高中数学:第2章 数列 §2.1-第1课时

合集下载

高中数学必修5课件:第2章2-1-2数列的性质和递推关系

高中数学必修5课件:第2章2-1-2数列的性质和递推关系

n 3n+1
为递
增数列.
数学 必修5
第二章 数列
方法二:∵n∈N*,∴an>0,
n+1

an+1 an

3n+4 n

n+13n+1 3n+4n

3n2+4n+1 3n2+4n
=1+
1 3n2+4n
3n+1
>1,∴an+1>an,∴数列3nn+1为递增数列.
数学 必修5
第二章 数列
方法三:令f(x)=3x+x 1(x≥1),则 f(x)=133x3+x+1-1 1=131-3x+1 1, ∴函数f(x)在[1,+∞)上是增函数, ∴数列3nn+1是递增数列.
数学 必修5
第二章 数列
(2)∵bn=aan+n 1,且a1=1,a2=2,a3=3,a4=5,a5=8, ∴b1=aa12=12,b2=aa23=23,b3=aa34=35,b4=aa45=58. 故b1=12,b2=23,b3=35,b4=58.
数学 必修5
第二章 数列
数列的单调性问题
已知数列{an}的通项公式为an=
(1)写出此数列的前5项;
(2)通过公式bn=
an an+1
构造一个新的数列{bn},写出数列{bn}
的前4项.
数学 必修5
第二章 数列
解析: (1)∵an=an-1+an-2(n≥3),且a1=1,a2=2, ∴a3=a2+a1=3,a4=a3+a2=3+2=5, a5=a4+a3=5+3=8. 故数列{an}的前5项依次为 a1=1,a2=2,a3=3,a4=5,a5=8.
4分 6分 8分
10分
12分
数学 必修5
第二章 数列

【苏教版】高中数学必修五第1课时:2.1《数列》课时讲义(江苏省启东中学)

【苏教版】高中数学必修五第1课时:2.1《数列》课时讲义(江苏省启东中学)

【苏教版】高中数学必修五第2章数列§2.1 数列的概念及其通项公式课时讲义【三维目标】:一、知识与技能1.通过日常生活中的实例,了解数列的概念和几种简单的表示方法(列表、图像、通项公式),了解数列是一种特殊函数;认识数列是反映自然规律的基本数学模型;2.了解数列的分类,理解数列通项公式的概念,会根据通项公式写出数列数列的前几项,会根据简单数列的前几项写出数列的通项公式;3. 培养学生认真观察的习惯,培养学生从特殊到一般的归纳能力,提高观察、抽象的能力.二、过程与方法1.通过对具体例子的观察分析得出数列的概念,培养学生由特殊到一般的归纳能力;2.通过对一列数的观察、归纳,写出符合条件的一个通项公式,培养学生的观察能力和抽象概括能力.3.通过类比函数的思想了解数列的几种简单的表示方法(列表、图象、通项公式);三、情感、态度与价值观1.体会数列是一种特殊的函数;借助函数的背景和研究方法来研究有关数列的问题,可以进一步让学生体会数学知识间的联系,培养用已知去研究未知的能力。

