河北工业大学线性代数作业答案

合集下载

(完整word版)线性代数习题集(带答案)

(完整word版)线性代数习题集(带答案)

第一部分 专项同步练习第一章 行列式一、单项选择题1.下列排列是5阶偶排列的是 ( ).(A) 24315 (B) 14325 (C ) 41523 (D)24351 2.如果n 阶排列n j j j 21的逆序数是k , 则排列12j j j n 的逆序数是( ). (A )k (B )k n - (C)k n -2! (D)k n n --2)1(3. n 阶行列式的展开式中含1211a a 的项共有( )项。

(A) 0 (B )2-n (C ) )!2(-n (D) )!1(-n4.=0001001001001000( )。

(A ) 0 (B)1- (C) 1 (D) 25. =0001100000100100( ).(A) 0 (B)1- (C ) 1 (D) 26.在函数100323211112)(x x x x x f ----=中3x 项的系数是( ).(A) 0 (B )1- (C) 1 (D) 27。

若21333231232221131211==a a a a a a a a a D ,则=---=323133312221232112111311122222 2a a a a a a a a a a a a D ( ). (A ) 4 (B) 4- (C) 2 (D ) 2-8.若a a a a a =22211211,则=21112212ka a ka a ( )。

(A)ka (B)ka - (C )a k 2 (D)a k 2-9. 已知4阶行列式中第1行元依次是3,1,0,4-, 第3行元的余子式依次为x ,1,5,2-, 则=x ( )。

(A) 0 (B)3- (C) 3 (D) 210. 若5734111113263478----=D ,则D 中第一行元的代数余子式的和为( ). (A )1- (B )2- (C )3- (D )011. 若2235001011110403--=D ,则D 中第四行元的余子式的和为( )。

线代参考答案(完整版)

线代参考答案(完整版)

线性代数练习题 第一章 行 列 式系 专业 班 姓名 学号第一节 行列式的定义一.选择题1.若行列式x52231521- = 0,则=x [ C ] (A )2 (B )2- (C )3 (D )3- 2.线性方程组⎩⎨⎧=+=+473322121x x x x ,则方程组的解),(21x x = [ C ](A )(13,5) (B )(13-,5) (C )(13,5-) (D )(5,13--)3.方程093142112=x x根的个数是 [ C ] (A )0 (B )1 (C )2 (D )34.下列构成六阶行列式展开式的各项中,取“+”的有 [ A D ] (A )665144322315a a a a a a (B )655344322611a a a a a a (C )346542165321a a a a a a (D )266544133251a a a a a a 5.若55443211)541()1(a a a a a l k l k N -是五阶行列式ij a 的一项,则l k ,的值及该项的符号为[ B ](A )3,2==l k ,符号为正; (B )3,2==l k ,符号为负; (C )2,3==l k ,符号为正; (D )2,3==l k ,符号为负6.下列n (n >2)阶行列式的值必为零的是 [ B ] (A) 行列式主对角线上的元素全为零 (B) 三角形行列式主对角线上有一个元素为零 (C) 行列式零的元素的个数多于n 个 (D) 行列式非零元素的个数小于n 个 二、填空题 1.行列式1221--k k 0≠的充分必要条件是 3,1k k ≠≠-2.排列36715284的逆序数是 133.已知排列397461t s r 为奇排列,则r = 2,8,5 s = 5,2,8 ,t = 8,5,2 4.在六阶行列式ij a 中,623551461423a a a a a a 应取的符号为 负 。

河北工业大学线性代数考试试题纸

河北工业大学线性代数考试试题纸

河北工业大学教务处试题标准答案及评分标准用纸课程名称:线性代数 ( A 卷)一、填空题(每小题3分,共15分)1、3-;2、12d b c a -⎛⎫ ⎪-⎝⎭; 3、k(12ξξ-),k ∈R ; 4、3; 5、 3. 二、选择题(每小题3分,共15分)1、C2、A3、B4、D 5 、D 三、解答题(每小题8分,共32分) 1、13233331125132320112501A A A ----+=-- ………………………………………………………………(3分)0= ………………………………………………………………(8分) 2、由X AX B =+ 得()E A X B -= ……………………………………………………………(2分)因(,)E A B -=110111012010253--⎛⎫ ⎪- ⎪ ⎪⎝⎭~101200111100333-⎛⎫ ⎪--- ⎪ ⎪-⎝⎭~100310102000111-⎛⎫⎪ ⎪ ⎪-⎝⎭………………………………………………(6分) 所以X=312011-⎛⎫ ⎪⎪ ⎪-⎝⎭………………………………………………………………(8分)3、 因*112A A A A --==, ……………………………………………………………(2分)所以*11()3A A --+=…………………………………………………………(4分)=15A - =5n1A - …………………………………………………………(6分)=5n1A -=52n………………………………………………………………(8分) 4、记()123,,A ααα=,设11x x x βααα=++. ……………………………………… (2分) 解法一: 1111(,)22230323A a b a a b β-⎛⎫ ⎪=+-- ⎪ ⎪-+-⎝⎭ ~ 1111010323a b a a b -⎛⎫ ⎪- ⎪ ⎪-+-⎝⎭~111101000a b a b -⎛⎫⎪- ⎪ ⎪-⎝⎭………………… …………………(4分) 故当 0a ≠且b a ≠时,方程组有唯一解,即β能由123,,ααα线性表示,且表示式唯一; ………(6分)此时,(,A β ~1100110100010a a ⎛⎫- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭,1211(1)a aβαα=-+. ………………… …………………(8分)解法二:111222()032A a b a a b a a b-=+--=--+ ………………… …………………(2分)故当 0a ≠且b a ≠时,方程组(1)有唯一解,即β能由123,,ααα线性表示,且表示式唯一;……(4分)此时,1111(,)22230323A a b a a b β-⎛⎫ ⎪=+-- ⎪ ⎪-+-⎝⎭ ~ 1111010323a b a a b -⎛⎫ ⎪- ⎪ ⎪-+-⎝⎭~ 111101000a b a b -⎛⎫⎪- ⎪ ⎪-⎝⎭~1100110100010a a ⎛⎫- ⎪⎪ ⎪ ⎪ ⎪⎝⎭ ………… …………………(4分)1211(1)aaβαα=-+ ………… ……………………………………(8分)四(14分)、系数矩阵为 111111a A a a ⎛⎫⎪= ⎪ ⎪⎝⎭,增广矩阵为113112112a a B a a -⎛⎫ ⎪=- ⎪ ⎪-⎝⎭, (1)解法一 B ~2112011001133a a a a a a -⎛⎫⎪-- ⎪ ⎪---⎝⎭~112011000(1)(2)33a a a a a a -⎛⎫ ⎪-- ⎪ ⎪-+-⎝⎭… …………………(4分) 当1a ≠且2a ≠-时,()()3R B R A ==,方程组有唯一解;当2a =-时,B ~112203300009--⎛⎫ ⎪- ⎪ ⎪-⎝⎭,()3,()2R B R A ==,方程组无解;当1a =时,B ~111200000000-⎛⎫ ⎪⎪ ⎪⎝⎭,()()13R B R A ==<,方程组有无穷多个解。

线性代数试题及答案解析

线性代数试题及答案解析

线性代数试题及答案解析一、选择题(每题4分,共40分)1. 矩阵A和矩阵B相乘,得到的结果矩阵的行列数为()。

A. A的行数乘以B的列数B. A的行数乘以B的行数C. A的列数乘以B的列数D. A的列数乘以B的行数答案:D解析:矩阵乘法中,结果矩阵的行数等于第一个矩阵的行数,列数等于第二个矩阵的列数。

2. 向量α和向量β线性相关,则下列说法正确的是()。

A. α和β可以是零向量B. α和β可以是任意向量C. α和β中至少有一个是零向量D. α和β中至少有一个是另一个的倍数答案:D解析:线性相关意味着存在不全为零的系数,使得这些系数乘以对应的向量和为零向量,因此至少有一个向量是另一个向量的倍数。

