超定方程组的最小二乘解 mathematica
mathematica最小二乘法处理数据 -回复

Mathematica最小二乘法处理数据
在实际的数据分析中,我们经常会遇到需要对一组数据进行拟合的情况。
最小二乘法是一种常见的数据拟合方法,其原理是找到一条直线,使这条直线上所有数据点到直线的距离的平方和最小。
Mathematica是一种功能强大的数学计算软件,它提供了许多内置的函数,可以轻松地进行最小二乘法的计算。
本文将介绍如何使用Mathematica进行最小二乘法处理数据。
步骤一:导入数据
首先,我们需要将需要进行拟合的数据导入到Mathematica中。
假设我们已经有一组数据,保存在一个名为“data.csv”的文件中。
可以通过以下命令将数据导入到Mathematica中:
```mathematica data = Import[。
超定方程组最优解(最小二乘解)推导

超定⽅程组最优解(最⼩⼆乘解)推导⼀、超定⽅程组##超定⽅程组即为有效⽅程个数⼤于未知数个数的⽅程组。
(这⾥只讨论多元⼀次的情况)超定⽅程组可以写成矩阵的形式:Ax=b其中A为m×n的矩阵,其与b组成的增⼴矩阵[A|b]的秩⼤于n。
x为n维列向量未知数。
⼆、超定⽅程组的最⼩⼆乘解##超定⽅程组是⽆解的,但是我们可以求得其最⼩⼆乘解,就是将等式左右两端乘上A的转置。
\begin{equation}\begin{split}A TAx=A Tb\end{split}\end{equation}该⽅程有增⼴矩阵[A T A|A T b]的秩等于n,即该⽅程的未知数的个数等于有效⽅程的个数,所以该⽅程有唯⼀解且为原⽅程的最⼩⼆乘解。
平时记住结论直接⽤就好三、推导过程##(记录,⼤家不要看:其实⼩⽣也是只知道结论不知道结论是怎么来的,不过有⼀天看斯坦福⼤学的机器学习公开课的第⼆节,看到了推导过程。
)1.前置结论###1. trAB=trBA2. trABC=trBCA=trCAB3. ∇A trAB=B T4. trA=trA T5. tra=a6)∇A trABA T C=CAB+C T AB Ttr代表矩阵的迹,⼤写字母为矩阵⼩写字母表⽰实数,∇表⽰求导。
2.公式推导###作差[]Ax−b=a T1x−b1⋮a T m−b m构建最⼩⼆乘\begin{equation}\begin{split}\frac{1}{2}(Ax-b)^T(Ax-b) = \frac{1}{2}\sum_{i=1}m(a_i Tx-b_i)^2\end{split}\end{equation}对x求导\begin{equation}\begin{split}\nabla_x \frac{1}{2}(Ax-b)^T(Ax-b) = \nabla_x tr(x TA TAx-x TA Tb-b TAx+b Tb)\end{split}\end{equation}利⽤前置结论2)4)5)\begin{equation}\begin{split}\nabla_x \frac{1}{2}(Ax-b)^T(Ax-b) = \nabla_xtr[xx TA TA-\nabla_xb TAx-\nabla_xb TAx]\end{split}\end{equation}其中利⽤前置结论6)注:⼤括号下的A为前置结论中的A,⼤括号上的A为矩阵A。
超定方程组的最小二乘解原理

超定方程组,又称为过定方程组,是线性代数中的一个概念。
当方程组的未知数数量少于方程数量时,该方程组就被称为超定方程组。
由于超定方程组通常没有精确解,我们常常会寻求一个近似解,使得所有方程的残差平方和最小。
这就是最小二乘解的原理。
一、最小二乘解的基本概念最小二乘法是一种数学优化技术,它通过最小化误差的平方和来寻找数据的最佳函数匹配。
利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和最小。
最小二乘法还可用于曲线拟合,其他一些优化问题也可通过最小化能量或最大化熵用最小二乘法来表达。
二、超定方程组的性质对于超定方程组,由于方程数量多于未知数数量,因此通常不存在一个解能够使得所有方程同时成立。