2.在参与问题讨论并获得解决中,培养观察、归纳的思维品质,养成自主探索的学习习惯;并通过本节课的学习,体会数学来源于生活,提高数学学习的兴趣。

【教学重点与难点】:重点:数列及其有关概念,通项公式及其应用。

难点:根据一些数列的前几项抽象、归纳数列的通项公式。

【学法与教学用具】:1. 学法:学生以阅读与思考的方式了解数列的概念;通过类比函数的思想了解数列的几种简单的表示方法;以观察的形式发现数列可能的通项公式。

2. 教学方法:启发引导式3. 教学用具:多媒体、实物投影仪、尺等.【授课类型】:新授课【课时安排】:1课时【教学思路】:一、创设情景,揭示课题1. 观察下列例子中的7列数有什么特点:(1)传说中棋盘上的麦粒数按放置的先后排成一列数:1,2,22,23,…,263(2)某种细胞,如果每个细胞每分钟分裂为2个,那么每过1分钟,1个细胞分裂的个数依次为1,2,4,8,16,…(3)π精确到0.01,0.001,0.0001…的不足近似值排成一列数:3.14,3.141,3.1415,3.14159,3.141592…(4)人们在1740年发现了一颗彗星,并推算出它每隔83年出现一次,则从出现那次算起,这颗彗星出现的年份依次为1740,1823,1906,1989,…(5)某剧场有10排座位,第一排有20个座位,后一排都比前一排多2个,则各排的座位数依次为:20,22,24,26,…,38(6)从1984年到今年,我国体育健儿共参加了6次奥运会,获得的金牌数依次排成一列数:15,5,16,16,28,32(7)"一尺之棰,日取其半,万世不竭"如果将"一尺之棰"视为1份,那么每日剩下的部分依次为1,12,14,18,116,... 这些数字能否调换顺序?顺序变了之后所表达的意思变化了吗?思考问题,并理解顺序变化后对这列数字的影响.(组织学生观察这7组数据后,启发学生概括其特点,教师总结并给出数列确切定义)注意:由古印度关于国际象棋的传说、生物学中的细胞分裂问题及实际生活中的某些例子导入课题,既激活了课堂气氛,又让学生体会到数列在实际生活中有着广泛的应用,提高学生学习的兴趣。

高中数学第二章数列2.2等差数列第1课时等差数列的概念与通项公式课件新人教A版必修5

高中数学第二章数列2.2等差数列第1课时等差数列的概念与通项公式课件新人教A版必修5

3.在等差数列{an}中,若 a1·a3=8,a2=3,则公差 d=( )
A.1 B.-1 C.±1 D.±2 a1(a1+2d)=8,
解析:由已知得 a1+d=3,
解得 d=±1. 答案:C
第九页,共32页。
4. lg( 3 + 2 ) 与 lg( 3 - 2 ) 的 等 差 中 项 是 ______________.
第十六页,共32页。
[变式训练] (1)已知数列 3,9,15,…,3(2n-1),…, 那么 81 是它的第________项( )
A.12 B.13 C.14 D.15 (2)已知等差数列{an}中,a15=33,a61=217,试判断 153 是不是这个数列的项,如果是,是第几项? 解析:(1)an=3(2n-1)=6n-3,由 6n-3=81,得 n =14.
第十七页,共32页。
(2)设首项为 a1,公差为 d,则 an=a1+(n-1)d, a1+(15-1)d=33,
由已知 a1+(61-1)d=217,
a1=-23, 解得
d=4. 所以 an=-23+(n-1)×4=4n-27,
第十八页,共32页。
令 an=153,即 4n-27=153,解得 n=45∈N*, 所以 153 是所给数列的第 45 项. 答案:(1)C (2)45
答案:(1)× (2)√ (3)√ (4)√
第七页,共32页。
2.已知等差数列{an}中,首项 a1=4,公差 d=-2,
则通项公式 an 等于( )
A.4-2n
B.2n-4
C.6-2n
D.2n-6
解析:因为 a1=4,d=-2,所以 an=4+(n-1)×(-
2)=6-2n.

高中数学课件:第二章 2.1 数列的概念与简单表示法 第一课时 数列的概念与通项公式

高中数学课件:第二章 2.1 数列的概念与简单表示法 第一课时 数列的概念与通项公式

返回
返回
[研一题] [例 1] 项公式: 4 1 4 2 (1)5,2,11,7,…; 1 9 25 (2)2,2,2,8, 2 ,…; (3)7,77,777,…; 根据数列的前几项,写出下列各数列的一个通
返回
(4)0,3,8,15,24,…; 1 3 7 15 31 (5)2,4,8,16,32,…; 2 10 17 26 37 (6)3,-1, 7 ,- 9 , 11,-13,….