3. 对于n阶方阵A,下列说法不正确的是()。

A. A的行列式可以是0B. A的行列式可以是负数C. A的行列式可以是正数D. A的行列式一定是正数答案:D解析:方阵的行列式可以是正数、负数或0,因此选项D不正确。

4. 矩阵A和矩阵B相等,当且仅当()。

A. A和B的对应元素相等B. A和B的行数相等C. A和B的列数相等D. A和B的行数和列数都相等答案:A解析:两个矩阵相等,必须满足它们具有相同的行数和列数,并且对应元素相等。

5. 向量组α1,α2,…,αn线性无关的充分必要条件是()。

A. 由这些向量构成的矩阵的行列式不为0B. 这些向量不能构成齐次方程组的非零解C. 这些向量不能构成齐次方程组的非平凡解D. 这些向量可以构成齐次方程组的平凡解答案:C解析:向量组线性无关意味着它们不能构成齐次方程组的非平凡解,即唯一的解是零向量。

6. 矩阵A可逆的充分必要条件是()。

A. A的行列式不为0B. A的行列式为1C. A的行列式为-1D. A的行列式为任何非零数答案:A解析:矩阵可逆当且仅当其行列式不为0。

7. 矩阵A的特征值是()。

A. 矩阵A的行数B. 矩阵A的列数C. 矩阵A的对角线元素D. 满足|A-λI|=0的λ值答案:D解析:矩阵的特征值是满足特征方程|A-λI|=0的λ值。

《线性代数》课后习题答案

《线性代数》课后习题答案

《线性代数》课后习题答案第一章行列式习题1.11. 证明:(1)首先证明)3(Q 是数域。

因为)3(Q Q ?,所以)3(Q 中至少含有两个复数。

任给两个复数)3(3,32211Q b a b a ∈++,我们有3)()3()3)(3(3)()()3()3(3)()()3()3(21212121221121212211212122 11b a a b b b a a b a b a b b a a b a b a b b a a b a b a +++=++-+-=+-++++=+++。

因为Q 是数域,所以有理数的和、差、积仍然为有理数,所以)3(3)()3()3)(3()3(3)()()3()3()3(3)()()3()3(2121212122112121221 121212211Q b a a b b b a a b a b a Q b b a a b a b a Q b b a a b a b a ∈+++=++∈-+-=+-+∈+++=+++。

如果0322≠+b a ,则必有22,b a 不同时为零,从而0322≠-b a 。

又因为有理数的和、差、积、商仍为有理数,所以)3(33)(3)3()3)(3()3)(3(332222212122222121222222112211Q b a b a a b b a b b a a b a b a b a b a b a b a ∈--+--=-+-+=++。

