实验半导体热敏电阻特性的研究

合集下载

热敏电阻温度特性研究实验教案

热敏电阻温度特性研究实验教案

热敏电阻温度特性研究实验一、实验简介热敏电阻是由对温度非常敏感的半导体陶瓷质工作体构成的元件。

与一般常用的金属电阻相比,它有大得多的电阻温度系数值。

热敏电阻作为温度传感器具有用料省、成本低、体积小等优点,可以简便灵敏地测量微小温度的变化,在很多科学研究领域都有广泛的应用。

本实验的目的是了解热敏电阻的电阻—温度特性及测温原理,学习惠斯通电桥的原理及使用方法,学习坐标变换、曲线改直的技巧。

二、实验原理1.半导体热敏电阻的电阻—温度特性热敏电阻的电阻值与温度的关系为:R=Ae B/T(1) A,B是与半导体材料有关的常数,T为绝对温度,根据定义,电阻温度系数为:α=1R tdRdT(2) R t是在温度为t时的电阻值。

2.惠斯通电桥的工作原理,如图所示:惠斯通电桥原理图四个电阻R1,R2,R3,R x组成一个四边形,即电桥的四个臂,其中R x就是待测热敏电阻。

在四边形的一对对角A和C之间连接电源,而在另一对对角B和D 之间接入检流计G。

当B和D两点电位相等时,G中无电流通过,电桥便达到了平衡。

平衡时必有R x=(R2/R1)∙R3,(R2/R1)和R3都已知,R x即可求出。

电桥灵敏度的定义为:S=∆n∆R x/R x(3) 式中∆R x指的是在电桥平衡后R x的微小改变量,∆n越大,说明电桥灵敏度越高。

三、实验内容1.用箱式电桥研究热敏电阻温度特性(1)使用内接电源和内接检流计,按照实验电路图连线。

(2)线路连接好以后,检流计调零。

(3)调节直流电桥平衡。

(4)测量并计算出室温时待测热敏电阻值R x,微调电路中的电阻箱,测量并根据电桥灵敏度公式:S=△n/(△Rx/Rx)或S=△n/(△R0/ R0),计算出室温时直流电桥的电桥灵敏度。

(5)调节适当的自耦调压器输出电压值,使烧杯中的水温从20℃升高到85℃以上,每隔5℃测量一次热敏电阻值R t;再将自耦调压器输出电压值调为0V,使水慢慢冷却,降温过程中每隔5℃测量一次热敏电阻值R t,最终求取升降温的平均电阻值,并作出热敏电阻阻值与温度对应关系曲线。

半导体热敏电阻的电阻—温度特性实验讲义

半导体热敏电阻的电阻—温度特性实验讲义

∞ 半导体热敏‎电阻的电阻‎—温度特性实验原理1. 半导体热敏‎电阻的电阻‎—温度特性某些金属氧‎化物半导体‎(如:Fe3O4‎、MgCr2‎O 4 等)的电阻与温‎度的关系满‎足式(1):B R = R e T (1) T ∞式中 R T 是温度为T ‎ 时的热敏电‎阻阻值,R ∞ 是T 趋于无穷时‎热敏电阻的‎阻值阻的材料常‎数,T 为热力学温‎度。

①,B 是热敏电热敏电阻对‎温度变化反‎应的灵敏度‎一般由电阻‎温度系数α‎来表示。

根据定义,电阻温 度系数可由‎式(2)来决定:α = 1 R T dR TdT (2)由于这类热‎敏电阻的α‎ 值为负,因此被称为‎负温度系数‎(NTC )热敏电阻,这也是最 常见的一类‎热敏电阻。

2. 惠斯通电桥‎的工作原理‎半导体热敏‎电阻的工作‎阻值范围一‎般在 1~106Ω,需要较精确‎测量时常用‎电桥法,惠斯 通电桥是一‎种应用很广‎泛的仪器。

惠斯通电桥‎的原理如图‎ 1 所示。

四个电阻 R 0 、R 1 、R 2 和 R x 组成一个四‎边形,其中 R x就是待测电‎阻。

在四边形的‎一对对角 A 和 C 之间连接电‎源;而在另一对‎对角 B 和D 之间接 入检流计 G 。

当 B 和 D 两点电势相‎等时,G 中无电流通‎过,电桥便达到‎了平衡。

平衡时必CR b 图 1 惠斯通电桥‎原理图 图 2 惠斯通电桥‎面板图① 由于(1)式只在某一‎温度范围内‎才适用,所以更确切‎的说 R 仅是公式的‎一个系数,而并非实际‎ T 趋于无穷时热敏电‎阻的阻值。

