数值分析,任玉杰教程课后题
数值分析第四章习题

数值分析第四章习题第四章习题1. 采用数值计算方法,画出dt t t x y x ?=0sin )(在]10 ,0[区间曲线,并计算)5.4(y 。
〖答案〗1.65412. 求函数x e x f 3sin )(=的数值积分?=π 0 )(dx x f s ,并请采用符号计算尝试复算。
〖答案〗s = 5.1354Warning: Explicit integral could not be found. > In sym.int at 58s =int(exp(sin(x)^3),x = 0 .. pi)3. 用quad 求取dx x e x sin 7.15?--ππ的数值积分,并保证积分的绝对精度为910-。
〖答案〗1.087849437547794. 求函数5.08.12cos 5.1)5(sin )(206.02++-=t t t et t f t 在区间]5,5[-中的最小值点。
〖答案〗最小值点是-1.28498111480531 相应目标值是-0.186048010065455. 设0)0(,1)0(,1)(2)(3)(22===+-dt dy y t y dt t dy dt t y d ,用数值法和符号法求5.0)(=t t y 。
〖答案〗数值解y_05 = 0.78958020790127符号解ys =1/2-1/2*exp(2*t)+exp(t)ys_05 =.789580356470605529168507052137806. 求矩阵b Ax =的解,A 为3阶魔方阵,b 是)13(?的全1列向量。
〖答案〗x =0.06670.06670.06677. 求矩阵b Ax =的解,A 为4阶魔方阵,b 是)14(?的全1列向量。
〖答案〗解不唯一x =-0.0074 -0.0809 0.1397 0.0662 0.0588 0.1176 -0.0588。
数值分析课后习题及答案

第一章 绪论(12) 第二章 插值法(40-42)2、当2,1,1-=x 时,4,3,0)(-=x f ,求)(x f 的二次插值多项式。
[解]372365)1(34)23(21)12)(12()1)(1(4)21)(11()2)(1()3()21)(11()2)(1(0))(())(())(())(())(())(()(2221202102210120120102102-+=-++--=+-+-⨯+------⨯-+-+-+⨯=----+----+----=x x x x x x x x x x x x x x x x x x x y x x x x x x x x y x x x x x x x x y x L 。
3、给出x x f ln )(=的数值表用线性插值及二次插值计算54.0ln 的近似值。
X 0.4 0.5 0.6 0.7 0.8 x ln -0.916291 -0.693147 -0.510826 -0.357765 -0.223144[解]若取5.00=x ,6.01=x ,则693147.0)5.0()(00-===f x f y ,510826.0)6.0()(11-===f x f y ,则604752.182321.1)5.0(10826.5)6.0(93147.65.06.05.0510826.06.05.06.0693147.0)(010110101-=---=--⨯---⨯-=--+--=x x x x x x x x x y x x x x y x L ,从而6202186.0604752.19845334.0604752.154.082321.1)54.0(1-=-=-⨯=L 。
若取4.00=x ,5.01=x ,6.02=x ,则916291.0)4.0()(00-===f x f y ,693147.0)5.0()(11-===f x f y ,510826.0)6.0()(22-===f x f y ,则 217097.2068475.404115.2)2.09.0(5413.25)24.0(3147.69)3.01.1(81455.45)5.06.0)(4.06.0()5.0)(4.0()510826.0()6.05.0)(4.05.0()6.0)(4.0()693147.0()6.04.0)(5.04.0()6.0)(5.0(916291.0))(())(())(())(())(())(()(22221202102210120120102102-+-=+--+-⨯++-⨯-=----⨯-+----⨯-+----⨯-=----+----+----=x x x x x x x x x x x x x x x x x x x x x x y x x x x x x x x y x x x x x x x x y x L ,从而61531984.0217097.21969765.259519934.0217097.254.0068475.454.004115.2)54.0(22-=-+-=-⨯+⨯-=L补充题:1、令00=x ,11=x ,写出x e x y -=)(的一次插值多项式)(1x L ,并估计插值余项。
