高中数学必修一讲义

合集下载

高中数学新教材必修一说课稿

高中数学新教材必修一说课稿

高中数学新教材必修一说课稿高中数学新教材必修一说课稿(通用5篇)作为一无名无私奉献的教育工作者,通常需要用到说课稿来辅助教学,编写说课稿是提高业务素质的有效途径。

那么优秀的说课稿是什么样的呢?以下是本店铺为大家收集的高中数学新教材必修一说课稿,欢迎大家借鉴与参考,希望对大家有所帮助。

高中数学新教材必修一说课稿 1尊敬的各位评委、老师们:大家好!今天我说课的内容是《函数的概念》,选自人教版高中数学必修一第一章第二节。

下面介绍我对本节课的设计和构思,请您多提宝贵意见。

我的说课有以下六个部分:一、背景分析1、学习任务分析本节课是必修1第1章第2节的内容,是函数这一章的起始课,它上承集合,下引性质,与方程、不等式、数列、三角函数、解析几何、导数等内容联系密切,是学好后继知识的基础和工具,所以本节课在数学教学中的地位和作用是至关重要的。

2、学情分析学生在初中已经学习了函数的概念,初步具备了学习函数概念的基本能力,但函数的概念从初中的变量学说到高中阶段的对应说很抽象,不易理解。

另外,通过对集合的学习,学生基本适应了有效教学的课堂模式,初步具备了小组合作、自主探究的学习能力。

基于以上的分析,我认为本节课的教学重点为:函数的概念以及构成函数的三要素;教学难点为:函数概念的形成及理解。

二、教学目标设计根据《课程标准》对本节课的学习要求,结合本班学生的情况,故而确立本节课的教学目标。

1、知识与技能(方面)通过丰富的实例,让学生①了解函数是非空数集到非空数集的一个对应;②了解构成函数的三要素;③理解函数概念的本质;④理解f(X)与f(a)(a为常数)的区别与联系;⑤会求一些简单函数的定义域。

2、过程与方法(方面)在教学过程中,结合生活中的实例,通过师生互动、生生互动培养学生分析推理、归纳总结和表达问题的能力,在函数概念的构建过程中体会类比、归纳、猜想等数学思想方法。

3、情感、态度与价值观(方面)让学生充分体验函数概念的形成过程,参与函数定义域的求解过程以及函数的求值过程,使学生感受到数学的抽象美与简洁美。

教案-高中数学必修一讲义

教案-高中数学必修一讲义

合B的元素,我们就说集合A为集合B的子集:
如果集合A中存在不是集合B中的元素,则称集合A不
集合的运算
属于A的所有元素构成的集合,叫做A在U中的补集.
系f,使对于集合A中任意一个元素x,在集合B中都有唯一确定的元素y与之对应,
那么称对应为从集合A到集合B的个映
的一个映射.
函数的三要素(一)
函数的三要素()
二.函数三要素
1.定义域
22.对应法则
例4试求下列分式函数的值域
函数的单调性初步
奇偶性引入图象直观
()
例1.
判断下列说法正确与否
函数的性质综合
指数运算
指数函数初步
对数运算。