R R 1 有 R x = R 2 R 1 R 0 , 2 和 R 0 都已知, R x 即可求出。

R 0 为标准可变‎电阻,由有四个旋‎钮的电R 阻箱组成,最小改变量‎为 1Ω。

1 R2 称电桥的比‎率臂,由一个旋钮‎调节,它采用十进‎制固定值,共分 0.001,0.01,0.1,1,10,100,1000 七挡。

半导体热敏电阻特性研究实验报告

半导体热敏电阻特性研究实验报告

半导体热敏电阻特性研究实验报告半导体热敏电阻特性研究实验报告引言:半导体热敏电阻是一种基于半导体材料的温度敏感性元件,其电阻值随温度的变化而变化。

本实验旨在研究半导体热敏电阻的特性,并探索其在温度测量和控制中的应用。

实验一:热敏电阻与温度关系的测量在本实验中,我们选择了一种常见的热敏电阻材料,并使用了恒流源和数字温度计来测量其电阻值与温度之间的关系。

首先,我们将热敏电阻与恒流源相连,并将电流保持在恒定值。

然后,我们使用数字温度计测量不同温度下的电阻值。

通过多次测量,我们得到了一组电阻-温度数据。

根据实验数据,我们绘制了电阻-温度曲线。

结果显示,热敏电阻的电阻值随温度的升高而下降,呈现出明显的负温度系数特性。

这意味着热敏电阻在高温下具有较低的电阻值,在低温下具有较高的电阻值。

实验二:热敏电阻在温度测量中的应用在实验一的基础上,我们进一步探索了热敏电阻在温度测量中的应用。

我们设计了一个简单的温度测量电路,将热敏电阻与电压源和电压测量仪相连。

通过测量电压测量仪的输出电压,我们可以间接地推算出热敏电阻的电阻值,从而得知温度。

实验结果表明,该方法能够较准确地测量温度,且具有较高的灵敏度和稳定性。

实验三:热敏电阻在温度控制中的应用除了温度测量,热敏电阻还可以应用于温度控制。

我们设计了一个简单的温度控制电路,其中包括热敏电阻、比较器和加热元件。

当温度超过设定阈值时,热敏电阻的电阻值会下降,导致比较器输出高电平信号,进而控制加热元件的工作。

当温度降低到设定阈值以下时,热敏电阻的电阻值上升,比较器输出低电平信号,停止加热。

实验结果表明,该温度控制电路能够实现对温度的自动控制,具有较高的精度和稳定性。

这种基于热敏电阻的温度控制方法在实际应用中具有广泛的潜力。

结论:通过本次实验,我们研究了半导体热敏电阻的特性,并探索了其在温度测量和控制中的应用。

实验结果表明,热敏电阻具有良好的温度敏感性能,可广泛应用于各种温度相关的领域。

半导体热敏电阻特性研究实验报告

半导体热敏电阻特性研究实验报告

半导体热敏电阻特性研究实验报告大学热敏电阻实验报告大学热敏电阻实验报告摘要:热敏电阻是阻值对温度变化非常敏感的一种半导体电阻,具有许多独特的优点和用途,在自动控制、无线电子技术、遥控技术及测温技术等方面有着广泛的应用。

本实验通过用电桥法来研究热敏电阻的电阻温度特性,加深对热敏电阻的电阻温度特性的了解。

关键词:热敏电阻、非平衡直流电桥、电阻温度特性1、引言热敏电阻是根据半导体材料的电导率与温度有很强的依赖关系而制成的一种器件,其电阻温度系数一般为(-0.003~+0.6)℃-1。