完整版数值分析第7章答案

1数值分析第七章第七章非线性方程求根一、重点内容提要(一)问题简介求单变量函数方程f(x)?0(7.1)f(x*)?0x*x*x*为也称为方程的根是指求(7.1).(实数或复数),使得称的根,m f(x)?(x?x*)g(x)f(x)f(x)函数的零点.若可以分解为g(x)g(x)?0x*x*为单称m=1满足时,是方程(7.1)的根.,则当其中m为正整数,g(x)x*x*是方程(7.1)的m称,充分光滑,为m重根.若重根,则有根;当m>1时(m?1)(m)f(x*)?f'(x*)?...?f(x*)?0,f(x*)?0f(x)f(a)f(b)?0,则方程(7.1)在(a,b)[a,b]若上连续且内至少有一个实根,称在[a,b]为方程(7.1)的有根区间.有根区间可通过函数作图法或逐次搜索法求得.(二)方程求根的几种常用方法1.二分法f(x)f(a)f(b)?0f(x)?0f(x)?0*x在上连续,再设内有根,则设.在(a,b)在[a,b]1x?(a?b)a?a,b?bf(x)f(x)?0000计算和.,若则(a,b)内仅有一个根.令20000a?xb?b[a,b])f(a)f(x?0x*?x;,则令,结束计算;若若得新的有根区间,10,11001a?ab?x0)?(f(a)fx,得新,则令的有根区间0110,0011b?a?(b?a)x?(a?b)[a,b][a,b]?[a,b]f(x)0101111再令计算,.,.同上法得221110101[a,b],如此反复进行出新的有根区间,可得一有根区间套22...?[a,b]?[a,b]?...?[a,b]001?n1?nnn2数值分析第七章11a?x*?b,n?0,1,2,...,b?a?(b?a)?...?(b?a)0n0?1nnn?1nn且. 221lim(b?a)?0,lim x?lim(a?b)?x* nnnnn故2????n??nn1x?(a?b)f(x)?0nnn的近似根,可作为,且有误差估计因此21(b?a)|x?x*|?n1?n(7.2)22.迭代法?(x?)x等价变形为将方程式(7.1) (7.3)??(x*)?)(xf(x*)?0x**xx*的一个不动点为函数.;反之亦然则.若要求称满足?(x)的不动点由式(7.3)产生的不动点迭代关系式(也求方程(7.1)的根等价于求称简单迭代法)为?(x),k?0,1,2...x?(7.4)k1?k?(x),k??x0,1,2...?(x)称为迭代函数.函数如果对任意,由式(7.4)产生的序列??x有极限kk??k则称不动点迭代法(7.4)收敛.kk?1x?x*lim?(x)?C[a,b]满足以下两个条件: 定理7.1(不动点存在性定理)设?(x)??b;x?[a,b]a有1.对任意??(y)|?|x?y|?,y[a,b]|(x)?x 2.存在正常数使对任意, ,都有(7.5)1?L?(x)[a,b]x*.则在上存在惟一的不动点?(x)?C[a,b]满足定理7.2(定理不动点迭代法的全局收敛性定理)设7.1中的两个??x]b,?x[a?(x)并条件,由,(7.4),的不动点式得到的迭代序列则对任意到.收敛k0有误差估计式3数值分析第七章L|x?*|?x||x?x1kkk?(7.6)L1?k L|x?x*|?|x?x|1?kkk L1?(7.7)和??'(xx))(xx**的某,为设在的不动点定理7.3(不动点迭代法的局部收敛性定理)?'(x)|?|1,则迭代法(7.4)局部收敛个邻域连续,且.?(xx?)x*,的根如果迭代误差收敛阶的概念设迭代过程(7.4)收敛于方程e?x?x*k??时成产下列渐近关系式当kk e k?1?C(常数C?0)e(7.8) k则称该迭代过程是p阶收敛的.特别地,p=1时称线性收敛,p>1时称超线性收敛,p=2时称平方收敛.(K)?(x)x*的邻近连续,并定理7.4(收敛阶定理在所求根)对于迭代过程(7.4),如果且(p?1)???(x*)?...?*)?'(x*)?0''(x(p)?(x*)?0(7.9)*x的邻近是收敛的,则该迭代过程在点并有e1)(p?1k?*)x?lim(p!ep??k (7.10)k斯蒂芬森(Steffensen)迭代法当不动点迭代法(7.4)只有线性收敛阶,甚至于不收敛时,可用斯蒂芬森迭代法进行加速.具体公式为??(y?)(x),zy?kkkk2)?x(y kk x?x?kk?1z?2y?x kkk k?0,1,2,...(7.11)4数值分析第七章此法也可写成如下不动点迭代式?(x),kx??0,1,2,...kk?12?)?x(x)(?(x)?x????(x)?2?(x(x))(7.12)?(x)x**x是为式(7.12)中则的不动点7.5(定理斯蒂芬森迭代收敛定理)设,?(x)???1*)''(x)?'(x(x)*x的不动点,存在,的不动点;设则,则斯蒂芬森迭代法是(7.11)是2阶收敛的.3.牛顿迭代法牛顿迭代法是一种特殊的不动点迭代法,其计算公式为f(x)k,x?k?0,1,2,...?x k?k1)xf'(其迭代函数为(7.13)k f(x)??