高一数学必修①第一章_集合与函数概念讲义

高一数学必修①第一章_集合与函数概念讲义

心智家三优教育高一特训营数学教学进度表¤学习目标:通过实例,了解集合的含义,体会元素与集合的“属于”关系;能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;掌握集合的表示方法、常用数集及其记法、集合元素的三个特征.¤知识要点:1. 把一些元素组成的总体叫作集合(set ),其元素具有三个特征,即确定性、互异性、无序性.2. 集合的表示方法有两种:列举法,即把集合的元素一一列举出来,并用花括号“{ }”括起来,基本形式为123{,,,,}n a a a a ⋅⋅⋅,适用于有限集或元素间存在规律的无限集. 描述法,即用集合所含元素的共同特征来表示,基本形式为{|()x A P x ∈},既要关注代表元素x ,也要把握其属性()P x ,适用于无限集.3. 通常用大写拉丁字母,,,A B C ⋅⋅⋅表示集合. 要记住一些常见数集的表示,如自然数集N ,正整数集*N 或N +,整数集Z ,有理数集Q ,实数集R .4. 元素与集合之间的关系是属于(belong to )与不属于(not belong to ),分别用符号∈、∉表示,例如3N ∈,2N -∉.¤例题精讲:【例1】试分别用列举法和描述法表示下列集合:(1)由方程2(23)0x x x --=的所有实数根组成的集合; (2)大于2且小于7的整数.【例2】用适当的符号填空:已知{|32,}A x x k k Z ==+∈,{|61,}B x x m m Z ==-∈,则有: 17 A ; -5 A ; 17 B .【例3】试选择适当的方法表示下列集合:(教材P 6 练习题2, P 13 A 组题4) (1)一次函数3y x =+与26y x =-+的图象的交点组成的集合;(2)二次函数24y x =-的函数值组成的集合; (3)反比例函数2y x=的自变量的值组成的集合.*【例4】已知集合2{|1}2x aA a x +==-有唯一实数解,试用列举法表示集合A .※基础达标1.以下元素的全体不能够构成集合的是( ).A. 中国古代四大发明B. 地球上的小河流C. 方程210x -=的实数解D. 周长为10cm 的三角形 2.方程组{23211x y x y -=+=的解集是( ).A . {}51,B. {}15,C. (){}51,D. (){}15,3.给出下列关系:①12R ∈; Q ;③ *3N ∈;④0Z ∈. 其中正确的个数是( ). A. 1 B. 2 C. 3 D. 4 4.有下列说法:(1)0与{0}表示同一个集合;(2)由1,2,3组成的集合可表示为{1,2,3}或{3,2,1};(3)方程2(1)(2)0x x --=的所有解的集合可表示为{1,1,2};(4)集合{45}x x <<是有限集. 其中正确的说法是( ).A. 只有(1)和(4)B. 只有(2)和(3)C. 只有(2)D. 以上四种说法都不对 5.下列各组中的两个集合M 和N, 表示同一集合的是( ).A. {}M π=, {3.14159}N =B. {2,3}M =, {(2,3)}N =C. {|11,}M x x x N =-<≤∈, {1}N =D. {}M π=, {,1,|N π= 6.已知实数2a =,集合{|13}B x x =-<<,则a 与B 的关系是 . 7.已知x R ∈,则集合2{3,,2}x x x -中元素x 所应满足的条件为 . ※能力提高8.试选择适当的方法表示下列集合:(1)二次函数223y x x =-+的函数值组成的集合; (2)函数232y x =-的自变量的值组成的集合.9.已知集合4{|}3A x N Z x =∈∈-,试用列举法表示集合A .※探究创新10.给出下列集合:①{(x ,y )|x ≠1,y ≠1,x ≠2,y ≠-3}; ②{{12(,)13x x x y y y ⎧⎫≠≠⎨⎬≠≠-⎩⎭且 ③{{12(,)13x x x y y y ⎧⎫≠≠⎨⎬≠≠-⎩⎭或 ; ④{(x ,y )|[(x -1)2+(y -1)2]·[(x -2)2+(y +3)2]≠0}. 其中不能表示“在直角坐标系xOy 平面内,除去点(1,1),(2,-3)之外的所有点的集合”的序号有 .A BB A A B A B A . B .C .D . ¤学习目标:理解集合之间包含与相等的含义,能识别给定集合的子集;在具体情境中,了解全集与空集的含义;能利用Venn 图表达集合间的关系.¤知识要点:1. 一般地,对于两个集合A 、B ,如果集合A 中的任意一个元素都是集合B 中的元素,则说两个集合有包含关系,其中集合A 是集合B 的子集(subset ),记作A B ⊆(或B A ⊇),读作“A 含于B ”(或“B 包含A ”).2. 如果集合A 是集合B 的子集(A B ⊆),且集合B 是集合A 的子集(B A ⊇),即集合A 与集合B 的元素是一样的,因此集合A 与集合B 相等,记作A B =.3. 如果集合A B ⊆,但存在元素x B ∈,且x A ∉,则称集合A 是集合B 的真子集(proper subset ),记作A ≠⊂B (或B ≠⊃A ).4. 不含任何元素的集合叫作空集(empty set ),记作∅,并规定空集是任何集合的子集.5. 性质:A A ⊆;若A B ⊆,B C ⊆,则A C ⊆;若A B A =,则A B ⊆;若A B A =,则B A ⊆. ¤例题精讲:【例1】用适当的符号填空:(1){菱形} {平行四边形}; {等腰三角形} {等边三角形}.(2)∅ 2{|20}x R x ∈+=; 0 {0}; ∅ {0}; N {0}.【例2】设集合1,,}22{|,{|n n x n n A x x B x =∈=+∈==Z}Z ,则下列图形能表示A 与B 关系的是( ).【例3】若集合{}{}2|60,|10M x x x N x ax =+-==-=,且N M ⊆,求实数a 的值.【例4】已知集合A ={a ,a +b ,a +2b },B ={a ,ax ,ax 2}. 若A =B ,求实数x 的值.第2练 §1.1.2 集合间的基本关系※基础达标1.已知集合{}{}3,,6,A x x k k Z B x x k k Z ==∈==∈, 则A 与B 之间最适合的关系是( ). A.A B ⊆ B.A B ⊇ C. A ≠⊂B D. A ≠⊃B2.设集合{}|12M x x =-≤<,{}|0N x x k =-≤,若M N ⊆,则k 的取值范围是( ). A .2k ≤ B .1k ≥- C .1k >- D .2k ≥ 3.若2{,0,1}{,,0}a a b -=,则20072007a b +的值为( ). A. 0 B. 1 C. 1- D. 24.已知集合M ={x |x =2k +14,k ∈Z }, N ={x |x =4k +12, k ∈Z }. 若x 0∈M ,则x 0与N 的关系是( ). A. x 0∈N B. x 0∉N C. x 0∈N 或x 0∉N D.不能确定 5.已知集合P ={x |x 2=1},集合Q ={x |ax =1},若Q ⊆P ,那么a 的值是( ).A. 1B. -1C. 1或-1D. 0,1或-1 6.已知集合{},,,A a b c =,则集合A 的真子集的个数是 . 7.当2{1,,}{0,,}b a a a b a=+时,a =_________,b =_________.※能力提高8.已知A ={2,3},M ={2,5,235a a -+},N ={1,3, 2610a a -+},A ⊆M ,且A ⊆N ,求实数a 的值.9.已知集合{}25A x x =-≤≤,{}121B x m x m =+≤≤-.若B A ⊆,求实数m 的取值范围.※探究创新10.集合S ={0,1,2,3,4,5},A 是S 的一个子集,当x ∈A 时,若有x -1∉A 且x +1∉A ,则称x 为A 的一个“孤立元素”,写出S 中所有无“孤立元素”的4元子集.¤学习目标:理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集;理解在给定集合中一个子集的补集的含义,会求给定子集的补集;能使用Venn 图表达集合的关系及运算,体会直观图示对理解抽象概念的作用.¤知识要点:集合的基本运算有三种,即交、并、补,学习时先理解概念,并掌握符号等,再结合解题的训练,而达到掌握的层次. 下面以表格的形式归纳三种基本运算如下.并集 交集 补集概念由所有属于集合A 或属于集合B 的元素所组成的集合,称为集合A 与B 的并集(union set ) 由属于集合A 且属于集合B 的元素所组成的集合,称为集合A 与B 的交集(intersection set ) 对于集合A,由全集U 中不属于集合A 的所有元素组成的集合,称为集合A 相对于全集U 的补集(complementary set )记号 A B (读作“A 并B ”) A B (读作“A 交B ”) U A (读作“A 的补集”) 符号 {|,}A B x x A x B =∈∈或 {|,}A B x x A x B =∈∈且{|,}UA x x U x A =∈∉且图形表示¤例题精讲:【例1】设集合,{|15},{|39},,()UU R A x x B x x A B A B ==-≤≤=<<求.