返回
[悟一法] 1.根据数列的前几项写通项公式,体现了由特殊到一 般的认识事物的规律.解决这类问题一定要注意观察项与序 号的关系和相邻项间的关系.具体地可参考以下几个思路
(1)统一项的结构,如都化成分数、根式等.
返回
(2)分析这一结构中变化的部分与不变的部分,探索变 化部分的变化规律与对应序号间的函数关系式,如例1.(1) 中可把分子、分母分别处理. (3)对于符号交替出现的情况,可观察其绝对值,再以 (-1)n(n∈N*)处理符号,如例1.(6).
返回
[巧思] 求出数列{an}的通项公式是解决本题的关键.由
a1·2·3·…·an=n2可得a1·2·3·…·an-1=(n-1)2,故可求an. a a a a
返回
[妙解]
∵a1·2·3· an=n2(n∈N*),① a a …·
∴当 n≥2 时,a1·2·3· an-1=(n-1)2.② a a …· ① n2 由 ,得 an= 2(n≥2) ② n-1 n2 9 25 61 (1)∵an= (n≥2),∴a3+a5=4+16=16. n-12
返回
(4)数列 2,4,6,8,…的通项公式是 an=2n; (5)数列 1,2,4,8,…的通项公式是 an=2n 1; (6)数列 1,4,9,16,…的通项公式是 an=n2; 1 1 1 1 1 (7)数列1,2,3,4,…的通项公式是 an=n.

高中数学 第二章 数列 2.1 数列名师讲义

高中数学 第二章 数列 2.1 数列名师讲义

2。

1数列2.1.1 数列预习课本P25~27,思考并完成以下问题(1)什么是数列?什么叫数列的通项公式?(2)数列的项与项数一样吗?(3)数列与函数有什么关系,数列通项公式与函数解析式有什么联系?(4)数列如何分类?分类的标准是什么?错误!1.数列的概念(1)数列:按照一定次序排列起来的一列数称为数列.(2)项:数列中的每一个数叫做这个数列的项.(3)数列的表示:数列的一般形式可以写成a1,a2,a3,…,a n…简记为{a n}.[点睛](1)数列中的数是按一定顺序排列的.因此,如果组成两个数列的数相同而排列顺序不同,那么它们就是不同的数列.例如,数列4,5,6,7,8,9,10与数列10,9,8,7,6,5,4是不同的数列.(2)在数列的定义中,并没有规定数列中的数必须不同,因此,同一个数在数列中可以重复出现.例如:1,-1,1,-1,1,…;2,2,2,….2.数列的通项公式如果数列的第n项a n与n之间的关系可以用一个函数式a n=f(n)来表示,那么这个公式叫做这个数列的通项公式.[点睛]同所有的函数关系不一定都有解析式一样,并不是所有的数列都有通项公式.3.数列与函数的关系从映射、函数的观点看,数列可以看作是一个定义域为正整数集N+(或它的有限子集{1,2,3,…n})的函数,即当自变量从小到大依次取值时对应的一列函数值,而数列的通项公式也就是相应函数的解析式.数列作为一种特殊的函数,也可以用列表法和图象法表示.4.数列的分类(1)按项的个数分类:(2)按项的变化趋势分类:[小试身手]1.判断下列命题是否正确.(正确的打“√",错误的打“×”)(1)数列1,1,1,…是无穷数列( )(2)数列1,2,3,4和数列1,2,4,3是同一个数列( )(3)有些数列没有通项公式( )解析:(1)正确.每项都为1的常数列,有无穷多项.(2)错误,虽然都是由1,2,3,4四个数构成的数列,但是两个数列中后两个数顺序不同,不是同一个数列.(3)正确,某些数列的第n项a n和n之间可以建立一个函数关系式,这个数列就有通项公式,否则,不能建立一个函数关系式,这个数列就没有通项公式.答案:(1)√(2)×(3)√2.在数列-1,0,错误!,错误!,…,错误!,…中,0。

高中数学第二章数列2.2等差数列第一课时等差数列的概念与通项公式课件新人教A版必修5

高中数学第二章数列2.2等差数列第一课时等差数列的概念与通项公式课件新人教A版必修5
6.等差数列通项公式的变形应用 已知等差数列{an}中的任意两项 an,am(n,m∈N*,m≠n),