(x)?x f'(x)f(x*)?0,f'(x*)?0,f''(x*)?0时牛顿迭代法的收敛速度当,容易证f''(x*)??0*)?''(x 0'(x*)?ff'(x*),由定理,明,7.4知,牛顿迭代法是平方收敛的,且ef''(x*)1?k?lim2*)f'(ex2??k(7.14)k f(x)?0(m?2)*x时,迭代函数的m重顿重根情形的牛迭代法当根是f(x)1??x)?(x?'(x*)?1??0?'(x*)|?1|)xf'(*x.所以牛顿迭代法求处的导数在,且m x*的重数m知道,重根只是线性收敛.若则迭代式f(x)k,k?0,1,2,...??xx?m kk?1)'(xf(7.15)k f(x)??x()f'(x)*x此时迭代式,的单重零点一定是函数,未知时m当.求重根二阶收敛5数值分析第七章?(x)f(x)f'(x)kkk?xx??x?kk?1k?)f''(x)x)]?f(x'(x)[f'(kkkk k?0,1,2,...(7.16)也是二阶收敛的.f(x)k,?k?0,1,2,...x?x k1k?)xf'(如下迭代法简化牛顿法0称为简化牛顿法或平行弦法.牛顿下山法为防止迭代不收敛,可采用牛顿下山法.具体方法见教材.4.弦截法f'(x)xxf(x)在,处的一阶差商来代替,将牛顿迭代法(7.13)中的即可得弦用kkk?1截法f(x)k(xx?x??x)1kk?1k?k f(x)?f(x)(7.17)??x*|:|x??*x内具有二阶连续导数,的邻域在其零点定理7.6假设且对任1kk?)(xfx,x??10f'(x)?0?x?,又初值,,意则当邻域充分小时,有弦截法(7.17)将按阶?1?5?p?1.6182???1?0?*x2的正根收敛到是方程..这里p5.抛物线法(x,f(x)),(x?f(x))两点的直线方程的根近似替弦截法可以理解为用过kk?1kk?1xxx0x)?(fx)?0f(用,过三若的根.已知个近似根,的2kk?1k?(x,f(x)),(x,f(x)),(x,f(x))f(x)?0的根,的抛物线方程的根近似代替2??k?k121k?kkk所得的迭代法称为抛物线法,也称密勒(Muller)法.f(x)f'(x*)?0*x,则抛物线法局部收敛当,在,的邻近有三阶连续导数且收敛阶p?1.839?1.84. 为数值分析第七章二、知识结构图三、常考题型及典型题精解3上有一个实根x*,并用二分法2]在[1,?1?例7-1 证明方程x0?x-6-3,需二分区间[1,2]10.若要求|x-x*|?求这个根,要求|x-x*|?10kk多少次?3在[1,2],则f(1)=-1<0,f(2)=5>0,故方程f(x)=0x?解设f(x)=x1?2在[1,2]时,f'(x)>0,即f(x)=0-1,所以当x?上有根x*.又因f'(x)=3x上有惟一实根x*.用二分法计算结果如表7-1所示.[1,2]7-1表k abxf(x)的符号kkkk+ 2 0 1 1.5- 1.5 1 1 1.25+ 2 1.25 1.51.3751.3125 3 1.251.375 -1.375 1.3438 1.3125 4 +1.312551.3282+1.1341.3125-861.32041.32041.32827-1.32431.32431.32821.3263+87数值分析第七章9 1.3243 1.3282 1.3253 +1.32631-3-3,可以作为x*的近??10此时x=1.3253满足|x-x*|?10?0.97799102似值.1-6?6,只需|x10-x*|?-x*|即可,解得k+1?19.932, 若要求|x?10?kkk+12即只需把[1,2]二分20次就能满足精度要求.x=1,(1)确定有根区间[a,b];(2)构造不动e例7-2 已知函数方程(x-2)点迭代公式使之对任意初始近似x?[a,b],迭代方法均收敛;(3)用所构0?3.|?10造的公式计算根的近似值,要求|x?x1k k?xx因此区间[2,3]0,e解 (1)令f(x)=(x-2)-1>-1,由于f(2)=-1<0,f(3)=e x x)=-1,f(,lim,lim f(x)=+?是方程f(x)=0的一个有根区间.又因f'(x)=(x-1)e???xx???1-1<0,当x>1时f(x)单增,x<1时f(x)单减,故f(x)=0在(-?,+?)内f'(1)=-e有且仅有一根x*,即x*?[2,3].x?xx?.由于当?将(x-2)e[2,3].则=1等价变形为x=2+ee(x)=2+,x(2)2??x??<1'(x)|=|-e?e[2,3]x?时2?|(x)?3,|x?[2,3]均收敛.??故不动点迭代法x=2+e x,k=0,1,2,...,对k0k+1x?进行迭代计算,结果如表7-2所示.e(3)取x=2.5,利用x=2+k k+10表7-28数值分析第七章此时x已满足误差要求,即x*?x?2.120094976.44例7?3考虑求解方程2cos x?3x?12?0的迭代公式2 x=4+cos x,k=0,1,2,...k k+13(1)试证:对任意初始近似x?R,该方法收敛;0-3;10-x|?(2)取x=4,求根的近似值x,要求|x k0k+1k+1(3)所给方法的收敛阶是多少?2?(x)=4+cos x,解 (1)由迭代公式知,迭代函数322?(x)的值域介于(4-)与(4+由于)之间,且(??,??).x?3322?'(x)|=|-sin x|??1|33?(x)在(??,??)内存在惟一的故根据定理7.1,7.2知,??收敛于x*.x?x?R,迭代公式得到的序列不动点x*,且对k0(2) 取x=4,迭代计算结果如表7-3所示.0表7-3x*?xx?3.347529903已满足误差要求,即此时55?'(x*)?0.136323129?0,故根据定理7 .4)由于(3知方法是线性收敛的,并e?1k?'(x?*)lim e??k。