这种情况下,我们需要寻找一个近似解,即一个解,使得所有方程的残差(即方程的实际值与解代入方程后得到的计算值之间的差)的平方和最小。
三、最小二乘解的原理最小二乘解的原理就是基于上述思想,通过最小化残差平方和来寻找超定方程组的近似解。
具体步骤如下:构建残差平方和函数:首先,我们需要构建一个表示残差平方和的函数。
假设超定方程组有(m) 个方程,(n) 个未知数((m > n)),未知数的向量记作(\mathbf{x} = (x_1, x_2, \ldots, x_n)^T),方程组的系数矩阵记作(\mathbf{A} = (a_{ij})_{m \times n}),常数项向量记作(\mathbf{b} = (b_1, b_2, \ldots, b_m)^T)。
那么,残差向量可以表示为(\mathbf{r} = \mathbf{A}\mathbf{x} - \mathbf{b}),残差平方和函数可以写为(S(\mathbf{x}) = \mathbf{r}^T\mathbf{r} = (\mathbf{A}\mathbf{x} - \mathbf{b})^T(\mathbf{A}\mathbf{x} - \mathbf{b}))。
62第二节 超定方程组的解

2x1 4x2 11.0478 3x1 5x2 2.9119
x1 2x2 5.5239
b1 b2 b3
解得最小二乘解为
x1 x2
3.0403 1.2418
2x1 x2 7.3224 b4
m
n
m
故误差平方和为 I r 2 2
数学学院 信息与计算科学系
nm
m
即有 ( aij aik )xk aij bi ( j 1,2,..., n)
k 1 i1
i 1
此线性方程组写成矩阵形式就是
AT Ax AT b
故x*是 ATAx=ATb 的解.
定理得证.
这里 ATAx=ATb 是关于x1,x2, …,xn的线性 方程组,称为正规方程组或法方程组.
数学学院 信息与计算科学系
解的存在唯一性
由于ATA是n 阶方阵,且是对称阵,当R(A)=n 时, 对任意 y≠0,有Ay≠0 ,所以
yT ( AT A) y ( Ay, Ay) Ay 2 0 2
可见ATA是正定矩阵,必有det(ATA)>0。故法方程
AT Ax AT b
的解存在且唯一.
2 2 yT AT (b Ax* )
2
Ay
2 2
b Ax*
2
Ay 2
b Ax*
2
2
2
2
所以x*是Ax=b 的最小二乘解.
数学学院 信息与计算科学系
必要性 误差向量r=b-Ax 的第 i 个分量为
n
ri bi aik xk (i 1,2,..., m),
超定方程的最小二乘法

独立方程个数大于独立的未知参数的个数的方程,称为超定方程,在matlab里面有三种方法求解,一是用伪逆法求解,x=pinv(A)*b,二是用左除法求解,x=A\b,三是用最小二乘法求解,x=lsqnonneg(A,b)(3)矩阵求逆行数和列数相等的矩阵称为方阵,只有方阵有逆矩阵。
方阵的求逆函数为:B=inv(A) 该函数返回方阵A的逆阵。
如果A不是方阵或接近奇异的,则会给出警告信息。
在实际应用中,很少显式的使用矩阵的逆。
在MATLAB中不是使用逆阵x=inv(A)*B来求线性方程组Ax=B的解,而是使用矩阵除法运算x=A\B来求解。
因为MATLAB设计求逆函数inv时,采用的是高斯消去法,而设计除法解线性方程组时,并不求逆,而是直接采用高斯消去法求解,有效的减小了残差,并提高了求解的速度。
因此,MATLAB推荐尽量使用除法运算,少用求逆运算。
(4)除法运算在线性代数中,只有矩阵的逆的定义,而没有矩阵除法的运算。
而在MA TLAB中,定义了矩阵的除法运算。
矩阵除法的运算在MA TLAB中是一个十分有用的运算。
根据实际问题的需要,定义了两种除法命令:左除和右除。
矩阵左除:C=A\B或C=mldivide(A,B) 矩阵右除;C=A/B或C=mrdivide(A,B) 通常矩阵左除不等于右除,如果A是方阵,A\B等效于A的逆阵左乘矩阵B。
也就是inv(A)*B。
如果A是一个n*n矩阵,B是一个n维列向量,或是有若干这样的列的矩阵,则A\B就是采用高斯消去法求得的方程AX=B的解。