an am
a1 (n 1)d, a1 (m 1)d

an-am=(n-m)d⇒
d an am , nm an am (n
m)d.
这表明已知等差数列中的任意两项即可求得其公差,进而求得其通项公式.
2.对等差数列定义的理解 (1)“从第2项起”是因为首项没有“前一项”. (2)一个数列从第2项起,每一项与它前一项的差即使等于常数,这个数列也不 一定是等差数列,因为当这些常数不同时,该数列不是等差数列,因此定义中 强调“同一个常数”,注意不要漏掉这一条件. (3)求公差d时,可以用d=an-an-1来求,也可以用d=an+1-an来求.注意公差是每 一项与其前一项的差,且用an-an-1求公差时,要求n≥2,n∈N*.
解析:由等差数列的定义知强调两个方面:①从第2项起; ②差为同一个常数,故选D.
2.等差数列{an}中,a4+a8=10,a10=6,则公差 d 等于( A )
(A) 1 4
(B) 1 2
(C)2
(D)- 1 2
解析:在等差数列{an}中,由 a4+a8=10,得 2a6=10,a6=5.又 a10=6,则 d= a10 a6 = 6 5 = 1 .故选 A.
2d a14d 105, a1 3d a1 5d
99,
解得
ad1
39, 2,
所以
a20=a1+19d=1.
答案:1
课堂探究
题型一 等差数列的通项公式
【例1】 已知{an}为等差数列,a15=8,a60=20,求a75.

【优化方案】2012高中数学 第2章2.1数列的概念与简单表示法课件 新人教A版必修5


数列的函数性质 数列是一种特殊的函数, 数列是一种特殊的函数,函数问题的解决方法同 样适用于数列问题,不过要注意n∈N*,否则易 样适用于数列问题,不过要注意 ∈ 出现错误. 出现错误.
n2 例3 已知数列 n}的通项公式为 an= 2 已知数列{a 的通项公式为 . n +1 求证:此数列为递增数列. 求证:此数列为递增数列.
2.1 数 列 的 概 念 与 简 单 表 示 法
课前自主学案
课堂互动讲练
知能优化训练
课前自主学案
温故夯基
1 1 1 1 1.前5个正整数的倒数排成一列:1,2,3,4,5. 个正整数的倒数排成一列: , . 个正整数的倒数排成一列 _____________
2.函数的基本表示方法有________、_______和 .函数的基本表示方法有 解析法 、 列表法 和 图象法 _________. 3.集合的列举法的一般形式为{a,b,c,d,…}; .集合的列举法的一般形式为 , , , , ; 集合的元素具有_________、 互异性 、 无序性 . 集合的元素具有 确定性 、_______、_______.
(2)按项的变化趋势分类 按项的变化趋势分类 类别 递增 数列 递减 数列 常数 列 摆动 数列 含义 从第2项起 每一项都____它的前一项 项起, 从第 项起,每一项都大于 它的前一项 的数列 项起, 从第2项起 每一项都____它的前一项 从第2项起,每一项都____它的前一项 小于 的数列 各项_____的数列 各项 相等 的数列 从第2项起,有些项 大于 它的前一项 它的前一项, 从第 项起,有些项_____它的前一项, 项起 有些项小于它的前一项的数列
课堂互动讲练
考点突破 用观察法求数列的通项公式 根据数列的前几项写出它的一个通项公式, 根据数列的前几项写出它的一个通项公式,关键 在于观察、分析数列的前几项的特征, 在于观察、分析数列的前几项的特征,找到数列 的构成规律.为了发现数列的构成规律, 的构成规律.为了发现数列的构成规律,可把序 标在相应的项上, 号1,2,3,…标在相应的项上,这样便于突出第 , 标在相应的项上 这样便于突出第n 与项数n的关系 即突出a 如何用n表示 的关系, 表示. 项an与项数 的关系,即突出 n如何用 表示.