综上所述,我们有)3(Q 是数域。

(2)类似可证明)(p Q 是数域,这儿p 是一个素数。

(3)下面证明:若q p ,为互异素数,则)()(q Q p Q ?。

(反证法)如果)()(q Qp Q ?,则q b a p Q b a +=?∈?,,从而有q ab qb a p p 2)()(222++==。

由于上式左端是有理数,而q 是无理数,所以必有02=q ab 。

所以有0=a 或0=b 。

线性代数 习题三答案

线性代数 习题三答案

线性代数习题三答案
《线性代数习题三答案》
线性代数作为数学的一个重要分支,对于理工科的学生来说是一个非常重要的课程。

在学习线性代数的过程中,习题是一个非常重要的部分,通过做习题可以加深对知识点的理解,提高解题能力。

今天我们就来看一下线性代数习题三的答案。

1. 习题一:
已知矩阵A= [1, 2; 3, 4],求矩阵A的转置矩阵。

答案:A的转置矩阵记为A^T,即A^T= [1, 3; 2, 4]。

2. 习题二:
已知向量a= [1, 2, 3],b= [4, 5, 6],求向量a和b的内积。

答案:向量a和b的内积记为a·b,即a·b= 1*4 + 2*5 + 3*6 = 32。

3. 习题三:
已知矩阵A= [1, 2; 3, 4],求矩阵A的行列式。

答案:矩阵A的行列式记为|A|,即|A|= 1*4 - 2*3 = 4-6 = -2。

通过以上习题的答案,我们可以看到线性代数中一些基本概念的运用,比如矩阵的转置、向量的内积、矩阵的行列式等。

这些概念在实际应用中有着广泛的用途,比如在工程、物理、经济等领域都会涉及到线性代数的知识。

因此,掌握好线性代数的基础知识,对于我们未来的学习和工作都是非常有帮助的。

希望通过对习题三的答案的学习,大家能够更加深入地理解线性代数的知识,提高解题能力,为将来的学习和工作打下坚实的基础。

河北工业大学2017年春线性代数作业

河北工业大学2017年春线性代数作业

河北工业大学线性代数作业(1)学院班级姓名学号一. 讨论下列齐次方程组是否有非零解,若有,求出其通解.⎪⎪⎩⎪⎪⎨⎧=+-+-=+-+=+-+-=---0136152032024303524321432143214321x x x x x x x x x x x x x x x x二.求出下列线性方程组的通解.⎪⎩⎪⎨⎧-=+-+=-+-=+-+2534432312432143214321x x x x x x x x x x x x三.用初等变换化下列矩阵为简化梯形矩阵,指出矩阵的秩是多少:1.⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--370320852373812023012.nn 11111001110001100001⨯⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-------四. (1)当λ取什么值时,方程组⎪⎩⎪⎨⎧0=++0=++0=++321321321x x x x x x x x x λλλ 只有零解?有非零解?若有非零解,则确定其通解.(2)当λ分别取什么值时,下面方程组有唯一解?有无穷多解?无解?在它有无穷多解时,求出它的通解.⎪⎩⎪⎨⎧=++=+--=++-2321321321λλλ222x x x x x x x x x河北工业大学线性代数作业(2)学院 班级 姓名 学号一.填空题 1. 若行列式0=3333222211111xx x ,则.________,___,=x 2.0100002000010n n=-L L L L L L L L L.3. 1070002000003000000400050= .4. =--nn n 0000000000100002000200010000.5.=0000041323123222114131211a a a a a a a a a a . 6. 当____x 时,0010413=xx x .7.若23013221D 1=,则==ca c ab a b 2033202D 2 . 8.若1333231232221131211-=a a a a a a a a a ,则=---333231312322212113121111324324324a a a a a a a a a a a a . 二.计算下列行列式的值:1.20104110631432111112.333333222222111111b a a c c b b a a c c b b a a c c b +++++++++3.dd c c b b a a d c b a dc b a 3434343412121212111122222222--------4.111222+++γγβγαβγββααγαβα河北工业大学线性代数作业(3)学院班级姓名学号一.选择题1.若()r R =A ,则A 中( )r 阶子式不等于零.()a 任意一个; ()b 只有一个; ()c 至少有一个; ()d 至多有一个.2.克拉默法则仅适用于解( )方程组.()a 非齐次线性方程组; ()b 齐次线性方程组;()c 任何有解的方程组;()d 方程个数=未知量个数,系数矩阵的行列式不等于零.3.设n m ⨯A ,则下列说法不正确的是( ).()a 若()r R =A ,则n m ⨯A 不存在等于零的1-r 阶子式; ()b ()()T R R A A =; ()c (){}min ,R m n ≤A ;()d 当n m =时,若A 为降秩(退化、奇异)方阵,则()n,det 0R <=A A .二.计算下面的n 阶行列式.1.nn n n a x a a a a a x a a a a a x a a a a a x ++++3213213213212.122222222232222n3.nnnnnn n n n n n nn n n n11321221----4.xyy x y x y x 0000000000三.用初等变换法求下面矩阵的秩A =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--05916410202131412311.河北工业大学线性代数作业(4)学院班级姓名学号一.填空题1.若矩阵X 满足方程()()0=-2+-2X B X A ,则X= . 2. 设A 为3阶矩阵,3=A ,则A 2 =.3.已知[]321=x x x ,,A , ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=B 321x x x ,则=AB ,__________=BA .4. 设B A ,为n 阶方阵,则()()22B A B A B A -=-+成立的条件为_______. 二. 单项选择题1.设有矩阵,,3223⨯⨯B A 33⨯C , 则下列运算可以进行的是( ).()a ABC ;()b TAB; ()c BC AB +; ()d ΒΑ23+.2.设A 为n m ⨯矩阵,则TAA 是( ).()a m 阶方阵; ()b n 阶方阵;()c n m ⨯矩阵;()d m n ⨯矩阵.三. 计算2--3B A C ,已知,,⎥⎦⎤⎢⎣⎡1-1012-7=⎥⎦⎤⎢⎣⎡3021-21=B A C ⎥⎦⎤⎢⎣⎡01726-3-=.四. 计算下列矩阵的乘积(如不符合两矩阵相乘的条件,则说明不能相乘). 1. ⎥⎦⎤⎢⎣⎡--⎥⎦⎤⎢⎣⎡6234021231 2. ⎥⎦⎤⎢⎣⎡3402⎥⎦⎤⎢⎣⎡104312 3. []⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡321333231232221131211321x x x a a a a a a a a a x x x河北工业大学线性代数作业(5)学院班级姓名学号一. 填空题1. 设A 为n 阶矩阵,且0≠=a A det ,A adj 为其转置伴随阵,则det(adj A )= .2. 设4阶矩阵A 的秩为2,则其转置伴随阵A adj 的秩为 .3. 若⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡740530002=A ,则=1-A .4. 设B A ,为n 阶矩阵,且I AB =,则=BA .5.设A 为n 阶可逆矩阵,则()12T-T ⎡⎤=⎢⎥⎣⎦Α .二.单项选择题1.设B A ,均为n 阶可逆方阵,则=⎥⎦⎤⎢⎣⎡-100B A ( ).()⎥⎦⎤⎢⎣⎡001-1-B A a ; ()⎥⎦⎤⎢⎣⎡001-1-BA b ; ()⎥⎦⎤⎢⎣⎡001-1-AB c ; ()⎥⎦⎤⎢⎣⎡001-1-A B d . 2.设C B A ,,是同阶方阵,且A 可逆,则下列各式中不一定成立的是( ).()a 若AC AB =,则=B C ;()b =ΑΒCA ,则=BC ;()c 若0=AB ,则0=B ; ()d 若CA BA =,则=BC .3.下列矩阵可逆的是( ).()a n 阶对角矩阵; ()b n 阶满秩矩阵;()c n 阶实对称矩阵; ()d n 阶上三角阵.4.设A 为n 阶对称矩阵,且A 可逆,那么有( ).()a T A A =-1; ()b A A T -=;()c IA A T =-1; ()d 以上结论都不对.5.B A,为n 阶矩阵,下列运算正确的是( ).()a ()k k k B A AB =; ()b ()111---=B A AB ;()c A A AA T T= ; ()d AA A A adj adj =.三.设A 满足,O I A A =4--2证明I A I A 2--,,都可逆.四. 设A ,B 均为2阶矩阵,且2=1-=B A det ,det ,求()]2det[21-ΒΑΤ.五.设A 是n 阶矩阵,A adj 是A 的转置伴随阵,若5=A det ,求 det[(5adj A )1-]的值.河北工业大学线性代数作业(6)学院班级 姓名 学号一.填空题 1.3阶初等阵=12R, ()=12det R,()=-112R .2.3阶初等阵 ()=23R , ()()=2det 3R ,()()=-132R .3.3阶初等阵()=-413R, ()()=-4det 12R,()()=--1134R.4.