【例2】设{|||6}A x Z x =∈≤,{}{}1,2,3,3,4,5,6B C ==,求: (1)()AB C ; (2)()AAB C .【例3】已知集合{|24}A x x =-<<,{|}B x x m =≤,且A B A =,求实数m 的取值范围.【例4】已知全集*{|10,}U x x x N =<∈且,{2,4,5,8}A =,{1,3,5,8}B =,求()U C A B ,()U C AB ,()()U U C A C B , ()()U U C A C B ,并比较它们的关系.UA※基础达标1.已知全集{}1,2,3,4,5,6,7U =,{}2,4,5A =,则UA =( ).A. ∅B. {}2,4,6C. {}1,3,6,7D. {}1,3,5,72.若{|02},{|12}A x x B x x =<<=≤<,则A B =( ).A. {|2}x x <B. {|1}x x ≥C. {|12}x x ≤<D. {|02}x x <<3.右图中阴影部分表示的集合是( ). A. U A B B. U A B C.()UA B D.()UA B4.若{}{}0,1,2,3,|3,A B x x a a A ===∈,则AB =( ).A. {}1,2B. {}0,1C. {}0,3D. {}35.设集合{|12}M x x =-≤<,{|0}N x x k =-≤,若M N φ≠,则k 的取值范围是( ). A .2k ≤ B .1k ≥- C .1k -> D .12k -<≤6.设全集*{|8}U x N x =∈<,{1,3,5,7}A =,{2,4,5}B =,则()U C A B = . 7.已知集合{(,)|2},{(,)|4}M x y x y N x y x y =+==-=,那么集合M N = .※能力提高8.设全集*{|010,}U x x x N =<<∈,若{3}A B =,{1,5,7}U A B =,{9}U UA B =,求集合A 、B .9.设U R =,{|24}A x x =-≤<,{|8237}B x x x =-≥-,求()U A B 、()()UUA B .※探究创新10.设集合{|(4)()0,}A x x x a a R =--=∈,{|(1)(4)0}B x x x =--=. (1)求A B ,A B ;(2)若A B ⊆,求实数a 的值;(3)若5a =,则A B 的真子集共有 个, 集合P 满足条件()A B ≠⊂P ≠⊂()AB ,写出所有可能的集合P .A¤学习目标:掌握集合、交集、并集、补集的有关性质,运行性质解决一些简单的问题;掌握集合运算中的一些数学思想方法.¤知识要点:1. 含两个集合的Venn 图有四个区域,分别对应着这两个集合运算的结果. 我们需通过Venn 图理解和掌握各区域的集合运算表示,解决一类可用列举法表示的集合运算. 通过图形,我们还可以发现一些集合性质:()()()U U U C A B C A C B =,()()()U U U C A B C A C B =.2. 集合元素个数公式:()()()()n AB n A n B n A B =+-.3. 在研究集合问题时,常常用到分类讨论思想、数形结合思想等. 也常由新的定义考查创新思维. ¤例题精讲:【例1】设集合{}{}24,21,,9,5,1A a a B a a =--=--,若{}9AB =,求实数a 的值.【例2】设集合{|(3)()0,}A x x x a a R =--=∈,{|(4)(1)0}B x x x =--=,求AB , A B .(教材P 14B 组题2)【例3】设集合A ={x |240x x +=}, B ={x |222(1)10x a x a +++-=,a R ∈},若AB =B ,求实数a的值.【例4】对集合A 与B ,若定义{|,}A B x x A x B -=∈∉且,当集合*{|8,}A x x x N =≤∈,集合{|(2)(5)(6)0}B x x x x x =---=时,有A B -= . (由教材P 12 补集定义“集合A 相对于全集U 的补集为{|,}U C A x x x A =∈∉且”而拓展)※基础达标1.已知集合A = {}1,2,4, B ={}8x x 是的正约数, 则A 与B 的关系是( ).A. A = BB. A ≠⊂B C. A ≠⊃B D. A ∪B =∅2.已知,,a b c 为非零实数, 代数式||||||||a b c abca b c abc +++的值所组成的集合为M , 则下列判断正确的是( ). A. 0M ∉ B. 4M -∉ C. 2M ∈ D. 4M ∈ 3.(08年湖南卷.文1)已知{}2,3,4,5,6,7U =,{}3,4,5,7M =,{}2,4,5,6N =,则( ).A .{}4,6MN = B.MN U = C .()u C N M U = D. ()u C M N N =4.定义集合A 、B 的一种运算:1212{,,}A B x x x x x A x B *==+∈∈其中,若{1,2,3}A =,{1,2}B =,则A B *中的所有元素数字之和为( ).A .9 B. 14 C. 18 D. 215.设全集U 是实数集R ,{}2|4M x x =>与{}|31N x x x =≥<或都是U 的子集(如右图所示),则阴影部分所表示的集合为( ). A. {}|21x x -≤< B. {}|22x x -≤≤C. {}|12x x <≤D. {}|2x x <6.已知集合{11}A x x =-≤≤,{}B x x a =>,且满足AB φ=,则实数a 的取值范围是 .7.经统计知,某村有电话的家庭有35家,有农用三轮车的家庭有65家,既有电话又有农用三轮车的家庭有20家,则电话和农用三轮车至少有一种的家庭数为 .※能力提高8.已知集合2{|0}A x x px q =++=, 2{|20}B x x px q =--=,且{1}A B =-,求A B .9.已知集合U =2{2,3,23}a a +-,A ={|a +1|,2},U C A ={a +3},求实数a 的值.※探究创新 10.(1)给定集合A 、B ,定义A ※B ={x |x =m -n ,m ∈A ,n ∈B }.若A ={4,5,6},B ={1,2,3},则集合A ※B 中的所有元素之和为 ( )A .15B .14C .29D .-14(2)设全集为U ,集合A 、B 是U 的子集,定义集合A 、B 的运算:A *B ={x |x ∈A ,或x ∈B ,且x ∉A ∩B },则(A *B )*A 等于( )A .AB .BC .()U A B ∩D .()U A B ∪(3)已知集合A ={x |2x n ≠且3x n ≠,n ∈N ,x ∈N *,x ≤100},试求出集合A 的元素之和.第5讲 §1.2.1 函数的概念¤学习目标:通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;了解构成函数的要素,会求一些简单函数的定义域和值域.¤知识要点:1. 设A 、B 是非空的数集,如果按某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数y 和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数(function ),记作y =()f x ,x A ∈.其中,x 叫自变量,x 的取值范围A 叫作定义域(domain ),与x 的值对应的y 值叫函数值,函数值的集合{()|}f x x A ∈叫值域(range ).2. 设a 、b 是两个实数,且a <b ,则:{x |a ≤x ≤b }=[a ,b ] 叫闭区间; {x |a <x <b }=(a ,b ) 叫开区间; {x |a ≤x <b }=[,)a b , {x |a <x ≤b }=(,]a b ,都叫半开半闭区间.符号:“∞”读“无穷大”;“-∞”读“负无穷大”;“+∞”读“正无穷大”. 则{|}(,)x x a a >=+∞,{|}[,)x x a a ≥=+∞,{|}(,)x x b b <=-∞,{|}(,]x x b b ≤=-∞,(,)R =-∞+∞. 3. 决定函数的三个要素是定义域、值域和对应法则. 当且仅当函数定义域、对应法则分别相同时,函数才是同一函数.¤例题精讲:【例1】求下列函数的定义域: (1)121y x =+-;(2)y =.【例2】求下列函数的定义域与值域:(1)3254x y x+=-; (2)22y x x =-++.【例3】已知函数1()1xf x x-=+. 求:(1)(2)f 的值; (2)()f x 的表达式【例4】已知函数22(),1x f x x R x =∈+.(1)求1()()f x f x +的值;(2)计算:111(1)(2)(3)(4)()()()234f f f f f f f ++++++.※基础达标1.下列各组函数中,表示同一函数的是( ). A. 1,xy y x==B. 11,y x y =+= C. ,y x y ==D. 2||,y x y ==2.