高中数学苏教版必修5《第2章2.1数列》课件

与联系.(易混点)
2
1.数列的概念 按照一定次序排列的一列数称为数列,数列中的每个数都叫做 这个数列的 项 .项数有限的数列叫做 有穷 数列,项数无限的数列 叫做 无穷 数列.
3
2.数列的表示 数列的一般形式可以写成a1,a2,a3,…,an,…,简记为 __{a_n__} __,其中a1称为数列{an}的第1项(或称为 首项 ),a2称为第2 项,…,an称为第n项.
思路探究:利用二次函数的单调性,求得k的取值范围.
31
[解] ∵an=n2+kn,其图象的对称轴为n=-2k, ∴当-2k≤1,即k≥-2时, {an}是单调递增数列. 另外,当1<-2k<2且-2k-1<2--2k, 即-3<k<-2时,{an}也是单调递增数列(如图所示). ∴k的取值范围是(-3,+∞).
35
1.函数的单调性与数列的单调性既有联系又有区别,即数列所 对应的函数若单调则数列一定单调,反之若数列单调,其所对应的
函数不一定单调.
2.求数列的最大(小)项,还可以通过研究数列的单调性求解,
一般地,若
an-1≤an, an+1≤an,
则an为最大项;若
an-1≥an, an+1≥an,
则an为最小
令an=1,得n2-221n=1, 而该方程无正整数解, ∴1不是数列{an}中的项.
27
(2)假设存在连续且相等的两项为an,an+1, 则有an=an+1, 即n2-221n=n+12-221n+1, 解得n=10,所以存在连续且相等的两项,它们分别是第10项和 第11项.
28
数列的性质
[探究问题] 1.数列是特殊的函数,能否利用函数求最值的方法求数列的最 大(小)项? [提示] 可以借助函数的性质求数列的最大(小)项,但要注意函 数与数列的差异,数列{an}中,n∈N*.

【高中数学】第1课时数列的概念及通项公式课件 高二下学期数学人教A版(2019)选择性必修第二册

上升(下降)趋势,即数列递增(减).
典例精析
题型二:归纳通项公式
例2
写出下列数列的一个通项公式,使它的前4项分别是下列各数:
1 1
1
(1)1,- , ,- ;
2 3
4

1
9
(2) ,2, ,8;
2
2
(1)这个数列的前4项的绝对值都是 (2)数列的项,有的是分数,
序号的倒数,并且奇数项为正,
偶数项为负,
跟踪练习
2.在数列1,1,2,3,5,8,13,x,34,…中,x的值是(
A.19
B.20
C.21观察数列可得规律
1+1=2,1+2=3,2+3=5,…,8+13=x=21,13+21=34,
∴x=21,故选C.
跟踪练习
3.数列0,1,0,-1,0,1,0,-1,…的一个通项公式为(

(3) 各项加1后,
(4)2,0,2,0.
(4) 这个数列的前4项构成一个摆动数列,
变为10,100,1 000,10 000,…,
奇数项是2,偶数项是0,所以,
此数列的通项公式为10n,可得原数列
它的一个通项公式为an=(-1)n+1+1,n∈N*.
的一个通项公式为an=10n-1,n∈N*.
典例精析
(2)符号{an}和an是不同的概念,{an}表示一个数列,而an表示数列中的第n项.
新知探索
数列的分类
[提出问题]
问题:观察上面4个例子
中对应的数列,它们的项数分
别是多少?这些数列中从第2
项起每一项与它前一项的大小
关系又是怎样的?
提示:数列1中有6项,数