设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡3-3-3-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡333231232221331332123111333231232221131211a a a a a a a a a a a a a a a a a a a a a A ,则A = .5.初等矩阵C 31()3-右乘矩阵123[,,]a a a =A ,相当于对A 进行初等 变换,结果为______.6.矩阵A 经过有限次初等变换化为矩阵B ,则矩阵A 与B 的秩 .二. 单项选择题1.在下列矩阵中,不是初等矩阵的是( ).()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡010100001a ;()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡00101-0100b ;()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡1000520001.c ;()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡105010001d . 2.下列说法正确的是( ).()a 对单位阵施行初等变换后所得的矩阵都是初等矩阵; ()b 初等矩阵的乘积还是初等矩阵;()c 可逆阵经过初等变换后仍为可逆阵; ()d 任何矩阵都可以表示有有限个初等阵的乘积.三. 用行初等变换法求下列矩阵的逆矩阵:1.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡14-52-431-21=A2.⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡11-0000011-000011-00001= A四. 从矩阵方程B AX =中解出X ,其中1.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡1513-3421-2-=A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡311=B2.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡41-31-351-24=A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡4611-31=B河北工业大学线性代数作业(7)学院班级姓名学号一. 填空题 1. 方程组⎩⎨⎧=3++3+3=2++2+22121b x x x ax x x n n 有解的条件为___________.2.二维向量α[]T21=a a ,,β[]T21=b b ,线性相关的充要条件为 .3.若向量组1a ,2a ,a 3线性相关,且123⎡⎤=⎣⎦A aa a ,则R )(A .4.若向量组321a a a ,,线性无关,当常数m l ,满足_______时,向量组 l 1a ,-3a m 2a ,31-a a 线性无关.二. 选择题1.若向量b 可以由向量组m21a ,,a ,a 线性表示,则下列结论正确的是( ).()a 存在常数m k k k ,,, 21,使b =1k 1a +2k 2a ++ m k m a ;()b 存在不全为零的常数m k k k ,,, 21,使b =1k 1a +2k 2a ++ m k m a ;()c 存在唯一的常数m k k k ,,, 21,使b =1k 1a +2k 2a ++ m k m a ; ()d 存在唯一不全为零的常数m k k k ,,21,使b =1k 1a +2k 2a ++ m k m a .2.设b ,a ,,a ,a n21是m 维向量,则关于方程组1k 1a +2k 2a ++ n n a k =b 的说法正确的是( ).()a 若方程组无解,则向量组b ,a ,,a ,a n 21 线性无关; ()b 若方程组有解,则向量组b ,a ,,a ,a n 21 线性相关; ()c 若n 21a ,,a ,a 线性相关,则方程组一定有解;()d 若n 21a ,,a ,a 线性无关,则方程组一定无解.3. 若向量组1a [],,,Τ001=T a ],,[0112=,=3a T cb a ],,[线性无关,则要求( ).()a c b a ==; ()b 0==c b ; ()c 0=c ; ()d 0≠c .三.已知321a a a ,,线性相关,432a a a ,,线性无关,试问: (1)1a 能否由32a a ,线性表示?(2)4a 能否由321a a a ,,线性表示?(3)当上面的表示式成立时,其表示式是否唯一?四.证明:若向量组321a ,a ,a 线性无关,则向量组,,212321122a a b a a a b +=-+=32134+3+2=a a a b也线性无关.河北工业大学线性代数作业(8)学院班级 姓名 学号一. 填空题1.设向量组r21a ,,a ,a 线性无关,则R {}=21r a a a ,,, .2.设a 为任一n 维向量,n21e ,,e ,e 为n 维单位向量,则向量组,,,21e e a ne , 线性____关.3.由一个方程0=+++21n x x x 构成的方程组的系数矩阵的秩r ____=,该方程组通解为.二.选择题1.向量组1M 和2M 的秩相等,则( ).()a 1M 与2M 等价; ()b 1M 与2M 所含向量个数相等;()c 1M 与2M 所含向量个数不等; ()d 以上结论都不对.2.设A 为n m ⨯矩阵,且R =)(A n m <,则( ).()a A 的行、列向量组均线性无关; ()b A 的行、列向量组均线性相关;()c A 的行向量组线性相关,列向量组线性无关; ()d A 的行向量组线性无关,列向量组线性相关.三. 设[][]T a a a a ],,,[,],,,[,,,,,,,,03121100101010014321=-===T TT.(1)将4a 用321a ,a ,a 线性表示.(2)由定义判定321a ,a ,a 是向量组321a ,a ,a ,4a 的一个最大线性无关向量组.(3)指出向量组321a ,a ,a ,4a 的秩和矩阵=A [321a ,a ,a ,4a ]的秩.四.设向量组为[],,,,T=31211a [],,,,T---=65142a []Ta 74313---=,,,,[]T-=01124,,,a .求该向量组的秩,并具体找出一个最大线性无关组.再把不属于最大线性无关组的向量用最大线性无关组的向量表示出来.河北工业大学线性代数作业(9)学院班级 姓名 学号一.填空题1.在基[][][]TTT===213132321321,,,,,,,,a a a 下,坐标为210,,的向量为________.2.在n R 中取r 个线性无关的向量r a a a ,,, 21,r<n ,由r21a ,,a ,a 生成的子空间记为S ,则=S dim ,S 的一个基为___________.3. n 阶矩阵Α的秩为r ,则其解空间的维数是 .二.选择题1.设向量组ma a a ,,, 21线性相关,V 为由m21a ,,a ,a 生成的向量空间,则V dim ( ).()a m =; ()b m <; ()c m ≤; ()d 无法确定.2. 向量空间W w {=[]},,,,a d cb a dc b a ==++=T0的维数为( ).()a 1 ()b 2; ()c 3; ()d 4.3.若齐次方程组0=x A 有非零解,则其基础解系是( ).()a 唯一的,其中的向量线性相关;()b 唯一的,其中的向量线性无关; ()c 不唯一,其中的向量线性相关;()d 不唯一,其中的向量线性无关.4.设有4⨯3矩阵A ,A 表示非齐次方程组b AX =的增广矩阵,则b AX =有解的充分条件为( ).()a R ()2≤A ; ()b R ()3≤A ; ()c R ()3=A ; ()d R ()3=A .6.设有5⨯5矩阵A ,A 表示非齐次方程组b AX =的增广矩阵,则b AX =有无穷多组解的充分条件是( ).()a ()5<A r ; ()b ()5=r ; ()c ()()5==A A r r ; ()d ()()4≤=A A r r .三.证明[],,,,T=00011a [],,,,T=00112a [][]TT==1111011143,,,,,,,a a 是4R 的一组基,并求向量[]T=4721,,,b 在这组基下的坐标.四 试求下列齐次方程组的基础解系,并说明解空间的维数1.⎪⎩⎪⎨⎧=++-=++-=++-01117840246303542432143214321x x x x x x x x x x x x五. 求解下列非齐次方程组.⎪⎩⎪⎨⎧-=+-=-+--=+352231232132131x x x x x x x x河北工业大学线性代数作业(10)学院班级 姓名 学号一.填空题 1.向量[]T11-1-1=,,,a 的规范化向量为=a e _____________.二.选择题1.设A ,B 为正交矩阵,则下列说法错误的是( ).()a 则1-A 和T A 也为正交矩阵,且有T -=A A 1;()b A 的每一行(列)向量都是单位向量,且其中的任意两个行(列)向量正交;()c AB 也为正交矩阵;()d B A +也是正交矩阵.三. 证明x V {=},,,),,(R x x x x x x x x x T ∈=++=3213213210构成3R 的一个子空间,并给出一组基.四.设[][][]TTT=-=-=103211112201,,,,,,,,,,,c b a ,1.求a 、b ,a 与b 的夹角;2.计算c b a b a ),(--23;3.证明c 与b ,a 都正交.五.}|{0==Ax x W 称为矩阵A 的零空间。