数值分析课后习题答案

习 题 一 解 答1.取3.14,3.15,227,355113作为π的近似值,求各自的绝对误差,相对误差和有效数字的位数。
分析:求绝对误差的方法是按定义直接计算。
求相对误差的一般方法是先求出绝对误差再按定义式计算。
注意,不应先求相对误差再求绝对误差。
有效数字位数可以根据定义来求,即先由绝对误差确定近似数的绝对误差不超过那一位的半个单位,再确定有效数的末位是哪一位,进一步确定有效数字和有效数位。
有了定理2后,可以根据定理2更规范地解答。
根据定理2,首先要将数值转化为科学记数形式,然后解答。
解:(1)绝对误差:e(x)=π-3.14=3.14159265…-3.14=0.00159…≈0.0016。
相对误差:3()0.0016()0.51103.14r e x e x x -==≈⨯有效数字:因为π=3.14159265…=0.314159265…×10,3.14=0.314×10,m=1。
而π-3.14=3.14159265…-3.14=0.00159…所以│π-3.14│=0.00159…≤0.005=0.5×10-2=21311101022--⨯=⨯所以,3.14作为π的近似值有3个有效数字。
(2)绝对误差:e(x)=π-3.15=3.14159265…-3.14=-0.008407…≈-0.0085。
相对误差:2()0.0085()0.27103.15r e x e x x --==≈-⨯有效数字:因为π=3.14159265…=0.314159265…×10,3.15=0.315×10,m=1。
而π-3.15=3.14159265…-3.15=-0.008407…所以│π-3.15│=0.008407……≤0.05=0.5×10-1=11211101022--⨯=⨯所以,3.15作为π的近似值有2个有效数字。
(3)绝对误差:22() 3.141592653.1428571430.0012644930.00137e x π=-=-=-≈-相对误差:3()0.0013()0.4110227r e x e x x--==≈-⨯有效数字: 因为π=3.14159265…=0.314159265…×10, 223.1428571430.3142857143107==⨯,m=1。
数值分析第四版课后答案答案第八章

第八章 常微分方程初值问题数值解法1、解:欧拉法公式为221(,)(100),0,1,2+=+=++=n n n n n n n y y hf x y y h x y n代00y =入上式,计算结果为 123(0.1)0.0,(0.2)0.0010,(0.3)0.00501≈=≈=≈=y y y y y y2、解:改进的欧拉法为1112[(,)(,(,))]n n n n n n n n y y h f x y f x y hf x y ++=+++将2(,)=+-f x y x x y 代入上式,得2111111221n n n n n n h hh x x x x y h y +++)+[(-)(+)+(+)]=(-+ 同理,梯形法公式为211122[(1)(1)]-+++++=++++h h n nn n n n h h y y x x x x 将00,0.1y h ==代入上二式,,计算结果见表9—5表 9—5可见梯形方法比改进的欧拉法精确。
3、证明:梯形公式为111[(,)(,)]2n n n n n n hy y f x y f x y +++=++代(,)f x y y =-入上式,得11[]2++=+--n n n n hy y y y解得21110222()()()222n n n n h h h y y y y h h h++----===⋯=+++ 因为01y =,故2()2nn h y h-=+ 对0x∀>,以h 为步长经n 步运算可求得()y x 的近似值n y ,故,,xx nh n h==代入上式有2()2x hn hy h-=+22220000222lim lim()lim(1)lim[(1)]222x x h h xx h h h h hn h h h h h h h y e h h h+-+→→→→-==-=-=+++4、解:令2()xt y x e dt =⎰,则有初值问题2',(0)0x y e y ==对上述问题应用欧拉法,取h=0.5,计算公式为210.5,0,1,2,3n x n n y y e n +=+=由0(0)0,y y ==得1234(0.5)0.5,(1.0) 1.142012708(1.5) 2.501153623,(2.0)7.245021541≈=≈=≈=≈=y y y y y y y y5、解: 四阶经典龙格-库塔方法计算公式见式(9.7)。