函数y 的定义域为( ). A. (,1]-∞B. (,2]-∞C. 11(,)(,1]22-∞-- D. 11(,)(,1]22-∞-- 3.集合{}22M x x =-≤≤,{}02N y y =≤≤,给出下列四个图形,其中能表示以M 为定义域,N 为值域的函数关系的是( ).4.下列四个图象中,不是函数图象的是( ).5.已知函数()f x 的定义域为[1,2)-,则(1)f x -的定义域为( ). A .[1,2)- B .[0,2)- C .[0,3)- D .[2,1)-6.已知()f x =2x +x +1,则f =______;f [(2)f ]=______. 7.已知2(21)2f x x x +=-,则(3)f =. ※能力提高 8.(1)求函数y =的定义域; (2)求函数2113x y x+=-的定义域与值域.9.已知2()f x ax bx c =++,(0)0f =,且(1)()1f x f x x +=++,试求()f x 的表达式.※探究创新10.已知函数()f x ,()g x 同时满足:()()()()()g x y g x g y f x f y -=+;(1)1f -=-,(0)0f =,(1)1f =,求(0),(1),(2)g g g 的值.A. B.C.D.¤学习目标:在实际情境中,会根据不同的需要选择恰当的方法(图象法、列表法、解析法)表示函数;通过具体实例,了解简单的分段函数,并能简单应用;了解映射的概念.¤知识要点:1. 函数有三种表示方法:解析法(用数学表达式表示两个变量之间的对应关系,优点:简明,给自变量可求函数值);图象法(用图象表示两个变量的对应关系,优点:直观形象,反应变化趋势);列表法(列出表格表示两个变量之间的对应关系,优点:不需计算就可看出函数值).2. 分段函数的表示法与意义(一个函数,不同范围的x ,对应法则不同).3. 一般地,设A 、B 是两个非空的集合,如果按某一个确定的对应法则f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,那么就称对应:f A B →为从集合A 到集合B 的一个映射(mapping ).记作“:f A B →”.判别一个对应是否映射的关键:A 中任意,B 中唯一;对应法则f .¤例题精讲:【例1】如图,有一块边长为a 的正方形铁皮,将其四个角各截去一个边长为x 的小正方形,然后折成一个无盖的盒子,写出体积V 以x 为自变量的函数式是_____,这个函数的定义域为_______.【例2】已知f (x )=333322x x x x-⎧++⎪⎨+⎪⎩ (,1)(1,)x x ∈-∞∈+∞,求f [f (0)]的值.【例3】画出下列函数的图象:(1)|2|y x =-; (教材P 26 练习题3)(2)|1||24|y x x =-++.【例4】函数()[]f x x =的函数值表示不超过x 的最大整数,例如[ 3.5]4-=-,[2.1]2=,当( 2.5,3]x ∈-时,写出()f x 的解析式,并作出函数的图象.※基础达标1.函数f (x )= 2(1)xx x ⎧⎨+⎩,0,0x x ≥< ,则(2)f -=( ).A. 1 B .2 C. 3 D. 42.某同学从家里到学校,为了不迟到,先跑,跑累了再走余下的路,设在途中花的时间为t ,离开家里的路程为d ,下面图形中,能反映该同学的行程的是( ).3.已知函数()f x 满足()()()f ab f a f b =+,且(2)f p =,(3)f q =,那么(12)f 等于( ).A . p q + B. 2p q + C. 2p q + D. 2p q + 4.设集合A ={x |0≤x ≤6},B ={y |0≤y ≤2},从A 到B 的对应法则f 不是映射的是( ).A. f :x →y =12x B. f :x →y =13x C. f :x →y =14x D. f :x →y =16x5.拟定从甲地到乙地通话m 分钟的话费由[]3.71,(04)() 1.06(0.52),(4)m f m m m <≤⎧⎪=⎨+>⎪⎩给出,其中[]m 是不超过m 的最大整数,如:[]3.743=,从甲地到乙地通话5.2分钟的话费是( ).A. 3.71B. 4.24C. 4.77D. 7.956.已知函数(),mf x x x=+且此函数图象过点(1,5),实数m 的值为 . 7.24,02(),(2)2,2x x f x f x x ⎧-≤≤==⎨>⎩已知函数则 ;若00()8,f x x ==则 . ※能力提高8.画出下列函数的图象:(1)22||3y x x =-++; (2)2|23|y x x =-++.9.设二次函数()f x 满足(2)(2)f x f x +=-且()f x =0的两实根平方和为10,图象过点(0,3),求()f x 的解析式※探究创新 10.(1)设集合{,,}A a b c =,{0,1}B =. 试问:从A 到B 的映射共有几个?(2)集合A 有元素m 个,集合B 有元素n 个,试问:从A 到B 的映射共有几个?¤学习目标:通过已学过的函数特别是二次函数,理解函数的单调性及其几何意义;学会运用函数图像理解和研究函数的性质. 理解增区间、减区间等概念,掌握增(减)函数的证明和判别.¤知识要点:1. 增函数:设函数y =f (x )的定义域为I ,如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1<x 2时,都有f (x 1)<f (x 2),那么就说f (x )在区间D 上是增函数(increasing function ). 仿照增函数的定义可定义减函数.2. 如果函数f (x )在某个区间D 上是增函数或减函数,就说f (x )在这一区间上具有(严格的)单调性,区间D 叫f(x )的单调区间. 在单调区间上,增函数的图象是从左向右是上升的(如右图1),减函数的图象从左向右是下降的(如右图2). 由此,可以直观观察函数图象上升与下降的变化趋势,得到函数的单调区间及单调性.3. 判断单调性的步骤:设x 1、x 2∈给定区间,且x 1<x 2;→计算f (x 1)-f (x 2) →判断符号→下结论.¤例题精讲:【例1】试用函数单调性的定义判断函数2()1xf x x =-在区间(0,1)上的单调性.【例2】求二次函数2()(0)f x ax bx c a =++<的单调区间及单调性.【例3】求下列函数的单调区间: (1)|1||24|y x x =-++;(2)22||3y x x =-++.【例4】已知31()2x f x x +=+,指出()f x 的单调区间.※基础达标1.函数26y x x =-的减区间是( ).A . (,2]-∞ B. [2,)+∞ C. [3,)+∞ D. (,3]-∞ 2.在区间(0,2)上是增函数的是( ).A. y =-x +1B. yC. y = x 2-4x +5D. y =2x3.函数()||()(2)f x x g x x x ==-和的递增区间依次是( ).A. (,0],(,1]-∞-∞B. (,0],[1,)-∞+∞C. [0,),(,1]+∞-∞D. [0,),[1,)+∞+∞ 4.已知()f x 是R 上的增函数,令()(1)3F x f x =-+,则()F x 是R 上的( ). A .增函数 B .减函数 C .先减后增 D .先增后减5.二次函数2()2f x x ax b =++在区间(-∞,4)上是减函数,你能确定的是( ).A. 2a ≥B. 2b ≥C. 4a ≤-D. 4b ≤- 6.函数()f x 的定义域为(,)a b ,且对其内任意实数12,x x 均有:1212()[()()]0x x f x f x -->,则()f x 在(,)a b 上是 . (填“增函数”或“减函数”或“非单调函数”)7.已知函数f (x )= x 2-2x +2,那么f (1),f (-1),f 之间的大小关系为 . ※能力提高8.指出下列函数的单调区间及单调性:(1)3()1x f x x +=-;(2)2|23|y x x =-++9.若2()f x x bx c =++,且(1)0,(3)0f f ==. (1)求b 与c 的值;(2)试证明函数()f x 在区间(2,)+∞上是增函数.※探究创新10.已知函数()f x 的定义域为R ,对任意实数m 、n 均有()()()1f m n f m f n +=+-,且1()22f =,又当12x >-时,有()0f x >. (1)求1()2f -的值; (2)求证:()f x 是单调递增函数.¤学习目标:通过已学过的函数特别是二次函数,理解函数的最大(小)值及其几何意义;学会运用函数图像理解和研究函数的性质. 能利用单调性求函数的最大(小)值.¤知识要点:1. 定义最大值:设函数()y f x =的定义域为I ,如果存在实数M 满足:对于任意的x ∈I ,都有()f x ≤M ;存在x 0∈I ,使得0()f x = M . 那么,称M 是函数()y f x =的最大值(Maximum Value ). 仿照最大值定义,可以给出最小值(Minimum Value )的定义.2. 