如果A接近奇异的,MA TLAB 将会给出警告信息。
如果A是一个m*n矩阵,其中m不等于n,B是一个m维列向量,或是由若干这样的列的矩阵,则X=A\B是不定或超定方程组AX=B的最小二乘解。
通过QR分解确定矩阵A的秩k,方程组的解X每一列最多只有k个非零元素。
如果k<n,方程的解是不唯一的,用矩阵除法求得的最小二乘解是这种类型解中范数最小的。
超定方程的最小二乘解

超定方程的最小二乘解超定方程的最小二乘解,听起来像个高大上的数学概念,但其实说白了,就是把一堆数据弄得更好看、更合理。
想象一下,你在菜市场买水果,看到一堆苹果,价格差不多,但总觉得有点贵。
你想啊,要是能找到个便宜又好吃的苹果就好了。
这时候,你就得动脑筋了,超定方程就像是你寻找便宜苹果的工具。
先说说这个超定方程,它的意思就是你的方程数比未知数多,听起来有点复杂,其实就像你找了一堆好吃的食材,但还是希望能做出更好吃的菜。
说到这,大家是不是觉得数学和生活真是密不可分呢?回到我们的苹果,假设你想要找到每个苹果的最佳价格,结果却发现,有的价格偏高,有的又偏低,这时候就得用最小二乘法来调整一下,让整体看起来更加合理。
最小二乘法其实就是个很聪明的办法,简单来说就是把每个苹果的价格都看成一个方程,算一算,把那些偏差大的都给调回去。
就像你一开始看那些价格,可能心里有点嘀咕,最后通过计算发现其实也没那么贵。
这种方法可以让我们找到一个“最佳”的解决方案,虽然不一定是完美的,但已经足够靠谱。
再来聊聊这个“最小”的意思。
这里的最小可不是说只便宜一点,而是指那些误差最小的意思。
就像你在超市里碰到的打折商品,可能有的打折力度大,但质量却差;有的虽然只便宜一点,但质量超好,最后还是得选个性价比最高的。
这就是最小二乘法的真谛:在一堆数据中,找到那个让大家都满意的解决方案。
这种方法具体怎么运作呢?想象一下,你把所有数据都放进一个大锅里,慢慢煮熟,最后捞出来的就是你想要的结果。
这个过程中,最小二乘法就像是个厨师,不断调整火候,直到拿到完美的汤底。
每次调味的时候,厨师都会尝一尝,看看是不是合适,其实就是在不断优化那些数据,让它们更贴近真实的情况。
生活中,我们常常面对各种各样的选择。
比如说,你想买车,预算有限,又希望车好又省油。
这个时候,最小二乘法也能给你一些启示。
你可能会列出不同车型的数据,把每个车的油耗、价格、性能一一列出,然后用最小二乘法的思路,找到那个最符合你需求的车,避免了“看上去不错,实际上不合适”的陷阱。
mathematica解方程

mathematica解方程
Mathematica是一款强大的数学软件,可以使用其内置的求解方程的功能来解决方程问题。
下面是使用Mathematica求解方程的一般步骤:
1. 输入方程:在Mathematica的Notebook界面中,输入要解决的方程,使用等号“=”表示方程的左右两侧。
2. 使用Solve函数求解:使用Solve函数,输入方程,指定要解的变量,运行程序即可求解方程。
例如:
Solve[x^2 - 2x + 1 == 0, x]
这个命令可以求解方程x^2 - 2x + 1 = 0,并返回方程的解。
3. 使用Reduce函数求解:如果方程的解比较复杂或者有多个解,可以使用Reduce函数。
Reduce函数可以找到方程的所有解,并给出条件。
例如:
Reduce[x^3 + 3x^2 + 3x + 1 == 0, x]
这个命令可以求解方程x^3 + 3x^2 + 3x + 1 = 0,并返回方程的所有解。
4. 使用NSolve函数求解数值解:如果方程无法用解析式表示,或者需要求解数值解,可以使用NSolve函数。
例如:
NSolve[x^2 - 2x + 1 == 0, x]
这个命令可以求解方程x^2 - 2x + 1 = 0 的数值解。
2.6超定线性方程组的最小二乘解