数值分析习题(含答案)

数值分析习题(含答案)第一章绪论姓名学号班级习题主要考察点:有效数字的计算、计算方法的比较选择、误差和误差限的计算。
1 若误差限为5105.0-?,那么近似数0.003400有几位有效数字?(有效数字的计算)解:2*103400.0-?=x ,325*10211021---?=?≤-x x 故具有3位有效数字。
2 14159.3=π具有4位有效数字的近似值是多少?(有效数字的计算)解:10314159.0?= π,欲使其近似值*π具有4位有效数字,必需41*1021-?≤-ππ,3*310211021--?+≤≤?-πππ,即14209.314109.3*≤≤π即取(3.14109 , 3.14209)之间的任意数,都具有4位有效数字。
3 已知2031.1=a ,978.0=b 是经过四舍五入后得到的近似值,问b a +,b a ?有几位有效数字?(有效数字的计算)解:3*1021-?≤-aa ,2*1021-?≤-b b ,而1811.2=+b a ,1766.1=?b a 2123****102110211021)()(---?≤?+?≤-+-≤+-+b b a a b a b a故b a +至少具有2位有效数字。
2123*****10210065.01022031.1102978.0)()(---?≤=?+?≤-+-≤-b b a a a b ba ab 故b a ?至少具有2位有效数字。
4 设0>x ,x 的相对误差为δ,求x ln 的误差和相对误差?(误差的计算)解:已知δ=-**xx x ,则误差为δ=-=-***ln ln xx x x x则相对误差为******ln ln 1ln ln ln xxx x xxx x δ=-=-5测得某圆柱体高度h 的值为cm h 20*=,底面半径r 的值为cm r 5*=,已知cm h h 2.0||*≤-,cm r r 1.0||*≤-,求圆柱体体积h r v2π=的绝对误差限与相对误差限。
数值分析第一章练习
第一章习题一、填空题1、为了使计算 32)1(6)1(41310---+-+=x x x y 的乘除法次数尽量地少,应将该表达式改写为 ,为了减少舍入误差,应将表达式19992001-改写为 。
2、若a=2.42315是2.42247的近似值,则a 有( )位有效数字.3、求方程011015.02=--x x 的根,要求结果至少具有6位有效数字。
已知0099.10110203≈,则两个根为=1x ,=2x .(要有计算过程和结果)4、近似值*0.231x =关于真值229.0=x 有( )位有效数字;5*x 的相对误差的( )倍;6、设)(x f 可微,求方程)(x f x =的牛顿迭代格式是( );7、计算方法主要研究( )误差和( )误差;8、722,141.3,142.3分别作为π的近似值有 , , 位有效数字。
9、设A 0.231x =是真值0.229T x =的近似值,则A x 有_______位有效数字。
10、按四舍五入原则数2.7182818与8.000033具有五位有效数字的近似值分别为 和 。
11、-43.578是舍入得到的近似值,它有 ( ) 位有效数字,相对误差限为( )。
二、选择题1、用1+3x 近似表示31x +所产生的误差是( )误差。
A. 舍入 B. 观测 C. 模型 D. 截断2、-324.7500是舍入得到的近似值,它有( )位有效数字。
A. 5B. 6C. 7D. 83、用s *=21g t 2表示自由落体运动距离与时间的关系式 ( g 为重力加速度 ), s t 是在时间t 内的实际距离,则s t - s *是( )误差。
A. 舍入B. 观测C. 模型D. 截断4、舍入误差是( )产生的误差。
A. 只取有限位数B.模型准确值与用数值方法求得的准确值C. 观察与测量D.数学模型准确值与实际值5、3.141580是π的有( )位有效数字的近似值。
A. 6B. 5C. 4D. 7三、计算题1、为了使20的近似值的相对误差限小于0.1%,要取几位有效数字?2、设x>0,x*的相对误差为δ,求f(x)=ln x 的误差限。
数值分析 误差知识与算法知识
一、误差的来源与分类 二、 绝对误差、相对误差与有效数字
三、误差估计的基本方法
四、算法的计算复杂性 五、数值运算中的一些原则
1.2误差知识与算法知识
一、误差的来源与分类 模型误差 (描述误差 ) ( 测量误差) (方法误差 ) ( 计算误差 )
观测误差
截断误差 舍入误差
建模过程中 产生的误差
三、误差估计的基本方法 (一)误差估计的一般运算 一元函数:
e( f (a)) f (a) e(a)
二元函数:
( f (a)) f (a) (a)
f (a, b) f (a, b) e( f (a, b)) e(a) e(b) x y
f (a, b) f (a, b) ( f (a, b)) ( a) (b) x y