高中数学必修5课件:第2章2-2-1等差数列


第二章 数列
解析: (1)证明:bn+1-bn=an+11-2-an-1 2 =4-a41n-2-an-1 2=2aan-n 2-an-1 2 =2aann--22=12. 又b1=a1-1 2=12, ∴数列{bn}是首项为12,公差为12的等差数列.
数学 必修5
第二章 数列
(2)由(1)知bn=12+(n-1)×12=12n. ∵bn=an-1 2,∴an=b1n+2=2n+2. ∴数列{an}的通项公式为an=2n+2.
数学 必修5
第二章 数列
[规范解答] 方法一:设等差数列{an}的前三项分别为
a1,a2,a3.依题意得aa11·+a2a·a23+=a63=6,18,
∴a31a·1+a1+3dd=·1a81,+2d=66,
2分
解得ad1==-115 或ad1==51.,
6分
数学 必修5
第二章 数列
∵数列{an}是递减等差数列,∴d<0. 故取a1=11,d=-5, ∴an=11+(n-1)·(-5)=-5n+16. 即等差数列{an}的通项公式为an=-5n+16. 令an=-34,即-5n+16=-34,得n=10. ∴-34是数列{an}的项,且为第10项.
由aa190<>11,, 得221155++98dd><11,,
解得785<d<235.
故选 C. 【错因】 在解决本题时,必须深刻理解“从第10项起开
始比1大”的含义.尤其是“开始”这个词,它不仅表明 “a10>1”,而且还隐含了“a9≤1”这一条件,所对上述两个错 解都未从题干中彻底地挖掘出隐含条件.
第二章 数列
4.已知三个数成等差数列,它们的和为18,它们的平方 和为116,求这三个数.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章 数列§2.1 数列的概念与简单表示法第1课时 数列的概念与通项公式1.下列说法中正确的是A.数列1,3,5,7可表示为{1,3,5,7}B.数列1,0,-1,-2与-2,-1,0,1是相同的数列C.数列⎩⎨⎧⎭⎬⎫n +1n 的第k 项为1+1k D.数列0,2,4,6,…可记为{2n }解析 {1,3,5,7}是一个集合,故选项A 错;数虽相同,但顺序不同,不是相同的数列,故选项B 错;数列0,2,4,6,…可记为{2n -2},故选项D 错,故选C. ★答案★ C2.已知数列{a n }为1,0,1,0,…,则下列各式可作为数列{a n }的通项公式的有 (1)a n =12[1+(-1)n +1];(2)a n =sin 2n π2;(3)a n =12[1+(-1)n +1]+(n -1)(n -2);(4)a n =1-cos n π2;(5)a n =⎩⎪⎨⎪⎧1(n 为奇数),0(n 为偶数).A.1个B.2个C.3个D.4个解析 对于(3),将n =3代入,则a 3=3≠1,易知(3)不是通项公式.根据三角中的半角公式可知(2)和(4)实质是一样的,都可作为数列{a n }的一个通项公式.数列1,0,1,0,…的通项公式可猜想为a n =12+12×(-1)n +1,即为(1)的形式.(5)是分段表示的,也为数列的一个通项公式.故选D.★答案★ D3.在数列1,1,2,3,5,8,x ,21,34,55中,x 等于 A.11B.12C.13D.14解析 观察数列可知,后一项是前两项的和, 故x =5+8=13. ★答案★ C4.数列1,2,7,10,13,…中的第26项为________.解析 ∵a 1=1=1,a 2=2=4,a 3=7,a 4=10,a 5=13,∴a n =3n -2, ∴a 26=3×26-2=76=219. ★答案★ 2195.已知数列{a n }的通项公式为a n =2n 2+n,那么110是它的第________项.解析 令2n 2+n =110,解得n =4或n =-5(舍去),所以110是该数列的第4项.★答案★ 4[限时45分钟;满分80分]一、选择题(每小题5分,共30分)1.下列有四个结论,其中叙述正确的有①数列的通项公式是唯一的;②数列可以看做是一个定义在正整数集或其子集上的函数;③数列若用图象表示,它是一群孤立的点;④每个数列都有通项公式.A.①②B.②③C.③④D.①④解析数列的通项公式不唯一,有的数列没有通项公式,所以①④不正确.★答案★ B2.数列0,33,22,155,63,…的一个通项公式是A.a n=n-2n B.a n=n-1nC.a n=n-1n+1D.a n=n-2n+2解析已知数列可化为:0,13,24,35,46,…,故a n=n-1n+1.★答案★ C3.已知数列12,23,34,…,nn+1,则0.96是该数列的A.第20项B.第22项C.第24项D.第26项解析由nn+1=0.96,解得n=24.★答案★ C4.已知数列{a n}的通项公式a n=nn+1,则a n·a n+1·a n+2等于A.n n +2B.n n +3C.n +1n +2D.n +1n +3解析 a n ·a n +1·a n +2=n n +1·n +1n +2·n +2n +3=n n +3.