因此,热敏电阻一般可以分为:Ⅰ、负电阻温度系数(简称NTC)的热敏电阻元件常由一些过渡金属氧化物(主要用铜、镍、钴、镉等氧化物)在一定的烧结条件下形成的半导体金属氧化物作为基本材料制成的,近年还有单晶半导体等材料制成。

国产的主要是指MF91~MF96型半导体热敏电阻。

由于组成这类热敏电阻的上述过渡金属氧化物在室温范围内基本已全部电离,即载流子浓度基本上与温度无关,因此这类热敏电阻的电阻率随温度变化主要考虑迁移率与温度的关系,随着温度的升高,迁移率增加,电阻率下降。

大多应用于测温控温技术,还可以制成流量计、功率计等。

Ⅱ、正电阻温度系数(简称PTC)的热敏电阻元件常用钛酸钡材料添加微量的钛、钡等或稀土元素采用陶瓷工艺,高温烧制而成。

这类热敏电阻的电阻率随温度变化主要依赖于载流子浓度,而迁移率随温度的变化相对可以忽略。

载流子数目随温度的升高呈指数增加,载流子数目越多,电阻率越小。

应用广泛,除测温、控温,在电子线路中作温度补偿外,还制成各类加热器,如电吹风等。

2、实验装置及原理【实验装置】FQJ—Ⅱ型教学用非平衡直流电桥,FQJ非平衡电桥加热实验装置(加热炉内置MF51型半导体热敏电阻(2.7kΩ)以及控温用的温度传感器),连接线若干。

【实验原理】根据半导体理论,一般半导体材料的电阻率和绝对温度之间的关系为(1—1)式中a与b对于同一种半导体材料为常量,其数值与材料的物理性质有关。

半导体热敏电阻 的特性研究

半导体热敏电阻 的特性研究
FB203A型半导体热敏电阻特性研究试验仪(自组 惠斯登电桥电阻箱)1台
正(或负)温度系数(PTC或NTC)热敏电阻1付
专用连接线若干
惠斯登电桥电阻箱
热敏电阻
半导体热敏电阻的特性研究
半导体热敏电阻 特性研究试验仪 电源 检流 控温 测温
半导体热敏电阻的特性研究
【实验内容与步骤】
1. 利用实验 装置提供的元 器件,按图自 行组装惠斯登 电桥。
表1 (PTC或NTC)数据记录 室温 ℃ Kr =
序号 1 2 3 4 5 6 7 8 9 10 … t(℃) 30 35 40 45 50 55 60 65 70 75 …
T(K)

1/T

R3

Rx=RT

lnRT

【注意事项】
半导体热敏电阻的特性研究
1.使用电桥时,应避免将R1、 R2、 R3同时调到零 值附近测量,这样可能会出现较大的工作电流, 测量精度也会下降。
t/℃
RT/Ω
半导体热敏电阻的特性研究
负温度系数(NTC)热敏电阻的 温度特性RT ~t 参考曲线
3000
2500
2000
1500
1000
500
0 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
t/℃
RT/Ω
半导体热敏电阻的特性研究
【实验报告的要求】
1.实验名称 2.实验仪器 3.实验目的 4.实验原理及所采用的实验方法 5.实验内容 6.数据处理
长线
半导体热敏电阻的特性研究 长线
半导体热敏电阻的特性研究
2. 把热敏电 阻传感器插入 加热井中,测 量时把选中的 热敏电阻的引 线接到电桥中 (Rx)。

计算机仿真实验半导体热敏电阻的电阻—温度特性实验报告

计算机仿真实验半导体热敏电阻的电阻—温度特性实验报告

半导体热敏电阻的电阻—温度特性实验原理 1. 半导体热敏电阻的电阻—温度特性:某些金属氧化物半导体(如:Fe3O4、MgCr2O4 等)的电阻与温度的关系满足式(1)RT = R∞ eB T(1)式中 RT 是温度为 T 时的热敏电阻阻值,R∞ 是 T 趋于无穷时热敏电阻的阻值①,B 是热敏电阻的材料常数, T 为热力学温度。