配方法:研究二次函数2(0)y ax bx c a =++≠的最大(小)值,先配方成224()24b ac b y a x a a-=++后,当0a >时,函数取最小值为244ac b a -;当0a <时,函数取最大值244ac ba-.3. 单调法:一些函数的单调性,比较容易观察出来,或者可以先证明出函数的单调性,再利用函数的单调性求函数的最大值或最小值.4. 图象法:先作出其函数图象后,然后观察图象得到函数的最大值或最小值. ¤例题精讲:【例1】求函数261y x x =++的最大值.【例2】某商人如果将进货单价为8元的商品按每件10元售出时,每天可售出100件. 现在他采用提高售出价,减少进货量的办法增加利润,已知这种商品每件提价1元,其销售量就要减少10件,问他将售出价定为多少元时,才能使每天所赚得的利润最大?并求出最大利润.【例3】求函数2y x =.【例4】求下列函数的最大值和最小值:(1)25332,[,]22y x x x =--∈-; (2)|1||2|y x x =+--.※基础达标 1.函数42y x =-在区间 []3,6上是减函数,则y 的最小值是( ). A . 1 B. 3 C. -2 D. 52.函数221y x x =-+的最大值是( ). A. 8 B. 83C. 4D. 433.函数2()2f x x ax a =-+在区间(,1)-∞上有最小值,则a 的取值范围是( ). A .1a < B .1a ≤ C .1a > D . 1a ≥4.某部队练习发射炮弹,炮弹的高度h 与时间t 的函数关系式是()24.914.718h t t t =-++则炮弹在发射几秒后最高呢( ).A. 1.3秒B. 1.4秒C. 1.5秒 D 1.6秒5. 23()1,[0,]2f x x x x =++∈已知函数的最大(小)值情况为( ).A. 有最大值34,但无最小值B. 有最小值34,有最大值1C. 有最小值1,有最大值194D. 无最大值,也无最小值6.函数3y x =-的最大值是 .7.已知3()3xf x x =-,[4,6]x ∈. 则()f x 的最大值与最小值分别为 .※能力提高8.已知函数2()2f x x x =-+.(1)证明()f x 在[1,)+∞上是减函数;(2)当[]2,5x ∈时,求()f x 的最大值和最小值.9.一个星级旅馆有100个标准房,经过一段时间的经营,经理得到一些定价和住房率的数据如右:欲使每天的的营业额最高,应如何定价?※探究创新10.已知函数2142a y x ax =-+-+在区间[0,1]上的最大值为2,求实数a 的值.¤学习目标:结合具体函数,了解奇偶性的含义;学会运用函数图像理解和研究函数的性质. 理解奇函数、偶函数的几何意义,能熟练判别函数的奇偶性.¤知识要点: 1. 定义:一般地,对于函数()f x 定义域内的任意一个x ,都有()()f x f x -=,那么函数()f x 叫偶函数(even function ). 如果对于函数定义域内的任意一个x ,都有()()f x f x -=-),那么函数()f x 叫奇函数(odd function ). 2. 具有奇偶性的函数其定义域关于原点对称,奇函数的图象关于原点中心对称,偶函数图象关于y 轴轴对称.3. 判别方法:先考察定义域是否关于原点对称,再用比较法、计算和差、比商法等判别()f x -与()f x 的关系.¤例题精讲:【例1】判别下列函数的奇偶性:(1)31()f x x x=-; (2)()|1||1|f x x x =-++;(3)23()f x x x =-.【例2】已知()f x 是奇函数,()g x 是偶函数,且1()()1f xg x x -=+,求()f x 、()g x .【例3】已知()f x 是偶函数,0x ≥时,2()24f x x x =-+,求0x <时()f x 的解析式.【例4】设函数()f x 是定义在R 上的奇函数,且在区间(,0)-∞上是减函数,实数a 满足不等式22(33)(32)f a a f a a +-<-,求实数a 的取值范围.※基础达标1.函数(||1)y x x =- (|x |≤3)的奇偶性是( ).A .奇函数 B. 偶函数 C. 非奇非偶函数 D. 既奇又偶函数2.(08年全国卷Ⅱ.理3文4)函数1()f x x x=-的图像关于( ). A .y 轴对称 B .直线y x =-对称 C .坐标原点对称 D .直线y x =对称 3.已知函数()f x 是奇函数,当0x >时,()(1)f x x x =-;当0x <时,()f x 等于( ). A. (1)x x -+ B. (1)x x + C. (1)x x - D. (1)x x -- 4.函数()11f x x x =+--,那么()f x 的奇偶性是( ).A .奇函数B .既不是奇函数也不是偶函数C .偶函数D .既是奇函数也是偶函数5.若奇函数()f x 在[3, 7]上是增函数,且最小值是1,则它在[7,3]--上是( ). A. 增函数且最小值是-1 B. 增函数且最大值是-1 C. 减函数且最大值是-1 D. 减函数且最小值是-16.已知53()8f x x ax bx =++-,(2)10f -=,则(2)f = .7.已知()f x 是定义在R 上的奇函数,在(0,)+∞是增函数,且(1)0f =,则(1)0f x +<的解集为 .※能力提高8.已知函数211()()12f x x x =+-. (1)求函数()f x 的定义域; (2)判断函数()f x 的奇偶性并证明你的结论.9.若对于一切实数,x y ,都有()()()f x y f x f y +=+:(1)求(0)f ,并证明()f x 为奇函数; (2)若(1)3f =,求(3)f -.※探究创新 10.已知22()()1xf x x R x =∈+,讨论函数()f x 的性质,并作出图象.第10讲 第一章 集合与函数概念 复习¤复习目标:强化对集合与集合关系题目的训练,理解集合中代表元素的真正意义,注意利用几何直观性研究问题,注意运用文氏图解题方法的训练,加强两种集合表示方法转换和化简训练. 深刻理解函数的有关概念.掌握对应法则、图象等有关性质. 理解掌握函数的单调性和奇偶性的概念,并掌握基本的判定方法和步骤,并会运用.¤例题精讲:【例1】已知a ,b 为常数,若22()43,()1024f x x x f ax b x x =+++=++,则5a b -= .【例2】已知()f x 是偶函数,而且在(0,)+∞上是减函数,判断()f x 在(,0)-∞上是增函数还是减函数,并加以证明.【例3】集合{|17}A x x =-≤≤,{|231}B x m x m =-<<+,若A B B =,求实数m 的取值范围.【例4】设a 为实数,函数2()||1f x x x a =+-+,x ∈R .(1)讨论()f x 的奇偶性; (2)若x ≥a ,求()f x 的最小值.第一章 集合与函数概念 21 第10练 第一章 集合与函数概念测试※基础达标1.(06年陕西卷)已知集合{}|110,P x N x =∈≤≤ {}2|60,Q x R x x =∈+-=则P Q 等于( ).A. {}1,2,3B. {}2,3C. {}1,2D. {}22.(06年重庆卷.1)已知集合{1,2,3,4,5,6,7}U =,{2,4,5,7}A =,{3,4,5}B =,则()()U U A B =( ). A. {1,6} B. {4,5} C. {2,3,4,5,7} D. {1,2,3,6,7}3.(06年辽宁卷.文3理2)设()f x 是R 上的任意函数,下列叙述正确的是( )A. ()()f x f x -是奇函数B. ()()f x f x -是奇函数C. ()()f x f x +-是偶函数D. ()()f x f x --是偶函数 4.(06年辽宁卷. 文2理1)设集合{}12A =,,则满足{}123A B =,,的集合B 的个数是( ).A. 1B. 3C. 4D. 85.(06年山东卷)已知定义在R 上的奇函数f (x )满足f (x+2)=-f (x ),则f (6)的值为( ).A. -1B. 0C. 1D. 26.(06年上海卷.理1)已知集合{1,3,21}A m =--,集合2{3,}B m =.若B ⊆A ,则实数m = .7.(06年上海春卷)已知函数()f x 是定义在(,)-∞+∞上的偶函数. 当(,0)x ∈-∞时,4()f x x x =-,则当(0,)x ∈+∞时,()f x = .※能力提高8.已知全集*{|9,}U x x x N =≤∈,两个集合A 与B 同时满足: {2,4}A B =,(){1,3,5}U A C B =,且(){7,8}U C A B =. 求集合A 、B .9.已知函数2()8f x x x =-+,求()f x 在区间[],1t t +上的最大值()h t .※探究创新10.已知定义在实数集上的函数y =f (x )满足条件:对于任意的x 、y ∈R ,f (x +y )=f (x )+f (y ).(1)求证:f (0)=0; (2)求证f (x )是奇函数,并举出两个这样的函数;(3)若当x ≥0时,f (x )<0. (i )试判断函数f (x )在R 上的单调性,并证明之;(ii )判断方程│f (x )│=a 所有可能的解的个数,并求出对应的a 的范围.。