Tn an 秦九韶算法 Tk xTk 1 ak , k n 1, n 2,,1,0 p ( x) T 0 n
加法次数: n
n(n 1) 乘法次数: 2
pn ( x) a0 x(a1 x(a2 x(an1 xan ) )
有效数字=可靠数字+存疑数字
(3)有效数字 有效数字的定义: 设a是x的近似值,如果a的误差绝对值不超过x 的第k位小数的半个单位,即
则称近似值a准确到小数点后第k位。 从这个小数点后第k位数字直到最左边非零数 字之间的所有数字都叫有效数字。
1 k x a 10 2
1 1 2 (2.18) 10 (2.1200) 10 4 2 2
例8 设有三个近似数
a=2.31, b=1.93, c=2.24 它们都有三位有效数字,试计算 p a bc, ( p), r ( p), 并问:p的计算结果能有几位有效数字? 教材例4
数值分析第五版课后习题答案
数值分析第五版课后习题答案数值分析是一门应用数学的分支学科,主要研究如何利用数值方法解决实际问题。
在学习这门课程的过程中,课后习题是不可或缺的一部分。
本文将对《数值分析第五版》的课后习题进行一些探讨和解答。
第一章是数值分析的导论,主要介绍了误差分析和计算方法的基本概念。
在课后习题中,有一道题目是关于误差传播的。
假设有一个函数f(x, y) = x^2 + y^2,其中x和y的测量误差分别为Δx和Δy,要求计算f(x, y)的误差。
解答:根据误差传播公式,可以得到f(x, y)的误差为Δf = √[(∂f/∂x)^2 *(Δx)^2 + (∂f/∂y)^2 * (Δy)^2]。
对于本题而言,∂f/∂x = 2x,∂f/∂y = 2y。
代入公式,得到Δf = √[(2x)^2 * (Δx)^2 + (2y)^2 * (Δy)^2] = 2√(x^2 * (Δx)^2+ y^2 * (Δy)^2)。
第二章是插值与多项式逼近的内容。
其中一道习题涉及到拉格朗日插值多项式。
给定n+1个数据点(x0, y0), (x1, y1), ..., (xn, yn),要求构造一个n次多项式p(x),使得p(xi) = yi (i = 0, 1, ..., n)。
解答:拉格朗日插值多项式的表达式为p(x) = Σ(yi * Li(x)),其中Li(x) = Π[(x - xj) / (xi - xj)],j ≠ i。
将数据点代入表达式中,即可得到所求的多项式。
第三章是数值微积分的内容,其中一道习题是关于数值积分的。
给定一个函数f(x),要求使用复化梯形公式计算定积分∫[a, b]f(x)dx。
解答:复化梯形公式的表达式为∫[a, b]f(x)dx ≈ h/2 * [f(a) + 2Σf(xi) + f(b)],其中h = (b - a)/n,xi = a + i * h (i = 1, 2, ..., n-1)。
根据给定的函数f(x),代入公式中的各个值,即可得到近似的定积分值。
数值分析课程第五版课后习题答案
数值分析课程第五版课后习题答案课后习题一:a) 求解非线性方程f(x) = x^3 - 2x - 5的根。
解答:可使用牛顿迭代法来求解非线性方程的根。
牛顿迭代法的迭代公式为:x_(n+1) = x_n - f(x_n)/f'(x_n),其中x_n为第n次迭代的近似解。
对于给定的方程f(x) = x^3 - 2x - 5,计算f'(x)的导数为f'(x) = 3x^2 - 2。
选择一个初始近似解x_0,并进行迭代。
迭代的终止条件可以选择两次迭代间的解的差值小于某个预设的精度。
b) 计算矩阵加法和乘法的运算结果。
解答:设A和B为两个矩阵,A = [a_ij],B = [b_ij],则A和B的加法定义为C = A + B,其中C的元素为c_ij = a_ij + b_ij。
矩阵乘法定义为C = A * B,其中C的元素为c_ij = ∑(a_ik * b_kj),k的取值范围为1到矩阵的列数。
c) 使用插值方法求解函数的近似值。
解答:插值方法可用于求解函数在一组给定点处的近似值。
其中,拉格朗日插值法是一种常用的方法。
对于给定的函数f(x)和一组插值节点x_i,i的取值范围为1到n,利用拉格朗日插值多项式可以构建近似函数P(x),P(x) = ∑(f(x_i) * l_i(x)),其中l_i(x)为拉格朗日基函数,具体表达式为l_i(x) = ∏(x - x_j)/(x_i - x_j),j的取值范围为1到n并且j ≠ i。
课后习题二:a) 解决数值积分问题。
解答:数值积分是求解定积分的数值近似值的方法。
常用的数值积分方法包括矩形法、梯形法和辛普森法。
矩形法采用矩形面积的和来近似曲边梯形的面积,梯形法采用等距离子区间上梯形面积的和来近似曲边梯形的面积,而辛普森法则利用等距离子区间上梯形和抛物线面积的加权和来近似曲边梯形的面积。
b) 使用迭代方法求解线性方程组。
解答:线性方程组的求解可以通过迭代方法来进行。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