大学线性代数作业答案

大学线性代数作业答案

资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载大学线性代数作业答案地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容第一章行列式1.1 二阶、三阶行列式一、计算下列行列式1、2、3、二、解方程1、解:计算行列式得,因此2、解:计算行列式得,得,因此1.2 n阶行列式定义及性质一、计算下列行列式1、2、3、4、5、将第2、3、4列乘以-1加到第一列得6、将第2、3、4行全部加到第1行将第1行乘以-1加到第2、3、4行二、计算下列行列式1、第1行加到第2、3行2、按第1列展开3、按第4行展开4、按第1行展开5、第1列乘以-1加到第2、3、4列第2列乘以-1加到第3、4列计算下列n阶行列式:1、按第1列展开2、将第2、3、…、n行全部加到第1行第1行乘以-1加到以下各行3、范德蒙行列式4、已知,计算和 .解:将上式设为,此式设为,可直接计算此行列式结果为3,也可按以下方法来做:题目中的原行列式设为由行列式的性质得:则:三、解下列方程1、解:第1行乘以-1加到2、3、4行,得将1、2、3列加到第4列得将第2、3行交换,1、4行交换后得上三角形行列式,因此,因此,2、解:此行列式是范德蒙行列式,得因此,3、解:由行列式的加法则,再相加,此行列式为范德蒙行列式得因此1.4 克莱姆法则一、解线性方程组1、解:,,解得2、解:,,解得二、求一个二次多项式使得解:设,,解得三、已知线性方程组只有零解,求的取值范围.解:系数行列式为,因此四、设线性方程组有非零解,则应取何值?若线性方程组的右端变为2,3,2,则为何值时,新的线性方程组有唯一解?解:系数行列式为则当时方程组有非零解;若线性方程组的右端变为2,3,2,则当时方程组有唯一解.第二章矩阵2.1 矩阵定义及其运算一、填空题1、设为三阶方阵,且,则.说明:2、的充分必要条件是.二、选择题1、设都是阶矩阵,则的充分必要条件是( C ).(A) (B) (C) AB=BA (D)2、设都是阶矩阵,则( C ).(A) (B) (C) (D)3、设为阶矩阵,若,则等于( C ).(A) (B) (C) (D)说明:由题意知矩阵与不能交换,因此只有(C)正确.4、设都是阶对称矩阵,则下面四个结论中不正确的是( B ).(A) 也是对称矩阵(B) 也是对称矩阵(C)(m为正整数) 也是对称矩阵(D)也是对称矩阵理由:,因此(B)错误.三、设,为二阶单位阵,满足, 求.解:由得,即,两边取行列式得,而,因此.四、1、已知,,,求.结果为2、已知,,求.结果为3、已知,,求,,.结果为4、计算,结果为05、计算五、设证明:当且仅当.证:必要性,已知,即,则,得.充分性,已知,则,因此.2.2 逆矩阵一、填空题1、设为三阶方阵,且,则 4 , 4 ,.说明:,,2、设为矩阵,为矩阵,则 -8 .说明:3、设为矩阵,则是可逆的充分必要条件.4、已知,且可逆,则=.说明:等式两边同时左乘5、为三阶方阵,其伴随阵为,已知,则.说明:二、选择题1、若由必能推出其中为同阶方阵,则应满足条件( B )(A)(B)(C)(D)2、设均为阶方阵,则必有( C )(A)(B)(C)(D)三、计算题1、判断下列矩阵是否可逆,若可逆,求其逆矩阵.(1),可逆,(2),可逆,2、解矩阵方程:解:,3、利用逆矩阵,解线性方程组解:系数矩阵为,则,则四、设方阵满足方程.证明:和都可逆,并求他们的逆矩阵.证:因此,和都可逆,且,2.3 初等变换与初等矩阵一、填空题=.说明:由于,,因此二、选择题:1、设为阶可逆矩阵,则( B )(A)若,则;(B)总可以经过初等变换化为;(C).对施行若干次初等变换,当变为时,相应地变为;(D)以上都不对.说明:(B)为定理,正确;(A)少条件,若加上矩阵可逆,才能正确;(C)将“初等变换”改为“初等行变换”才正确;2、设,,,则必有( C )(A)(B)(C)(D)利用初等变换求矩阵的逆矩阵1、,逆矩阵为:2、,逆矩阵为:3、,逆矩阵为:4、,其中,将最后1行调整到第1行三、已知,求解:由于,则,由,因此.四、已知,,求矩阵.解法1:由得:,即,此式两边同时左乘,再右乘,得(1)再由得:,即,两边同时右乘,得,此式与(1)式结合得:解法2:将变形得,可得,两边加得:,即,则,因此.五、已知,其中,求矩阵.解:由得:,即因此,六、设,为三阶可逆矩阵,求.解:,则因此,2.5 矩阵的秩一、填空题1、在秩是的矩阵中,所有的阶子式都为0 .2、设是矩阵,,,则 3 .说明:可逆矩阵与其它矩阵相乘,不改变其它矩阵的秩.3、从矩阵中划去一行得到矩阵,则的秩的关系为.4、设, 秩,则 -3 .说明:将2、3、4行加到第一行,再从第一行提出公因子将第1行乘以-1加到以下各行,因此当或时,,但时显然,因此.5、设, 秩,则 1 .说明:二、求下列矩阵的秩1、,2、,3、,三、设,1)求;2)求秩(要讨论).解:则当时,;当时,.四、讨论矩阵的秩.解:当且、、时,;其它情况,.第三章向量3.1 向量的概念及其运算1、已知,求,及.结果:2、已知,,满足,求.结果:3、设,其中,,,求.结果:4、写出向量的线性组合,其中:(1)(2)结果:1) 2)5、已知向量组,问:向量是否可以由向量线性表示?若可以,写出其表达式;解:设即可得方程组:,用克拉默法则可得:,,则向量可以由向量线性表示,.3.2 线性相关与线性无关1、判断向量组的线性相关性,并说明原因.1)线性相关.包含零向量的向量组都是线性相关的.2)线性无关.两个向量线性无关的充要条件是对应分量不成比例.3),因此向量组线性无关.4)线性相关.5)线性相关.向量个数大于向量维数,必线性相关.2、填空题设向量组线性相关,则 2说明:,则设向量组线性无关,则必满足关系式说明:若维单位向量组可由向量组线性表示,则说明:书72页推论13、选择题1)向量组线性无关的充要条件是(C)向量组中必有两个向量的分量对应不成比例向量组中不含零向量向量组中任意一个向量都不能由其余的个向量线性表示存在全为零的数,使得2)设其中是任意实数,则(C)向量组总线性相关向量组总线性相关向量组总线性无关向量组总线性无关4、已知向量组线性无关,证明:(1) 线性无关证明:设即,由线性无关得,即,因此线性无关.(2) 线性相关证法1:设即,由线性无关得,当时方程组成立,因此线性相关.证法2:由,得线性相关.5、已知,,问:向量能否由向量组唯一线性表示?解:设,即方程组系数行列式,,,因此可由向量组唯一线性表示,.3.3 向量组的秩1、填空题(1)若,则向量组是线性无关说明:由知线性无关,线性无关的向量组减少向量个数还是线性无关.(2)设向量组的秩为,向量组的秩为,且,则与的关系为2、选择题(1)若向量组是向量组的极大线性无关组,则论断不正确的是( B )可由线性表示可由线性表示可由线性表示可由线性表示(2)设维向量组的秩,则( B )向量组线性无关向量组线性相关存在一个向量可以由其余向量线性表示任一向量都不能由其余向量线性表示(3)若和都是向量组的极大线性无关组,则(C)3、求下列向量组的秩(必须有解题过程)(1)解:由,得向量组的秩为3.(2)(要讨论)解:当,时秩为3;当时秩为2;当时秩为1;4、利用矩阵的初等变换求下列向量组的一个极大线性无关组,并将其余向量用此极大线性无关组线性表示.(1)解:为极大线性无关组,且.(2),,解:为极大线性无关组,,5、已知向量组的秩为,1)求2)求向量组的一个极大线性无关组,并将其余向量用此极大线性无关组线性表示.解:(1),(2)为极大线性无关组,.6、设维单位向量可由维向量组线性表出,证明向量组线性无关.证明:由维单位向量可由维向量组线性表出,且维单位向量可由维向量组线性表出,因此这两个向量组等价,由的秩为,因此的秩为,因此线性无关.7、设,,,,证明:线性无关.证明:设,即则由得:,系数行列式因此线性无关.8、设,若各向量组的秩分别为:,,证明:向量组的秩为4.证明:反证法,假设向量组的秩小于4,由知,线性无关,根据书69页定理5知:可由线性表示,设为,即(1)再由,得线性相关,再由刚才定理知:可由线性表示,设为,代入(1)得:因此可由线性表示,则线性相关,与矛盾.因此向量组的秩为4.3.4 向量空间1、设问是不是向量空间,为什么?解:是向量空间,不是向量空间.(大家自己证明)2、向量在基,,下的坐标是.说明:设方程,解之即可.3、略4、试证:由生成的向量空间就是,并求的一组标准正交基.证:由,则线性无关,,则为四个三维向量,必线性相关,且可由线性表示,因此,所生成的向量空间为.由施密特正交化法:,单位化得:,,,为空间的一个标准正交基.第四章线性方程组1、填空题1)线性方程组无解,且,则应满足=4 ;线性方程组有解,且,则应满足=32)设是方阵,线性方程组有非零解的充要条件是.说明:由,得3)设元线性方程组有解,若,则的解空间维数为 2 .说明:解空间的维数+结果为.4)设为四元非齐次线性方程组,,是的三个非零解向量,,则的通解为.说明:由4-3=1知该方程组对应的齐次线性方程组的基础解系中应包括一个向量,而是的一个解,因此齐次线性方程组的通解为,再由,,以上二式相加除以2知,是的一个特解,因此的通解为5)若既是非齐次线性方程组的解,又是的解,则.说明:由是非齐次线性方程组的解,可知为非零向量,因此有非零解,则其系数行列式必为0,推出.2、选择题1)若齐次线性方程组仅有零解,则(C)2)线性方程组有唯一解的条件是(B)只有零解、、都不对3)若方程组中,方程的个数少于未知量的个数,则(B)一定无解必有非零解仅有零解的解不能确定3、求下列齐次线性方程组的基础解系1)解:方程组化为:,设,解得,,基础解系为:2)解:方程组化为令,解得:,令,解得:,基础解系为:,4、求方程组的特解.解:方程组化为,令,得,因此方程组的一个特解为:.5、求下列线性方程组的通解1)解:方程组化为:,设,得,,通解为:2)解:方程组化为:选为自由未知量并令,(注意此处特解的取法)解得,于是该方程组的一个特解为其导出组的同解方程组为,选为自由未知量并令,解得,于是导出组的一个基础解系为方程组通解为:(3)四元线性方程组解:由知原方程组有无穷多组解.