热敏电阻对温度变化反应的灵敏度一般由电阻温度系数α来表示。

根据定义,电阻温度系数可由式(2)来决定:α=1 dRT RT dT(2)由于这类热敏电阻的α值为负,因此被称为负温度系数(NTC)热敏电阻,这也是最常见的一类热敏电阻。

2. 惠斯通电桥的工作原理半导体热敏电阻的工作阻值范围一般在 1~106Ω,需要较精确测量时常用电桥法,惠斯通电桥是一种应用很广泛的仪器。

惠斯通电桥的原理如图 1 所示。

四个电阻 R0 、 R1 、R2 和 R x 组成一个四边形,其中 R x 就是待测电阻。

在四边形的一对对角 A 和C 之间连接电源;而在另一对对角 B 和 D 之间接入检流计 G。

当 B 和 D 两点电势相等时,G 中无电流通过,电桥便达到了平衡。

平衡时必D R1 RxSGAGCR2 R B ER0Sb图 1 惠斯通电桥原理图图 2 惠斯通电桥面板图①由于(1)式只在某一温度范围内才适用,所以更确切的说R∞ 仅是公式的一个系数,而并非实际 T 趋于无穷时热敏电阻的阻值。

有 Rx =R1 R R0 , 1 和 R0 都已知, R x 即可求出。

R0 为标准可变电阻,由有四个旋钮的电 R2 R2阻箱组成,最小改变量为 1Ω。

R1 称电桥的比率臂,由一个旋钮调节,它采用十进制固定 R2值,共分 0.001,0.01,0.1,1,10,100,1000 七挡。

测量时应选择合适的挡位,保证测量值有 4 位有效数。

电桥一般自带检流计,如图 2 所示,如果有特殊的精度要求也可外接检流计,本实验采用外接的检流计来判断电桥的平衡。

热敏电阻的温度特性研究

热敏电阻的温度特性研究

热敏电阻的温度特性研究及其应用一、 实验目的1.了解热敏电阻和Cu50的基本结构及其应用。

2.研究热敏电阻的阻值与温度的关系,并测定电阻温度系数和热敏电阻材料常数。

3.比较Cu50的温度特性。

4.熟悉惠斯顿单臂电桥的工作原理和使用方法。

二、 实验原理物质的电阻值随温度而变化的现象称为热电阻效应。

在一定的温度范围内,可以通过测量电阻值的变化而进行温度变化的测量,这就是热电传感器的工作原理。

典型的热电传感器有热电偶、热电阻和热敏电阻。

其中,热敏电阻由半导体材料制成,它的电阻温度系数比金属的大几百倍,有着极其灵敏的电阻温度效应,同时它还具有体积小、反应快等优点。

热敏电阻是性能良好的温度传感元件,可以制成半导体温度计、湿度机、气压计、微波功率计等测量仪表,并广泛应用于工业自动控制。

热敏电阻按其电阻随温度变化的典型特性可分为三类,即负温度系数(NTC )热敏电阻,正温度系数(PTC )热敏电阻和临界温度电阻器(CTR )。

其中,NTC 型热敏电阻的电阻值会随温度上升而下降,且电阻随温度的变化范围较大。

热敏电阻的电阻-温度特性曲线如图1所示。

图1NTC 型热敏电阻的电阻与温度的关系式为:T B T Ce R = (1)其中,T 为热力学温度,B 和C 都是与材料物理性质有关的常数,B 称作热敏电阻材料常数,一般为1500-6000K 。

热敏电阻的电阻温度系数T α定义为温度变化1℃时阻值的变化量与该温度下的阻值之比:dTdR R TT T 1=α (2)将式(1)代入上式中得: 2TBT -=α (3) 单位是K -1,一般为-2%~-6%K -1。

由式(3)可以看出,T α是随温度降低而迅速增大。

T α决定热敏电阻在全部工作范围内的温度灵敏度。

热敏电阻的测温灵敏度比金属热电阻的高很多。

Cu50是一种用铜丝做成的热电阻,它的电阻的阻值是随着温度线性变化的,在0℃时它的阻值为50Ω。

其电阻值计算公式为:Cu50的电阻值=实际温度值×k+50 其中k 为变化率,单位:Ω/℃。

实验17 半导体热敏电阻的温度

实验17   半导体热敏电阻的温度

实验17 半导体热敏电阻的温度特性研究一、【实验目的】1.研究半导体热敏电阻的温度特性。

2.了解半导体热敏电阻的结构和使用方法。

3.学习用最小二乘法或作图法处理数据的方法二、【实验仪器】DHT -1型多功能恒温控制仪、DHQJ -1型两用非平衡电桥、NTC 半导体热敏电阻三、[实验原理]物体的电阻与温度有关。