杨颖 应用数学131802班 2013180502286.21.已知函数)(x f 在[1,7]上具有二阶连续导数,5)("≤x f ,且满足条件f(x)=1,f(7)=12,.求线性插值多项式和函数值f(3.5),并估计其误差.解: 输入程序>> X=[1,7];Y=[1,12]; l01= poly(X(2))/( X(1)- X(2)), l11=poly(X(1))/( X(2)- X(1)), l0=poly2sym (l01),l1=poly2sym(l11), P = l01* Y(1)+ l11* Y(2),L=poly2sym (P),x=3.5; Y = polyval(P,x)运行后输出基函数l 0和l 1及其插值多项式的系数向量P (略)、插值多项式L 和插值Y 为l01 = -0.1667 1.1667l11 = 0.1667 -0.1667l0 =7/6 - x/6l1 =x/6 - 1/6P =1.8333 -0.8333L =(11*x)/6 - 5/6Y =5.58336.35.给出节点数据 03.37)15.3(=-f ,05.23)25.3(,06.17)03.2(,03.2)02.1(,05.1)01.0(,24.7)00.1(=====-f f f f f ,,作五阶牛顿插值多项式和差商,并写出其估计误差的公式.解 (1)保存名为newpoly.m 的M 文件.function [A,C,L,wcgs,Cw]= newploy(X,Y)n=length(X); A=zeros(n,n); A(:,1)=Y';s=0.0; p=1.0; q=1.0; c1=1.0;for j=2:nfor i=j:nA(i,j)=(A(i,j-1)- A(i-1,j-1))/(X(i)-X(i-j+1));endb=poly(X(j-1));q1=conv(q,b); c1=c1*j; q=q1;endC=A(n,n); b=poly(X(n)); q1=conv(q1,b);for k=(n-1):-1:1C=conv(C,poly(X(k))); d=length(C); C(d)=C(d)+A(k,k);endL(k,:)=poly2sym(C); Q=poly2sym(q1);syms Mwcgs=M*Q/c1; Cw=q1/c1;(2)输入MATLAB程序>> X=[-3.15 -1.00 0.01 1.02 2.03 3.25];Y=[37.03 7.24 1.05 2.03 17.06 23.05];[A,C,L,wcgs,Cw]= newpoly (X,Y)运行后输出差商矩阵A,五阶牛顿插值多项式L及其系数向量C, 插值余项公式L 及其向量C w如下A =37.0300 0 0 0 0 07.2400 -13.8558 0 0 0 01.0500 -6.12872.4453 0 0 02.0300 0.97033.5144 0.2564 0 017.0600 14.8812 6.8866 1.1129 0.1654 023.0500 4.9098 -4.4715 -3.5056 -1.0867 -0.1956C = -0.1956 -0.0479 2.2294 3.5063 -4.7185 1.0968L=-(3524262145772209*x^5)/18014398509481984 - (431283038958129*x^4)/9007199254740992 +(5020108164096803*x^3)/2251799813685248+ (246736293371003*x^2)/70368744177664- (5312509994841131*x)/1125899906842624+ 154365339321353/140737488355328wcgs =(M*(x^6 - (54*x^5)/25 - (6869*x^4)/625 +(204645801275343*x^3)/8796093022208 +(5397560409786347*x^2)/562949953421312 -(5994280682419117*x)/281474976710656+ 7637300625126911/36028797018963968))/720Cw = 0.0014 -0.0030 -0.0153 0.0323 0.0133 -0.0296 0.0003即L=1.09683171-4.71845673x+3.50633362x 2+2.22937587x 3-0.04788204x 4-0.19563585x 5估计其误差的公式为)(5x R =!)()(66ξf (x+3.15)(x+1.00)(x-0.01)(x-1.02)(x-2.03)(x-3.25),),( 3.253.15-∈ξ 6.41.给定函数)(x f 在点x 0=6/π,4/1π=x 处的函数值5.0)(0=x f ,1707.0)(1=x f ,和导数值0866.0)(0'=x f ,1707.0)(1'=x f ,且1)()4(≤x f ,求函数)(x f 在点处的三阶埃尔米特插值多项式和误差公式。