故选B. ★答案★ B5.已知数列{a n }的通项公式a n =log (n +1)(n +2),则它的前30项之积是 A.15 B.5C.6D.log 23+log 31325解析 a 1·a 2·a 3·…·a 30=log 23×log 34×log 45×…×log 3132 =lg 3lg 2×lg 4lg 3×…×lg 32lg 31=lg 32lg 2=log 232=log 225=5. ★答案★ B6.(能力提升)图中由火柴棒拼成的一列图形中,第n 个图形由n 个正方形组成:通过观察可以发现:第n 个图形中,火柴棒的根数为 A.3n -1B.3nC.3n +1D.3(n +1)解析 通过观察,第1个图形中,火柴棒有4根;第2个图形中,火柴棒有4+3根;第3个图形中,火柴棒有4+3+3=4+3×2根;第4个图形中,火柴棒有4+3+3+3=4+3×3根;第5个图形中,火柴棒有4+3+3+3+3=4+3×4根,…,可以发现,从第二项起,每一项与前一项的差都等于3,即a 2-a 1=3,a 3-a 2=3,a 4-a 3=3,a 5-a 4=3,…,a n -a n -1=3(n ≥2),把上面的式子累加,则可得第n 个图形中,a n =4+3(n -1)=3n +1(根).★答案★ C二、填空题(每小题5分,共15分)7.在数列-1,0,19,18,…,n -2n 2,…中,0.08是它的第________项.解析 令n -2n 2=0.08,解得n =10⎝⎛⎭⎫n =52舍去,即为第10项. ★答案★ 108.若数列{a n }的通项公式是a n =3-2n ,则a 2n =________,a 2a 3=________.解析 根据通项公式我们可以求出这个数列的任意一项. 因为a n =3-2n ,所以a 2n =3-22n =3-4n , a 2a 3=3-223-23=15. ★答案★ 3-4n159.(能力提升)如图(1)是第七届国际数学教育大会(简称ICME ­7)的会徽图案,会徽的主体图案是由如图(2)的一连串直角三角形演化而成的,其中OA 1=A 1A 2=A 2A 3=…=A 7A 8=1,如果把图(2)中的直角三角形继续作下去,记OA 1,OA 2,…,OA n ,…的长度构成数列{a n },则此数列的通项公式为a n =________.解析 因为OA 1=1,OA 2=2,OA 3=3,…,OA n =n ,…,所以a n =n . ★答案★n三、解答题(本大题共3小题,共35分)10.(11分)观察下面数列的特点,用适当的数填空,并写出每个数列的一个通项公式: (1)34,23,712,( ),512,13,…; (2)53,( ),1715,2624,3735,…; (3)2,1,( ),12,…;(4)32,94,( ),6516,…. 解析 (1)根据观察:分母的最小公倍数为12,把各项都改写成以12为分母的分数,则序号1 2 3 4 5 6 ↓ ↓ ↓ ↓ ↓ ↓912 812 712 ( ) 512 412于是括号内填612,而分子恰为10减序号,故括号内填12,通项公式为a n =10-n 12.(2)53=4+14-1, 1715=16+116-1, 2624=25+125-1, 3735=36+136-1. 只要按上面形式把原数改写,便可发现各项与序号的对应关系:分子为序号加1的平方与1的和的算术平方根,分母为序号加1的平方与1的差.故括号内填108, 通项公式为a n =(n +1)2+1(n +1)2-1.(3)因为2=21,1=22,12=24,所以数列缺少部分为23,数列的通项公式为a n =2n .(4)先将原数列变形为112,214,( ),4116,…,所以括号内应填318,数列的通项公式为a n =n +12n .11.(12分)在数列{a n }中,a 1=2,a 17=66,通项公式是关于n 的一次函数. (1)求数列{a n }的通项公式;(2)求a 2 017;(3)2 018是否为数列{a n }中的项?解析 (1)设a n =kn +b (k ≠0),则有⎩⎪⎨⎪⎧k +b =2,17k +b =66,解得k =4,b =-2.∴a n =4n -2. (2)a 2 017=4×2 017-2=8 066.(3)令2 018=4n -2,解得n =505∈N *, ∴2 018是数列{a n }的第505项.12.(12分)(能力提升)数列{a n }中,a n =n 2n 2+1.(1)求数列的第7项;(2)求证:此数列的各项都在区间(0,1)内; (3)区间⎝⎛⎭⎫13,23内有无数列的项?若有,有几项? 解析 (1)a 7=7272+1=4950.(2)证明 ∵a n =n 2n 2+1=1-1n 2+1,∴0<a n <1,故数列的各项都在区间(0,1)内.(3)因为13<n 2n 2+1<23,所以12<n 2<2,又n ∈N *,所以n =1,即在区间⎝⎛⎭⎫13,23内有且只有一项a 1.。

相关文档
最新文档