高中数学必修一讲义整合

高中数学必修一讲义整合

1.1集合热门考点01 集合的基本概念元素与集合(1)集合元素的特性:确定性、互异性、无序性.(2)集合与元素的关系:若a 属于集合A ,记作a A ∈;若b 不属于集合A ,记作b A ∉. (3)集合的表示方法:列举法、描述法、区间法、图示法. (4)常见数集及其符号表示【典例1】集合M 是由大于2-且小于1的实数构成的,则下列关系式正确的是( ).MB.0M ∉C.1M ∈D.π2M -∈ 【典例2】(全国高考真题(文))已知集合,则集合中的元素个数为( )A .5B .4C .3D .2【特别提醒】1.利用集合元素的限制条件求参数的值或确定集合中元素的个数时,要注意检验集合是否满足元素的互异性.2.集合中元素的互异性常常容易忽略,求解问题时要特别注意.分类讨论的思想方法常用于解决集合问题.热门考点02 集合间的基本关系集合间的基本关系(1)子集:对于两个集合A 与B ,如果集合A 的任何一个元素都是集合B 的元素,我们就说集合A 包含于集合B ,或集合B 包含集合A ,也说集合A 是集合B 的子集.记为或.(2)真子集:对于两个集合A 与B ,如果,且集合B 中至少有一个元素不属于集合A ,则称集合A 是集合B 的真子集.记为A B ⊂≠.(3)空集是任何集合的子集, 空集是任何非空集合的真子集.(4)若一个集合含有n 个元素,则子集个数为2n 个,真子集个数为21n -. 【典例3】(2010·陕西省高考真题(理))已知全集,集合,,则集合中元素的个数为( )A .1B .2C .3D .4【例4】(2019·济南市历城第二中学高一月考)集合{}24,A x x x R ==∈,集合{}4,B x kx x R ==∈,若B A ⊆,则实数k =_________.【特别提醒】(1)判断两集合之间的关系的方法:当两集合不含参数时,可直接利用数轴、图示法进行判断;当集合中含有参数时,需要对满足条件的参数进行分类讨论或采用列举法.(2)要确定非空集合A 的子集的个数,需先确定集合A 中的元素的个数,再求解.不要忽略任何非空集合是它自身的子集.(3)根据集合间的关系求参数值(或取值范围)的关键是将条件转化为元素或区间端点间的关系,进而转化为参数所满足的关系,常用数轴、图示法来解决这类问题.提醒:空集是任何集合的子集,在涉及集合关系时,必须优先考虑空集的情况,否则会造成漏解.热门考点03 集合的基本运算(1)三种基本运算的概念及表示A B ⊆B A ⊇A B ⊆2{|320}A x x x =-+={|2}B x x a a A ==∈,()UA B(2)三种运算的常见性质, , ,,,.,,., , ,.【典例5】(2018·全国高考真题(理))已知集合{}220A x x x =-->,则A =RA .{}12x x -<< B .{}12x x -≤≤C .}{}{|12x x x x <-⋃D .}{}{|1|2x x x x ≤-⋃≥【典例6】(2019·北京高考真题(文))已知集合A ={x |–1<x <2},B ={x |x >1},则A ∪B =( ) A.(–1,1)B.(1,2)C.(–1,+∞)D.(1,+∞)【典例7】(2020届浙江省嘉兴市高三5月模拟)已知全集{1,2,3,4,5,6,7,8}U =,{}1,2,3A =,B ={4,5,6},则()()U U A B ⋂等于( )A .{}1,2,3B .{}4,5,6C .{1,2,3,4,5,6}D .{}7,8【典例8】已知集合A ={x |-3≤x ≤4},B ={x |2m -1<x <m +1},且A ∩B =B ,则实数m 的取值范围为( ) A .[-1,2) B .[-1,3] C .[2,+∞) D .[-1,+∞)【总结提升】A A A = A ∅=∅ AB B A = A A A = A A ∅= A B BA =(C A)A U U C =U C U =∅U C U ∅=AB A A B =⇔⊆A B A B A =⇔⊆()U U UC A B C A C B =()U U U C A B C A C B =1.解决集合的基本运算问题一般应注意以下几点:(1)看元素组成.集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的前提.(2)对集合化简.有些集合是可以化简的,如果先化简再研究其关系并进行运算,可使问题变得简单明了,易于解决.(3)注意数形结合思想的应用.集合运算常用的数形结合形式有数轴和Venn图.2.根据集合运算结果求参数,主要有以下两种形式:(1)用列举法表示的集合,直接依据交、并、补的定义求解,重点注意公共元素;(2)由描述法表示的集合,一般先要对集合化简,再依据数轴确定集合的运算情况,用区间法要注意端点值的情况.热门考点04 集合中的“新定义”问题【典例9】(2015·湖北高考真题(理))已知集合,,定义集合,则中元素的个数为()A.77 B.49 C.45 D.30【总结提升】解决集合新定义问题的着手点(1)正确理解新定义:耐心阅读,分析含义,准确提取信息是解决这类问题的前提,剥去新定义、新法则、新运算的外表,利用所学的集合性质等知识将陌生的集合转化为我们熟悉的集合,是解决这类问题的突破口.(2)合理利用集合性质:运用集合的性质(如元素的性质、集合的运算性质等)是破解新定义型集合问题的关键.在解题时要善于从题设条件给出的数式中发现可以使用集合性质的一些因素,并合理利用.(3)对于选择题,可结合选项,通过验证、排除、对比、特值法等进行求解或排除错误选项,当不满足新定义的要求时,只需通过举反例来说明,以达到快速判断结果的目的.第02讲 常用逻辑用语1.充分条件、必要条件与充要条件的概念p ⇒q 且q ppq 且q ⇒p pq 且qp2.全称量词与存在量词(1)全称量词:短语“所有”在陈述中表示所述事物的全体,逻辑中通常叫做全称量词,并用符号“∀”表示.(2)存在量词:短语“有一个”或“有些”或“至少有一个”在陈述中表示所述事物的个体或部分,逻辑中通常叫做存在量词,并用符号“∃”表示. 3.全称命题和存在性命题(命题p 的否定记为⌝p ,读作“非p ”)[方法技巧]1.区别A 是B 的充分不必要条件(A ⇒B 且B A ),与A 的充分不必要条件是B (B ⇒A 且AB )两者的不同.2.A 是B 的充分不必要条件⇔綈B 是綈A 的充分不必要条件.3.含有一个量词的命题的否定规律是“改量词,否结论”.一、 经典例题考点一 充分条件与必要条件的判断【例1-2】(2019·上海市七宝中学高一月考)已知函数()f x 定义域是R ,那么“()f x 是增函数”是“不等式()(0.001)f x f x <+恒成立”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A【解析】函数()f x 为R 上的增函数⇒不等式()(0.001)f x f x <+恒成立,反之不成立,∴“()f x 是增函数”是“不等式()(0.001)f x f x <+恒成立”的充分不必要条件.故选:A规律方法 充要条件的两种判断方法 (1)定义法:根据p ⇒q ,q ⇒p 进行判断.(2)集合法:根据使p ,q 成立的对象的集合之间的包含关系进行判断. 考点二 全称量词与存在量词【例2-1】(2019·江苏省高二期中)命题“[]1,3x ∀∈-,2320x x -+≤”的否定为( ) A .[]01,3x ∃∈-,200320x x -+>B .[]1,3x ∀∉-,2320x x -+>C .[]1,3x ∀∈-,2320x x -+>D .[]01,3x ∃∉-,200320x x -+>【答案】A【解析】因为全称命题的否定是特称命题,所以命题“[]1,3x ∀∈-,2320x x -+≤”的否定为“[]01,3x ∃∈-,200320x x -+>”.故选A .【例2-2】(2019·辽宁省高二期中(理))设命题:p x R ∃∈,22x x > ,则p ⌝为( ) A .x R ∀∈, 22x x > B .x R ∃∈,22x x < C .x R ∀∈,22x x ≤ D .x R ∃∈,22x x ≤【答案】C【解析】命题是特称命题,则命题的否定是全称命题, 即x R ∀∈,22x x ≤.规律方法 1.全称命题与存在性命题的否定与命题的否定有一定的区别,否定全称命题和存在性命题时,一是要改写量词,全称量词改写为存在量词,存在量词改写为全称量词;二是要否定结论,而一般命题的否定只需直接否定结论.2.含量词的命题中参数的取值范围,可根据命题的含义,利用函数的最值解决. 考点三 充分条件、必要条件的应用【例3-1】(2020·山东省高二期末)已知命题:p 关于x 的不等式()()21120k x k x ---+>的解集为R ,:2q x ∃>,2272x k x -<-,试判断“p 为真命题”与“q ⌝为真命题”的充分必要关系.【答案】充分不必要【解析】若p 为真命题:当1k =时,对于任意x ∈R ,则有20>恒成立;当1k ≠时,根据题意,有()()2101810k k k ->⎧⎪⎨∆=---<⎪⎩,解得19k <<. 所以19k ≤<;若q ⌝为真命题:2x ∀>,2272x k x -≥-.()()()22228212712288222x x x x x x x -+-+-==-++≥---,当且仅当22x =+时,等号成立,所以8k ≤+ {}19k k ≤< {8k k ≤+,所以,“p 为真命题”是“q ⌝为真命题”的充分不必要条件.【例3-2】(2019·浙江省宁波市鄞州中学高二月考)已知命题:“{}|11x x x ∃∈-<<,使等式20x x m --=成立”是真命题. (Ⅰ)求实数m 的取值集合M ;(Ⅰ)设不等式()(2)0x a x a -+-<的解集为N ,若x ∈N 是x M ∈的必要条件,求a 的取值范围. 【答案】(1)(2)或.【解析】(1)方程在有解,转化为函数在上的值域,实数m 的取值集合M 可求;(2)x N ∈是x M ∈的必要条件,分、、三种情况讨论即可求a 的取值范围.(1) 由题意知,方程20x x m --=在上有解,即m 的取值范围就为函数在上的值域,易得1|24M m m ⎧⎫=-≤<⎨⎬⎩⎭7分 (2) 因为x N ∈是x M ∈的必要条件,所以8分当时,解集为空集,不满足题意 9分 当时,,此时集合则,解得12分当时,,此时集合则11{,4422a a a <-⇒<--≥15分 综上9144a a ><-或16分 规律方法 充分条件、必要条件的应用,一般表现在参数问题的求解上.解题时需注意:(1)把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间的关系列出关于参数的不等式(或不等式组)求解.(2)要注意区间端点值的检验.尤其是利用两个集合之间的关系求解参数的取值范围时,不等式是否能够取等号决定端点值的取舍,处理不当容易出现漏解或增解的现象.(3)数学定义都是充要条件. [思维升华]1.充分条件、必要条件、充要条件的判断方法 (1)定义法(2)利用集合间的包含关系判断:设A ={x |p (x )},B ={x |q (x )}; ①若A ⊆B ,则p 是q 的充分条件,q 是p 的必要条件;②若BA⊂≠,则p是q的充分不必要条件,q是p的必要不充分条件;③若A=B,则p是q的充要条件.2.要写一个命题的否定,需先分清其是全称命题还是存在性命题,再对照否定结构去写,否定的规律是“改量词,否结论”.[易错防范]1.判断条件之间的关系要注意条件之间关系的方向,正确理解“p的一个充分而不必要条件是q”等语言.2.注意命题所含的量词,对于量词隐含的命题要结合命题的含义显现量词,再进行否定.第 03 讲:一元二次不等式及简单不等式(其他不等式:高次)二、基础知识回顾1、 一元二次不等式与相应的二次函数及一元二次方程的关系2、由二次函数的图象与一元二次不等式的关系判断不等式恒成立问题的方法(1).一元二次不等式ax 2+bx +c >0对任意实数x 恒成立⇔⎩⎪⎨⎪⎧a >0,b 2-4ac <0. (2)一元二次不等式ax 2+bx +c <0对任意实数x 恒成立⇔⎩⎪⎨⎪⎧a <0,b 2-4ac <0.3、.简单分式不等式(1)f (x )g (x )≥0⇔⎩⎪⎨⎪⎧f (x )g (x )≥0,g (x )≠0. (2)f (x )g (x )>0⇔f (x )g (x )>0.方法总结:(1)对于一元二次不等式恒成立问题,恒大于0就是相应的二次函数的图象在给定的区间上全部在x 轴上方,恒小于0就是相应的二次函数的图象在给定的区间上全部在x轴下方.另外常转化为求二次函数的最值或用分离参数法求最值.(2)解决恒成立问题一定要搞清谁是主元,谁是参数,一般地,知道谁的范围,谁就是主元,求谁的范围,谁就是参数.(3)若f (x )>0在集合A 中恒成立,即集合A 是不等式f (x )>0的解集的子集,可以先求解集,再由子集的含义求解参数的值(或范围).(4)转化为函数值域问题,即已知函数f (x )的值域为[m ,n ],则f (x )≥a 恒成立⇒f (x )min ≥a ,即m ≥a ;f (x )≤a 恒成立⇒f (x )max ≤a ,即n ≤a .基本不等式及应用1、基本不等式ab ≤a +b 2(1)基本不等式成立的条件:a >0,b >0. (2)等号成立的条件:当且仅当a =b . 2、算术平均数与几何平均数设a >0,b >0,则a ,b 的算术平均数为a +b2,几何平均数为个正数的算术平均数不小于它们的几何平均数. 3、利用基本不等式求最值问题 已知x >0,y >0,则(1)如果xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是(2)如果x +y 是定值q ,那么当且仅当x =y 时,xy 有最大值是q 24 4、基本不等式的两种常用变形形式(1)ab ≤⎝⎛⎭⎫a +b 22(a ,b ∈R ,当且仅当a =b 时取等号).(2)a +b ≥2ab (a >0,b >0,当且仅当a =b 时取等号). 5、几个重要的结论 (1)a 2+b 22≥⎝⎛⎭⎫a +b 22. (2)b a +ab ≥2(ab >0). (3)ab ≤a +b2≤a 2+b 22(a >0,b >0).方法总结:1的代换就是指凑出1,使不等式通过变形出来后达到运用基本不等式的条件,即积为定值,凑的过程中要特别注意等价变形。