解 (1)保存名为hermite.m 的M 文件.function [Hc, Hk,wcgs,Cw]= hermite (X,Y,Y1)m=length(X); n=1;s=0; H=0;q=1;c1=1; L=ones(m,m); G=ones(1,m);for k=1:n+1V=1;for i=1:n+1if k~=is=s+(1/(X(k)-X(i)));V=conv(V,poly(X(i)))/(X(k)-X(i));endh=poly(X(k)); g=(1-2*h*s); G=g*Y(k)+h*Y1(k);endH=H+conv(G,conv(V,V)); b=poly(X(k));b2=conv(b,b);q=conv(q,b2); t=2*n+2;Hc=H;Hk=poly2sym (H); Q=poly2sym(q);endfor i=1:tc1=c1*i;endsyms M ,wcgs=M*Q/c1; Cw=q/c1;(2)在MATLAB 工作窗口输入程序>>X=[pi/6,pi/4]; Y=[0.5,0.7071];Y1=[0.8660,0.7071]; [Hc, Hk,wcgs,Cw]= hermite (X,Y,Y1)运行后输出三阶埃尔米特插值多项式H k 及其系数向量H c ,误差公式wcgs 及其系数向量C w 如下Hc =96.2945 -166.7424 94.7792 -16.9739Hk=(3388060314322531*x^3)/35184372088832- (5866727782923391*x^2)/35184372088832 + (6669496320254561*x)/70368744177664 - 2388870952879233/140737488355328 wcgs =(M*(x^4 - (5*pi*x^3)/6 + (1427607315983063*x^2)/562949953421312 - (4848606114706415*x)/4503599627370496+ 6092938140044889/36028797018963968))/24Cw =0.0417 -0.1091 0.1057 -0.0449 0.0070 当1)()4( x f =M 时的误差公式为R=0.04174x -0.1091x 3+ 0.1057x 2-0.0449x+0.00706.51.作函数22511)(xx f +=在区间[-5,5]上的n 次拉格朗日插值多项式)(x L n )10,8,6,4,2(=n 的图形,并讨论插值多项式)(x L n 的次数与误差)(x R n 的关系. 解 将计算n 次拉格朗日插值多项式)(x L n 的值的MATLAB 程序保存名为lagr1.m的M 文件.function y=lagr1(x0,y0,x)n=length(x0); m=length(x);for i=1:mz=x(i);s=0.0;for k=1:np=1.0;for j=1:nif j~=kp=p*(z-x0(j))/(x0(k)-x0(j));endends=p*y0(k)+s;endy(i)=s;End在MATLAB 工作窗口输入程序m=101; x=-5:10/(m-1):5; y=1./(1+25*x.^2);z=0*x;plot(x,z,'r',x,y,'k-'),gtext('y=1/(1+25*x^2)'),pausen=3; x0=-5:10/(n-1):5; y0=1./(1+25*x0.^2);y1=lagr1(x0,y0,x);hold on,plot(x,y1,'g'),gtext('n=2'),pause,hold offn=5; x0=-5:10/(n-1):5; y0=1./(1+25*x0.^2);y2=lagr1(x0,y0,x);hold on,plot(x,y2,'b:'),gtext('n=4'),pause,hold offn=7; x0=-5:10/(n-1):5; y0=1./(1+25*x0.^2);y3=lagr1(x0,y0,x);hold on,plot(x,y3,'r'),gtext('n=6'),pause,hold offn=9; x0=-5:10/(n-1):5; y0=1./(1+25*x0.^2);y4=lagr1(x0,y0,x);hold on,plot(x,y4,'r:'),gtext('n=8'),pause,hold offn=11; x0=-5:10/(n-1):5; y0=1./(1+25*x0.^2);y5=lagr1(x0,y0,x);hold on,plot(x,y5,'m'),gtext('n=10')title('高次拉格朗日插值的振荡')回车运行后,便会逐次画出)1/(12x y +=在区间]5,5[-上的n 次拉格朗日插值多项式)(x L n )10,8,6,4,2(=n 的图形从图中可以看出,对于较大的|x|,随着n 的增大,L n (x)振荡越来越大,事实上可以证明,仅当ξξ(≤x 是某一个正数)时,才有)(lim x L n n ∞→=g(x).而在此区间外,)(x L n 是发散的。