先求原方程组一个特解,选为自由未知量并令,得,于是该方程组的一个特解为在其导出组中选为自由未知量并令得,令得,于是导出组的一个基础解系为故原方程组的通解为,其中为任意常数.6、综合题(1)已知三元非齐次线性方程组有特解,,,,求方程组的通解.解:因为为三元方程组而,所以的基础解系中含有两个解向量,由解的性质,均是的解,显然它们线性无关,可以构成的一个基础解系.由解的结构知的通解为,其中为任意常数即.(2)取何值时,齐次线性方程组有非零解?并求出一般解.解:因为所给方程组是含三个方程三个未知量的齐次方程组,故可以利用克拉默法则,当系数行列式为0时方程组有非零解.由可得,所以当时原方程组有非零解.当时,原方程组变为,选为自由未知量并令并令得,,得于是方程组的一个基础解系为通解为,其中为任意常数.(3)取何值时,齐次线性方程组有非零解?并求出其通解.解:因为所给方程组是含三个方程三个未知量的齐次方程组,故可以利用克拉默法则,当系数行列式为0时方程组有非零解.由可得或时原方程组有非零解.当时,原方程组系数矩阵为,选为自由未知量,取,得,方程组的一个基础解系为通解为,其中为任意常数.当时,原方程组系数矩阵为,选为自由未知量,取,得,方程组的一个基础解系为通解为,其中为任意常数.(4)讨论当取何值时方程组无解?有唯一解?有无穷多解?在有无穷多解的情况下求出其通解.解:当,即,时,原方程组无解.当,即,时,原方程组有唯一解.当,即,或者时,原方程组有无穷多解.当时,原方程组中,选为自由未知量,在对应的中令得导出组的一个基础解系在中令得一个特解于是方程组的通解为,其中为任意常数.当时,原方程组中,选为自由未知量,在对应的中令得导出组的一个基础解系在中令得一个特解于是方程组的通解为,其中为任意常数.(5)已知线性方程组问方程组何时无解?何时有唯一解?何时有无穷多解?在有无穷多解的情况下求出其通解.解:当,即,或时,原方程组无解.当,即,时,原方程组有唯一解.当,即,且时,原方程组有无穷多解.当且时,原方程组中,选为自由未知量,在对应的中令得导出组的一个基础解系在中令得一个特解于是方程组的通解为,其中为任意常数.(6)若是方程组的基础解系,证明:也是该方程组的基础解系.证明:由于,同理可以验证也是的解,由题设知的一个基础解系中含3个解向量,下面只需证明是线性无关的.设整理得由于线性无关,故有又系数行列式,故从而线性无关,是方程组的一个基础解系.(7)设方程组证明:此方程组对任意实数都有解,并且求它的一切解.证明:由于,故对任意实数原方程组都有解.对,选为自由未知量,在对应的中令得,导出组的一个基础解系为在中令得,原方程组的一个特解于是方程组的通解为,其中为任意常数.(8)设是()的两个不同的解,的一个非零解,证明:若,则向量组线性相关.证明:因为,所以的基础解系中只含有一个解向量.由解的性质,是的非零解,又题设中是的非零解,显然它们线性相关,即存在不全为零的数满足,整理得,从而向量组线性相关.第五章矩阵的特征值与矩阵的对角化5.1 矩阵的特征值与特征向量1、填空题1) 矩阵的非零特征值是 3 .2) 阶单位阵的全部特征值为 1 ,全部特征向量为全体n维非零实向量3) 已知三阶方阵的特征值为,则的特征值为的特征值为,的特征值为,的特征值为.4) 已知为二阶方阵,且,则的特征值为 0,1 .2、选择题1) 设是阶矩阵,若,则的特征值( C )全是零全不是零至少有一个是零可以是任意数2) 若是阶矩阵是可逆阵,则的特征值( B )全是零全不是零至少有一个是零可以是任意数(3) 设=2是可逆矩阵的一个特征值,则矩阵的一个特征值等于(B )4) 若为阶方阵,则以下结论中成立的是( D )的特征向量即为方程组的全部解向量;的特征向量的任一线性组合仍为的特征向量;与有相同的特征向量;若可逆,则的对应于特征值的特征向量也是的对应于特征值的特征向量5) 与阶矩阵有相同特征值矩阵为 D3、求下列矩阵的全部特征值及特征向量1)解:特征方程为特征植为当时,,对应齐次方程组为,基础解系为,对应的特征向量,其中为非零常数.当时,,对应齐次方程组为,基础解系为,对应的特征向量,其中为非零常数.2)解:特征方程为特征植为当时,,对应齐次方程组为,基础解系,对应特征向量,其中为非零常数.当时,,对应齐次方程组为,基础解系,对应特征向量,其中为非零常数.当时,,对应齐次方程组为,基础解系,对应特征向量,其中为非零常数.3)解:特征方程为特征植为对,,对应齐次方程组为,基础解系,对应特征向量,其中为不全为零的常数4)解:特征方程为特征植为对,,对应齐次方程组为,基础解系,对应特征向量,其中为非零常数.4、设为三阶方阵,且,其中是的伴随矩阵,求的特征值和特征向量.解:由于,故的特征植为又,对应方程组为,可选一个基础解系为基本单位向量组,故的特征向量为,其中为不全为零的常数.5.2 相似矩阵、矩阵的对角化1、填空题1) 若四阶方阵与相似,矩阵的特征值为,为四阶单位矩阵,则 24说明:由与相似,则的特征值也为,的特征值为,为全部特征值的乘积,因此为24.2) 若矩阵相似于矩阵,则 1说明:,由于与均可逆,则2、选择题1) 阶方阵具有个互不同的特征值是相似于对角矩阵的(B)充分必要条件充分而非必要条件必要而非充分条件即非充分也非必要条件2) 阶方阵相似于对角矩阵的充要条件是有个(C)相同的特征值互不相同的特征值线性无关的特征向量两两正交的特征向量3) 设三阶矩阵的特征值分别是,其对应的特征向量分别是,设,则(A)4) 若,都是阶矩阵,且可逆,相似于,则下列说法错误的是 C相似于相似于相似于三者中有一个不正确3、设三阶方阵的特征值为1)2) 设,求的特征值及其相似对角阵,并说明理由由于,故即,所以的特征值为0,-4,-1.3)4、判断下列矩阵是否相似1)与解:特征方程为特征值为故可对角化,2)与解:特征方程为特征值为对,系数矩阵,秩为2,说明只有一个线性无关的特征向量,故它不可对角化,不相似与所给的对角矩阵.3)与解:特征方程为特征值为对,系数矩阵,秩为1,说明有两个线性无关的特征向量,故它可对角化,相似与所给的对角矩阵.5、判断下列矩阵能否对角化?若能,则求可逆矩阵,使为对角矩阵.1)解:特征方程为特征值为对,系数矩阵,秩为2,说明此时只有一个线性无关的特征向量,故它不可对角化.2)解:特征方程为特征值为对,系数矩阵,秩为1,说明有两个线性无关的特征向量,故它可对角化.对此齐次方程组取一个基础解系对,系数矩阵,秩为2,说明有一个线性无关的特征向量,取一个基础解系.取,有3)解:特征方程为特征值为对,系数矩阵,秩为2,说明此时只有一个线性无关的特征向量,故它不可对角化.6、设阶方阵的特征值为,,它们对应的特征向量依次为,求.解:由于有3个互不相同的特征值,故它可对角化.从而5.3 实对称矩阵的对角化1、填空题1)任一方阵的属于不同特征值的特征向量必线性无关(填向量之间的关系)实对称矩阵的属于不同特征值的特征向量必正交(填向量之间的关系)2)为三阶实对称矩阵,是矩阵的重特征值,则齐次线性方程组的基础解系包含 3 个解向量.2、设,求正交矩阵,使得解:特征方程为特征值为对,系数矩阵,对应的齐次方程组取一个基础解系,系数矩阵,对应的齐次方程组取一个基础解系正交化:,,单位化:,,取,有3、设,求.解:由于相似矩阵有相同的行列式和迹,故解方程组得4、设1) 求、2) 求正交矩阵,使得解:1)由于相似矩阵有相同的特征值,的特征值为0,1,2即,解得2)此时,,其一个基础解系,其一个基础解系,其一个基础解系单位化:,,,有5、设,求(为正整数)解:特征方程为特征值为对,系数矩阵,对应的齐次方程组取一个基础解系,系数矩阵,对应的齐次方程组取一个基础解系,有,故从而6、设为阶非零矩阵,若存在正整数,使,称为幂零矩阵.证明:1)幂零矩阵的特征值全为零.2)不能相似于对角矩阵.证明:证明:1)设为幂零矩阵,有特征值,即,,又,带入上式得,即,又,只有从而2)反证法:假设相似于对角矩阵,由于相似矩阵有相同的特征值,故为零矩阵,且存在可逆矩阵满足,有,与题设为非零矩阵矛盾,假设错误不能相似于对角矩阵.第六章二次型6.2 化二次型为标准型一、填空题1、二次型的矩阵是2、二次型的矩阵是,该二次型的秩是 33、二次型的秩为 2 .说明:对应矩阵为,该矩阵行列式为0,秩为2.4、矩阵为二次型的二次型矩阵.若该二次型的秩是,则 1说明:令,求得二、选择题二次型的矩阵是(D)(A) (B)(C) (D)说明:本二次型是三元二次型,因此排除A、B,又由于C不是对称矩阵,排除,因此选D.三、设二次型(1)写出其矩阵表达式;(2)用正交变换将其化为标准形,并写出所用的正交变换.解:(1)(2)特征方程为特征值为对,系数矩阵,对应的齐次方程组取一个基础解系,系数矩阵,对应的齐次方程组取一个基础解系由于相互正交,只需对它们单位化:单位化:,,取,作正交变换,即则将化为标准形四、用配方法将下列二次型化为标准型,写出所做的实可逆线性变换并指出原二次型的秩:(1)解:令,显然它是一个可逆变换,它的逆变换也是可逆线性变换,这个线性变换将化为标准形该二次型是一个秩为3的二次型.(2)解:令,显然它是一个可逆变换,它的逆变换也是可逆线性变换,这个线性变换将化为标准形该二次型是一个秩为3的二次型.(3)令,显然它是一个可逆变换,它的逆变换也是可逆线性变换,这个线性变换将化为标准形该二次型是一个秩为3的二次型.(4)解:令,显然它是一个可逆变换,它的逆变换也是可逆线性变换,这个线性变换将化为标准形该二次型是一个秩为3的二次型.(5)解:令令,它的逆变换,带入得,这个线性变换将化为标准形该二次型是一个秩为3的二次型.五、设二次型经过正交变换化为标准形,求常数.解:,该二次型的矩阵为,它可经过正交变换化为标准形,故0,1,2是矩阵的三个特征值.从而有即,解得六、已知是二次型的矩阵的特征向量,求这个二次型的标准形.解:该二次型的矩阵为,由题设是矩阵的特征向量,故存在特征值满足,即,可得此时,特征方程解得特征值为二次型的标准形为6.4 正定二次型一、填空题(1)设,则不是正定矩阵;式子不是二次型;式子不是二次型(填“是”或者“不是”).(2)设是正定的,则.(3)若二次型是正定的,则t的取值范围是.二、(1)二次型的正惯性指数与负惯性指数与符号差分别为 A .