人教A版高中数学必修1 课件 :第一章 1.1 1.1.3 第一课时

人教A版高中数学必修1 课件 :第一章 1.1 1.1.3 第一课时

(2)A∩B中的元素是“所有”属于集合A且属于集合B的元 素,而不是部分,特别地,当集合A和集合B没有公共元素时, 不能说A与B没有交集,而是A∩B=∅.
2.掌握两种技巧 (1)对于元素个数有限的集合,可直接根据集合的 “交”“并”定义求解,但要注意集合元素的互异性. (2)对于元素个数无限的集合,进行交、并运算时,可借助 数轴,利用数轴分析法求解,但要注意端点值取到与否.
「自测检评」
1.(2018·天津卷)设集合A={1,2,3,4},B={-1,0,2,3},C=
{x∈R|-1≤x<2},则(A∪B)∩C=( )
A.{-1,1}
B.{0,1}
C.{-1,0,1}
D.{2,3,4}
解析:选C ∵A={1,2,3,4},B={-1,0,2,3},
∴A∪B={-1,0,1,2,3,4}.
(4)性质:①A∪B=B∪A;②A∪A=A;③A∪∅=A;④A⊆ B⇔A∪B=B.
[思考辨析]|判断正误| 1.A∪B的元素个数等于集合A中元素的个数与集合B中元素 个数的和.( × ) 2.并集定义中的“或”能改为“和”.( × ) 3.若A∪B=A∪C,则B=C.( × )
知识点二|交集
阅读教材P9的内容,完成下列问题. (1)定义:一般地,由属于集合A且属于集合B的所有 3 __元__素______组成的集合,叫做A与B的交集. (2)符号表示:A与B的交集记作 4 __A__∩_B_____,即A∩B={x|x ∈A,且x∈B}.
题型三 交集、并集性质的应用 【例3】 已知A={x|2a≤x≤a+3},B={x|x<1或x>5}. (1)若A∩B=∅,求a的取值范围; (2)是否存在实数a,使得A∪B=R,若存在,求出实数a的 值,不存在,说明理由.

人教版(新教材)高中数学第一册(必修1)精品课件:第一章集合与常用逻辑用语章末复习课

人教版(新教材)高中数学第一册(必修1)精品课件:第一章集合与常用逻辑用语章末复习课

【例1】 (1)设集合A={1,2,4},集合B={x|x=a+b,a∈A,b∈A},则集合B中元
素的个数是( )
A.4
B.5
C.6
D.7
(2)已知集合A={0,1,2},则集合B={x-y|x∈A,y∈A}中元素的个数是( )
A.1
B.3
ቤተ መጻሕፍቲ ባይዱ
C.5
D.9
解析 (1)∵a∈A,b∈A,x=a+b,所以x=2,3,4,5,6,8,∴B中有6个元素, 故选C. (2)当x=0,y=0时,x-y=0;当x=0,y=1时,x-y=-1;当x=0,y=2时,x-y =-2;当x=1,y=0时,x-y=1;当x=1,y=1时,x-y=0;当x=1,y=2时,x -y=-1;当x=2,y=0时,x-y=2;当x=2,y=1时,x-y=1;当x=2,y=2时, x-y=0.根据集合中元素的互异性知,B中元素有0,-1,-2,1,2,共5个. 答案 (1)C (2)C
【训练4】 (1)若p:x2+x-6=0是q:ax+1=0的必要不充分条件,则实数a的值为 ________. (2) 若 - a<x< - 1 成 立 的 一 个 充 分 不 必 要 条 件 是 - 2<x< - 1 , 则 a 的 取 值 范 围 是 ________.
解析 (1)p:x2+x-6=0,即x=2或x=-3. q:ax+1=0,当 a=0 时,方程无解;当 a≠0 时,x=-1a. 由题意知p q,q p,故a=0舍去;
当 a≠0 时,应有-1a=2 或-1a=-3,解得 a=-12或 a=13. 综上可知,a=-12或 a=13. (2)根据充分条件、必要条件与集合间的包含关系,应有{x|-2<x<-1} {x|-a<x< -1},故有a>2. 答案 (1)-12或13 (2)a>2

