`=∠AOB。
练习
1、已知: ∠AOB。
求作: ∠A’O’B’ ,使∠A’O’B’=2∠AOB 。
作法一:
法二: D B
B’ CB
C
O
A
B’
E
O
A’ A
∠A’O’B’即为所求.
C’
O’
A
∠A’O’B’即为所求.
例2、已知∠ 1、∠2且 , ∠ 1<∠2, 求作∠ABC,使得∠ABC =∠ 1+∠2
1 2
CD
长为半
径画弧,两弧相交于P 点;
A
(3)作射线OP , 则:射线OP即为所求. C
P
O
D
B
证明:
由作图过程知:
B
A
D
AB=AC,BD=CD
C
又∵AD=AD
∴△ABD≌ △ACD(SSS)
∴∠BAD=∠CAD
∴AD是∠BAC的平分线
1.如图,已知∠A,试画∠B=1/2∠A. (不写画法,保留作图痕迹).
(也叫中垂线。)
• 线段垂直平分线有哪些特征? 线段的垂直平分线上的点到线段两端 点的距离相等;反过来,到线段两端点 距离相等的点在线段的垂直平分线上。
练习:A、B是两个村庄,要从灌溉总渠引 两条水渠便于灌溉,请你选择最佳方案。
B A
灌溉总渠
五种基本作图
(1)作一条线段等于已知线段
(2)作一个角等于已知角
基本作图1、“作一条线段等于已知线段。”
已知:线段a. 求作:线段AB,使AB=a.
作法与示范:
a
(1) 作射线AC ;
(2) 以点A为圆心,
以a的长为半径 画弧,
交射线AC 于点B,
则:AB即所求。
A
B
C
练习:
求作一条线段AB,使AB=2a.
已知:线段a 求作:线段AB ,使 线段AB=2a
作法 :
a
b
练习:求作:一条线段MN,使得MN=2b-a
基本作图2、“作一个角等于已知角。”
已知: ∠AOB。 求作: ∠A’O’B’ 使 作 法 ∠A’O’B’=示∠AOB范。
(1) 作射线O’A’;
(2) 以点O为圆心,任意长为半径 画弧,
, 交OA于点C 交OB于点D
(3) 以点O’为圆心以,(OD)长为半径画弧,
(2)、如图,如果点C不在直线上,试和同学 讨论,应采取怎样的步骤,过点C画出直线的 垂线?
(1).如图,点C在直线l上,
试过点C画出直线l的垂线.
作法:
1.以C为圆心,任一线段的长为半径画弧,
交L于A、B两点. 2.分别以A、B为圆心,以大于 1 A的B长为 半径画弧,两弧相交于点D. 2
3.作直线CD.
(1)作射线AC;
(2)以点A为圆心,
以a长为半径 画弧,
交射线AC于点D;
(3)以点D为圆心, 以a长为半径 画弧,
交射线AC于点B;
则:AB 即为所求。 A
D
a
B
C
思考:探究与合作 你们会做一条线段等于所给线段的和或差吗?
例1、已知线段a、b,且a<b, 求作:一条线段AB,使得AB=2a+b
• 在几何里,把限定用(没有刻度的)直尺和圆规来画图
的,称为尺规作图.
• 尺:没有刻度的直尺; 规:圆规
•最基本,最常用的尺规作图,通常称基本作图.
五种基本作图: 1.作一条线段等于已知线段。 2.作一个角等于已知角。 3.作已知角的平分线。 4.经过一已知点作已知直线的垂线。 5.作已知线段的垂直平分线。
(3)作一个角的平分线 (4)作已知线段的中垂线
(5)过一点作已知直线的垂线
1
2
练习:求作∠MON,使得∠MON =∠2 -∠ 1
试一试
右面的“用邹菊尺图规案”作漂优亮吗美?的图案
你想自己画出它来吗? 那就让我们从最初的步骤开始吧!
1、 以点O为圆心, r 为半径作圆O;
以2、圆O上任意一点为圆心, r 为半径作圆,与圆O交于两点;
3、 分别以两个交点为圆心, r 为半径作圆;
2、如图,画 △ABC 边 BC 上的(第高1 题)
.
(第 题)
基本作图5“作已知线段的垂直平分线.”
已知:线段AB,
求作:线段AB的垂直平分线CD.
1 作法:1、分别以点A、B为圆心,以大于 2
AB 的
长为半径画弧;两弧相交于C、D.
C
2、作直线CD,
则直线CD即为所求.A
B D
• 什么叫线段的垂直平分线? 过线段的中点,垂直这条线段的直线。
(第 1 题)
2、试把下图所示的角四等分
A
O
B
3.画出图中三角形三个内角的角平分 线.(不写画法,保留作图痕迹)
(第 2 题)
联系知识综合运用
已知:两条线段 a、b 求作:Rt△ABC使直角的平分线等于b, 一直角边AB=a。
a
b
• 已知:角∠α,线段m。 • 求作:等腰三角形△ABC,使其顶角
则直线CD即为所求。
C
•
l
A
B
(2)的作法:
(1)任取一点M,使点M和点C在直线L的两侧;
(2)以C为圆心,以CM长为半径画弧,交L于A、B两点;
(3)分别以A、B两点为圆心,以大于 1 AB 2
长为半径画弧,两弧相交于D点;
C
(4)作直线CD.
则直线CD就是所求。A
•MB
l
D
练习:
1、如图,过点P画∠O 两边的垂线.