(A) 2,0,2 (B) 2,0,0(C) 2,1,1 (D) 1,1,0(2) 二次型是 A .(A)既不正定也不负定(B)负定的(C)正定的(D)无法确定(3) 如果A是正定矩阵,则 C .(A是A的伴随矩阵)(A) A′和A-1也正定,但A不一定(B)A-1和A也正定,但A′不一定(C)A′、A-1、A也都是正定矩阵(D) 无法确定(4)二次型是正定二次型的充要条件是 C(A)存在维非零向量,使(B),(C)的正惯性指标为(D)的负惯性指标为(5)对正定二次型矩阵下列结论不正确的为( D )(A)合同于一个同阶单位阵(B)所有特征值都大于0(C)顺序主子式都大于0(D)不能对角化(6)以下命题正确的是(题目错,无正确答案)(A)若阶方阵的顺序主子式都大于零,则是正定矩阵(B)若阶方阵的特征值都大于零,则是正定矩阵(C)若阶实对称矩阵不是负定的,则是正定的(D)若阶实对称矩阵的主对角线元素不全为零,则一定不是正定的三、判断下列二次型的正定性:(1)解:该二次型的矩阵为,因为,二次型非正定.(2)解:该二次型的矩阵为,因为,,,,二次型正定.四、求值,使下列二次型为正定二次型(1)解:该二次型的矩阵为,要使得二次型正定,只有:,,同时成立,所以二次型正定可得.(2)解:该二次型的矩阵为,要使得二次型正定,只有:,,同时成立,所以二次型正定可得.线性代数试题(一)一、填空题(每题4分,5小题共20分)1、已知为阶方阵,为的伴随矩阵,若,则=.提示:,因此,得2、设、是三阶方阵,是三阶单位阵,且,则 -4 .提示:由得,则3、向量在基,,下的坐标为(1,2,3).4、若向量组,,的秩为2,则 3 .5、阶方阵,若满足,则的特征值为 0或1 .二、选择题(每小题3分,共15分)1、设和都是阶方阵,且,是阶单位阵,则( B ).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线性代数作业提示与答案作业(1)一.k x x k x k x -====4321,0,, 二.⎪⎪⎪⎩⎪⎪⎪⎨⎧==--=++=2413212211,757975,767171k x k x k k x k k x三.1.阶梯形(不唯一):⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---14010612007121002301,简化阶梯形⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-100000211000001002701 秩为4;2.简化阶梯形为单位矩阵.四.1.其系数矩阵的行列式值为 2)1)(2(-+λλ(该方程组的系数矩阵为方阵,故可以借助于行列式来判定)当12≠-≠λλ,时,方程组只有零解,当2-=λ时,通解为=x ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡111k ;当1=λ时,通解为=x T T k k ]1,0,1[]0,1,1[21-+-;2.⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-++----2200123230121211~2λλλλA , 当2-≠λ时,方程组有唯一解;当2-=λ时,方程组有无穷解,通解为=x TT k ],,[],,[022111+.作业(2)一.1. =x 1,2,3; 2. !)(n n 11-- 3.-1204. ()()!)1(221n n n --- 5. 41322314a a a a 6. 2,0=x 7.abc 3- 8.12二.1.1; 2.以第二列、第三列分别减去第一列,再把第二列、第三列分别加到第一列上,得到333333222222111111b a a c c b b a a c c b b a a c c b +++++++++=2323322111c b a c b a c b a 3. 0;(注:行列式计算中注意行列式的表示方法不要和矩阵表示方法混淆,而且计算过程中用的是等号) 4.1222+++γβα作业(3)一.1.c; 2. d ; 3.a二.1.将第n ,,, 32列都加到第一列上,提出公因子∑=+ni iax 1,得到(∑=+ni i a x 1)1-n x.2.由第二列起,各列均减第一列,按第二行展开,得)!(22--n .3.由第1-n 行至第一行,相继将前一行元素乘以1-后加到后一行上,得到.)1(01000010111112212)1(n nn n n n --=--4.按第一列展开,得到行列式的值为.)(n n n y x 11+-+三.3)(=A R (注:用矩阵的行初等变换化为梯矩阵,数非零行即可.注意矩阵的表示方法和变换过程中用到的是等价符号)作业(4)一. 1.()B A +32; 2. 24. 3. 232221x x x ++ , ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡232313322212312121x x x x x x x x x x x x x x x , 4. BA AB = 二. 1. a 2. a三. ⎥⎦⎤⎢⎣⎡---10832082四. 1.⎥⎦⎤⎢⎣⎡---21426711. 2. 不能相乘. . 3.323223313113212112233322222111)()()(x x a a x x a a x x a a x a x a x a ++++++++作业(5)一.1.1-n a ; 2.0; 3.=A -1⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡--3405700021; 4. I ; 5.121-A二. 1. c; 2 .b; 3.b; 4. c; 5.d四. 1 五. n215-作业(6)一. 1.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100001010,-1, ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100001010; 2. ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡2100010001,2,200010001 3. ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-004010001,1.104010001 4. ()331-R =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-1000103015. 列,[]3231,,3a a a a - 6. 相等二. 1.b ;2.c;三. 1.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=-17162132130121A ; 2.⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=-111110011100011000011A四. 1. ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-==-4141B A X , 2. ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡----==-212942521B A X 作业(7)一. 1. b a 23=;2. 1221b a b a =;3.R )(A 2≤;4.0≠lm ; 二.1.a ; 2. b; 3.d;三 1a 能由23,a a 唯一地线性表示,4a 不能由123,,a a a 线性表示四.123123212,,[,,]123124B b b b a a a AD ⎡⎤⎢⎥⎡⎤===⎣⎦⎢⎥⎢⎥-⎣⎦,因,5det =D ,故)()(B R A R =,从而321,,b b b 线性无关.作业(8)一.1.r ;2.相 3. 1,通解为=x ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-++⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-+⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--100101010011121 n k k k二.1.d; 2.d ; 三.(1)412323aa a a =++,(2)又123,,a a a 线性无关,故123,,a a a 是向量组123,,a a a ,4a 的一个最大线性无关向量组.(3)123,,a a a ,4a 的秩和矩阵A =[123,,a a a ,4a ]的秩都为3.四.12341121014129321315101[,,,]~9315410003670000a a a a ⎡⎤-⎢⎥⎡⎤⎢⎥⎢⎥--⎢⎥⎢⎥=⎢⎥⎢⎥---⎢⎥⎢⎥--⎢⎥⎣⎦⎢⎥⎣⎦,12,a a 是向量组的一个最大线性无关组.且31241211521,9933a a a a a a =-+=+.作业(9)一 1.T ],,[558 2.r ;12,,,ra a a L ; 3.n-r 二. 1.b; 2. b; 3. a ; 4. d ; 5.c ; 6.d 三. 证明123,,aa a ,4a 线性无关,向量[]1,2,7,4b T=在这组基下的坐标为4351--,,,.四. ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--00007510072021~A ,基础解系为⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=175072001221ξξ,,通解为=x 2211ξξk k + (注:先求出分量形式的通解,转化为向量形式的通解,容易得到基础解系。