在通常温度下,多数纯金属的电阻与温度成线性关系:R=R 0(1+αt ) (17-1)式中:R 是温度为t ℃时的电阻;R 0为0℃时的电阻;α称为电阻温度系数,单位为1/℃。

由半导体材料制成的热敏电阻,根据自身的特性可分为负温度系数(NTC )和正温度系数(PTC )两种,它的导电机理取决于材料的特性。

对于负温度系数的热敏电阻,其阻值随着温度的升高而按指数规律减小。

NTC 热敏电阻和金属的阻值随温度变化的曲线如图 17-1 所示。

图 17-1 NTC 热敏电阻和金属的阻值随温度变化的曲线实验表明,在一定的温度范围内,NTC 热敏电阻的阻值T R 和热力学温度T 之间的关系为T B T Ae R /= (17-2)其中A ,B 为常数,由材料的物理性质决定,常数A ,B 可用实验的方法求得,对(17-2)两边取对数得T B A R T /ln ln += (17-3)由(17-3)式可看出, lnR T 与1/T 成线形关系。

通过实验测得的n 组数据(T R , T ),然后用最小二乘法(或用作图法)得出A 、B , 得出所研究的半导体的电阻随温度变化规律关系式。

四、实验内容1.将热敏电阻和多功能恒温控制仪(见附录5)按图17-2连接好,热敏电阻接到惠斯登电桥被测电阻二接线柱上。

恒温控制仪(左) 热敏电阻(右)图17-2 实验线路连接图2.温度由常温开始,测t(=27℃,28℃,29℃,30℃,31℃,32℃,33℃,34℃)下R。

测量时,取工作电压E=3伏,电桥倍率(×1)。

的热敏电阻阻值T表17-13.将测量的数据记录在表17-1中,用计算器作两个变量(ln ,1/T)统计运算,用最小二乘法或作图法求出A,B,得出关系式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验半导体热敏电阻特性的研究
半导体热敏电阻是一种用于测量温度变化的电子元件,其电阻值会随着温度的变化而
发生改变。

因此,研究其特性对于热敏测温技术的应用以及半导体材料的研究都具有重要
意义。

本文对半导体热敏电阻特性进行了实验研究。

实验使用了一块样品,通过搭建电路系
统测量了其在不同温度下的电阻变化以及热敏电压的变化。

实验中控制了样品的温度变化,得到了一系列数据,进一步分析和研究了半导体热敏电阻的特性。

实验结果表明,当样品温度升高时,其电阻值呈现出单调递减的趋势。

相应地,热敏
电压也呈现出单调递减的趋势。

同时,研究还发现,样品的电阻值变化与温度之间存在着
一种明显的非线性关系。

当温度较低时,电阻的变化比较缓慢;而随着温度升高,电阻值
的变化速率则逐渐加快,最终呈现出了急剧下降的趋势。

通过对实验结果的进一步分析,我们得出了如下结论:半导体热敏电阻的特性主要受
到两个因素的影响,即样品的温度以及载流子浓度。

当样品温度升高时,载流子的浓度也
会随之上升,这将导致电阻值的降低。

此外,半导体热敏电阻的特性还受到其他因素的影响,例如半导体材料的化学成分、掺杂方式以及结构等因素都可能对其特性产生影响。

综上所述,本文通过实验研究了半导体热敏电阻的特性。

实验结果显示,其电阻值与
温度之间存在着非线性关系。

这项研究对于半导体材料的应用以及热敏测温技术的发展都
具有一定的借鉴意义。

未来,我们可以在此基础上进一步探索该元件的特性,并拓展其在
实际应用中的应用范围。

相关文档
最新文档