高中数学必修1复习 PPT课件 图文

高中数学必修1复习 PPT课件 图文
x4 x0
(4)已知f(幂 2)8 , 函求 数 f(x)函 的数 解析
函数单调性
y
f(x2)
f(x1)
在给定区间上任x取 1, x2,
x1 x2
f(1x)f(2x)
函数f (x)在给定区间
O
x1 x2 x
上为增函数。
注意
增函数、减函数、单调函数是 对定义域上的某个区间而言的。
y
在给定区间上任x取 1, x2,
真数 自变量
函数 y=logax 叫作指数函数
底数(a>0且a≠1) 常数
指数函数与对数函数
y
1
0
x
R
y
y
y
1
1
o
1
x
o
x
0
x
单调性
(0, ) 相同
(0, )
(0, 1)
在R上是增函数 在R上是减函数
R
(1, 0)
在( 0 , + ∞ )上是 在( 0 , + ∞ )上是
增函数
减函数
指数函数与对数函数
x3,2
5 4 3 2 1
0 1 3 -8 -6 -4 -2
2 4 6 810
-1
x=2
-2
-3
-4
-5
二、函数的表示法
1、解 析 法 2、列 表 法 3、图 像 法
例10 (1)已f知 (x)x24x3,求 f(x1)
(2)已f知 (x1)x22x,求 f(x)
x23 x0 (3)已知 f(x) 1 x0,求 f[f(4)]
(3) loaM g nnloaM g (n R ).
几个重要公式
(1)logabllooggccballggba

人教版高中数学必修第一册同步讲义第二章 2.4 反函数

人教版高中数学必修第一册同步讲义第二章 2.4 反函数

2.4 反函数 ①课文三点专讲重点:(1)反函数也是函数,因为它符合函数的定义,从反函数的定义可知,对于任意一个函数)(x f y =来说,不一定有反函数.(2) 求反函数的步骤是(1)将y =f (x )看成关于x 的方程,解出x =f -1(y ),若x 有两解,应特别注意解的选择.(2)将x 、y 互换,得y =f -1(x ).(3)写出反函数的定义域(即y =f (x )的值域).(3) 互为反函数的两个函数的关系:函数)(x f y =与)(1x fy -=的图象关于直线x y =对称.反函数的定义域由原函数的值域得到,而不能由反函数的解析式得到.难点:(1)一个函数有没有反函数是由原来给出函数的性质决定的,且反函数的性质也是由原来给出的函数性质决定的.(2)互为反函数间关系的理解: 函数)(x f y =、)(1x f y -=、)(y f x =、)(1y f x -=间的关系:)(x f y =与)(1x fy -=、)(y f x =与)(1y f x -=互为反函数;)(x f y =与)(1y f x -=、)(y f x =与)(1x f y -=为同一函数。

考点:(1)判断反函数与原函数的单调性与奇偶性要充分利用互为反函数的两个函数的定义域和值域之间的关系,以及x 与y 的对应关系的变化实质,即f-1[f (x )]=x ,f [f-1(x)]=x.(2)对称性问题的考察. ①点A(x,y)关于x 轴的对称点'A (x,-y);②点A(x,y)关于y 轴的对称点'A (-x,y);③点A(x,y)关于原点的对称点'A (-x,-y);④点A(x,y)关于y=x 轴的对称点'A ( y, x);②练功篇典型试题分析例1.求函数 211x y --= (-1≤ x < 0)的反函数。

分析: 求反函数前先判断一下决定这个函数的映射是否是一一映射;求出反函数后习惯上必须将 x 、y 对调,写成习惯形式;求出反函数后必须写出这个函数的定义域——原函数的值域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学必修一讲义
第一章集合与函数概念
课时一:集合有关概念
1.集合的含义:集合为一些确定的、不同的东西的全体,人们能意识到这些东
西,并且能判断一个给定的东西是否属于这个整体。

2.一般的研究对象统称为元素,一些元素组成的总体叫集合,简称为集。

3.集合的中元素的三个特性:
(1)元素的确定性:集合确定,则一元素是否属于这个集合是确定的:属于或不属于。

例:世界上最高的山、中国古代四大美女、……
(2)元素的互异性:一个给定集合中的元素是唯一的,不可重复的。

例:由HAPPY的字母组成的集合{H,A,P,Y}
(3)元素的无序性:集合中元素的位置是可以改变的,并且改变位置不影响集合
例:{a,b,c}和{a,c,b}是表示同一个集合
3.集合的表示:{…} 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}
(1)用大写字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}
(2)集合的表示方法:列举法与描述法。

1)列举法:将集合中的元素一一列举出来{a,b,c……}
2)描述法:将集合中元素的公共属性描述出来,写在大括号内表示集合。

{x∈R| x-3>2} ,{x| x-3>2}
①语言描述法:例:{不是直角三角形的三角形}
②Venn图:画出一条封闭的曲线,曲线里面表示集合。

4、集合的分类:
(1)有限集:含有有限个元素的集合
(2)无限集:含有无限个元素的集合
(3)空集:不含任何元素的集合例:{x|x2=-5}
5、元素与集合的关系:
(1)元素在集合里,则元素属于集合,即:a∈A
(2)元素不在集合里,则元素不属于集合,即:a A
注意:常用数集及其记法:(&&&&&)
非负整数集(即自然数集)记作:N
正整数集N*或N+
整数集Z
有理数集Q
实数集R
课时二、集合间的基本关系
1.“包含”关系—子集
(1)定义:如果集合A的任何一个元素都是集合B的元素,我们说这两个集合有包含关系,
A⊆(或B⊇A)
称集合A是集合B的子集。

记作:B
注意:B
A⊆有两种可能(1)A是B的一部分,;
(2)A与B是同一集合。

反之: 集合A不包含于集合B,或集合B不包含集合A,记作A⊆/B或B⊇/A 2.“相等”关系:A=B (5≥5,且5≤5,则5=5)
实例:设A={x|x2-1=0} B={-1,1} “元素相同则两集合相等”
即:①任何一个集合是它本身的子集。

A⊆A
②真子集:如果A⊆B,且A≠ B那就说集合A是集合B的真子集,记作A B(或B A)
或若集合A⊆B,存在x∈B且x A,则称集合A是集合B的真子集。

③如果A⊆B, B⊆C ,那么A⊆C
④如果A⊆B 同时B⊆A 那么A=B
3. 不含任何元素的集合叫做空集,记为Φ(&&&&&)
规定: 空集是任何集合的子集,空集是任何非空集合的真子集。

有n个元素的集合,含有2n个子集,2n-1个真子集




交集并集补集
定义由所有属于
A且属于B
的元素所组
成的集合,叫
做A,B的交
集.记作
A B(读作
‘A交B’),
即A B=
{x|x∈A,且
x∈B}.
由所有属于
集合A或属
于集合B的
元素所组成
的集合,叫做
A,B的并
集.记作:
A B(读作
‘A并B’),
即A B
={x|x∈A,或
全集:一般,若
一个集合汉语
我们所研究问
题中这几道的
所有元素,我们
就称这个集合
为全集,记作:
U
设S是一个集
合,A是S的一
个子集,由S中。

相关文档
最新文档