如果所选自由未知量不同,基础解系的形式可以不同,通解形式也可不同)五 ,000011101201⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=B 通解为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=011112k x 作业(10)一.1.T⎥⎦⎤⎢⎣⎡--=21,21,21,21a e ; 二.1.d三. 只要证明V 对于向量的加法和数乘运算封闭.四.a =3,b =2,,arccos 61=θ c b a b a ),(--23=T ],,,[9411---.五.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=121242121A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-000000121~,得到零空间的一组基:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=101,01221x x ,正交规范化,得T x T x e e ]305,302,301[,]0,51,52[21-==. 作业(11)一.1.321,,=λ;2. 0; 3.)())((λλλ---n 21, det ()B =!n二. 1.b; 2. d三. 1.特征值01=λ9132=-=λλ,,特征向量[]Tt x 1,1,11-=,0≠t ,,]0,1,1[2T s x -=0≠s ,T k x ]2,1,1[3=,0≠k ;2.特征值,1-=λ特征向量=1x T t ]1,1,1[-,0≠t四.计算得特征值21=λ,特征向量T T p p ]4,0,1[,]0,4,1[21==,特征值,12-=λ特征向量3[1,0,1]T p =,123,,p p p 线性无关,故A 和对角阵相似。

令⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=140004111P ,则]1,2,2[1-=-diag AP P .五.若0=λ是A 的特征值,则有λ0A E A -==,和A 逆矛盾。

设λ是矩阵A 的特征值 ,ξ是属于λ的特征向量,则11ξλξξξλA A -=⇒=,故λ1是矩阵1A -的特征值.六. 设ξ是 A 的属于λ的特征向量, 则:()ξλξλξλξλ ξλλξ)ξ(ξ1222111mm m m m m m m A AA AA A A A A ========------七.()T T A I A I A I λλλ-=-=- ,即TA 与A 有相同的特征多项式,从而有相同的特征值. 八.11=-=a x ,.(提示:主对角线元之和与特征值之和相等可求得x ,代入矩阵求行列式应当为零(因为有零特征值),从而得a )作业(12)一.1. 无, 0 ; 2. 5, T T T T k k k k ]1,0,0,0[]0,1,0,0[]0,0,1,0[]0,0,0,1[4321+++ , 其中4321k k k k ,,,不同时为0; 3. 3=λ 二. 1. b 2. c 3.a 三.1. 特征值2λ4λ1λ321-===,对应的特征向量分别是:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=112ξ1,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=122ξ2,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=2213ξ,令:122110011220403212002P P AP -⎡⎤⎡⎤⎢⎥⎢⎥=-=⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦则.2. 10λ1λλ321===,. 对应的特征向量分别为123221ξ1ξ0ξ2012-⎛⎫⎡⎤⎡⎤⎪⎢⎥⎢⎥=== ⎪⎢⎥⎢⎥ ⎪⎢⎥⎢⎥-⎝⎭⎣⎦⎣⎦, 规范正交化,分别得:0⎡⎢⎢⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦,⎢⎥⎢⎥⎣⎦,⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-323231, 令1323203Q ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦,则 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-10111AQ Q 四、设所求特征向量为x ,则0),(,0),(21==x x ξξ ,即⎩⎨⎧=++=++0220321321x x x x x x有 T Tt x x x t x )0,1,1(],,[321-== ( 0≠t ),规范正交化:T T T y y y )0,1,1(21)2,1,1(61)1,1,1(31321-=-==令()321,,y y y Q = 则 )1,1,1(-=diag AQ Q T ⇒T Q QdiagA )1,1,1(-= 五、03a 1λ=-=-=b .作业(13)一.1.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--011102120;2.322123214+2-+x x x x x x ; 3. 3 ; 4.1>k二.1. d2. d3. d三. 1. A 的特征值为: 1=2=5=321λ,λ,λ对应的单位化特征向量:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1102100111021321P P P ,令01000P ⎡⎤⎢⎥⎢⎥=⎥⎥⎦则521T P AP ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦ 将x =Py 代入()3211x x x q 得: 2322211+2+5=y y y q .2. A 的特征向量为:10=1==321λ,λλ.属于1的两个单位正交化特征向量为:120P P ⎛⎫ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭,属于10的单位化特征向量为: 3132323P ⎛⎫⎪⎪ ⎪= ⎪ ⎪ ⎪- ⎪⎝⎭,记⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--=32535032534513153252P 332221110,y y y q Py x ++==则令 四. ⎪⎪⎪⎪⎭⎫ ⎝⎛+---⎪⎪⎪⎭⎫ ⎝⎛----=c c A 3005125240315~33351315 , R(A)=2, 所以03=+-c ,3=c五.1112125t A t -⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦, 由011>=D , 0>-1=11=22t t t D , 0>521-211-1=3t t D 得: 0<<54-t . 自我测验题(1)一 、 1)2137171155a a a t t +==≠ 2)4, 16 3) A A AA A A T T T +4) 0, 2 5)二、 1 b 2 a 3 d 4 d 三、 1) 12)由E C B C E A T T =--)(1 得 T B C A ])[(1--= ⎪⎪⎪⎪⎪⎭⎫⎝⎛---=--1000210012100121)(1B C ⎪⎪⎪⎪⎪⎭⎫⎝⎛---=1210012100120001A 3)由AB E A =-)2(,得⎪⎪⎪⎪⎪⎭⎫⎝⎛----=⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-=-=--21210111152410011103210011101)2(11A E A B 四 、 增广矩阵为⎪⎪⎪⎭⎫ ⎝⎛---500003735024121~λA ,5=λ时有无穷多解,特解为, T x )0,0,53,54(=*。

相关文档
最新文档