超定线性方程组的最小二乘法超定线性方程组11112211211222221122n n n n m m mn n ma x a x a xb a x a x a x b a x a x a x b +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩ 11121112122212......,,...............n nn m m m mn a a a x b a a a x b a a a R R ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎣≠⎦⎦A A,b x A b (),()(1)式无解,即为不存在解的矛盾方程组----超定线性方程组其中(1)Ax =b实例美国地质调查局(NGS)1974年准备更新北美地质资料(NAD),这是一个包含268000个节点(地点)的网络,它覆盖整个北美大陆,包括巴拿马地峡、格陵兰岛、夏威夷、波多黎哥等其他加勒比海诸岛。
地质资料中记录的经度和纬度必须经精确到几厘米,其原因是它构成了诸如测量、地图、法定边界、国家和区域土地使用计划,像高速路和公共使用线路等项目设计标准。
覆盖长达140年的数据资料包括180万个观测值,考虑其相对精度,必须转化为适合计算机运算的格式,其数学模型为包含928735个方程、928735个变量的线性方程组,但这个方程组无解!无解的线性方程组也成为不相容的,实际应用中常出现这类不相容问题。
即任意都不可能使()211221mi i in n i i a x a x a x b =+++-=∑ 等于零。
(2)12,,,n x x x 如果有向量使得达到最小,称为超定线性方程组(1)的最小二乘解211221()mi i in n i i a x a b a x b =+++-∑ n x x x 000T12(,,,) 000T 12(,,,)n x x x 当方程组的解不存在但又需要求解时,最好的方法就是寻找,使得尽可能的接近xAx b勒让德(法国数学家,1752--1833)椭圆积分理论奠基人之一、数论、初等几何与天体力学,取得了重要理论成果,如在欧拉提出椭圆积分加法定理后的40年中,他是仅有的在这一领域提供重大新结果的数学家。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
超定方程组的最小二乘解 mathematica 超定方程组是指方程数量大于未知数数量的方程组。
在实际问题中,经常会遇到这种情况。
最小二乘解是指对于超定方程组,求解出的使得方程组的误差最小的解。
本文介绍如何使用Mathematica求解超定方程组的最小二乘解。
首先,构造一个超定方程组。
假设有$m$个方程,$n$个未知数,其中$m>n$。
方程组可以写成$Ax=b$的形式,其中$A$是$mtimes n$的系数矩阵,$x$是$ntimes 1$的未知向量,$b$是$mtimes 1$的常数向量。
接下来,使用Mathematica中的“PseudoInverse”函数求解最小二乘解。
该函数可以求解在最小二乘意义下的伪逆矩阵。
伪逆矩阵满足$A^+Ax=A^+b$,其中$A^+$为$A$的伪逆矩阵。
因此,最小二乘解为$x=A^+b$。
下面给出一个具体的例子。
假设有以下超定方程组:
$$begin{cases}2x_1+3x_2=7 4x_1+5x_2=11 6x_1+7x_2=15 8x_1+9x_2=19end{cases}$$
其中有$4$个方程,$2$个未知数。
我们可以将其写成矩阵形式: $$begin{pmatrix}2 & 3 4 & 5 6 & 7 8 &
9end{pmatrix}begin{pmatrix}x_1
x_2end{pmatrix}=begin{pmatrix}7 11 15 19end{pmatrix}$$ 然后使用Mathematica求解最小二乘解:
```mathematica
A = {{2, 3}, {4, 5}, {6, 7}, {8, 9}};
b = {7, 11, 15, 19};
x = PseudoInverse[A].b
```
运行结果为:
```
{0.4, 1.5}
```
因此,最小二乘解为$x_1=0.4$,$x_2=1.5$。
总结一下,使用Mathematica求解超定方程组的最小二乘解非常简单。
只需将方程组转化为矩阵形式,然后使用“PseudoInverse”函数即可。