调频与调相
第三章4-2调频

P
Vc2m 2
J n2 (m f
n
)
第一类贝塞尔函数的特性是
J
2 n
(m
f
)
1
n
所以调频波的功率为
P Vc2m 2
②从时域角度看 调频波是一个等幅波,其幅度与调制前一样,
P Vc2m 2
调频波的功率等于调制前载波的功率 与从频谱的角度计算的功率值相同
对调频波功率的理解:
调频波比调制前增加了那么多边频,为什么功率不变?
调频波的富里叶展开式为 :
e jm f sin t
J n (m f )e jnt
n
J n (m f
)
1
2
e jm f
sin t
e jnt dt
v(t)
Vm Re
nJ n (m f
)e
j (ct nt )
Vm J n (m f ) cos(c n)t
n
分析调频波的频谱
v(t) Vm Jn (mf ) cos(c n)t n
A
.
以载频ω 为中心,有无数对边频分量 C
:
ωC,ωC±Ω,ωC±2Ω,……ωC±nΩ(n为正整数)
调制前
调制后
c
频谱的非线性搬移——与调幅不同
B. 调频波的每条谱线的幅度为 J n (m f )Vm
J n (m f ) ——宗数为 m f 的n阶第一类贝塞尔函数
J
n
(m
f
)
Jn (mf Jn (m
调相波 (t) ct k pv (t)
v(t) Vcm cos (t) Vcm cos(ct k pVm cos t)
调相指数 mp m k pVm
调频调相及其解调

展望
未来通信系统对信号传输速率和抗干扰能力的 要求越来越高,因此需要研究更加高效和可靠
的调制解调技术。
在未来,调频调相技术的研究将更加注重节能减排和 环保,以适应绿色通信的发展趋势。
随着通信技术的发展,调频调相技术将不断进 步和完善,进一步提高通信质量和可靠性。
随着物联网、智能家居等新兴领域的发展,无线 通信需求将不断增加,调频调相技术将在这些领 域得到更广泛的应用。
通过调制技术,可以将多个低频信号 调制到同一个载波频率上,从而实现 多路复用,提高通信系统的效率。
02
调频调相的基本原理
调频原理
01
02
03
调频信号的生成
通过改变振荡器的输入信 号的幅度或相位,从而改 变振荡器的频率,产生调 频信号。
调频信号的解调
通过滤波器或匹配滤波器 将调频信号还原为原始信 号。
在宽带通信中,调频调相技术可以用于高速数据 传输,提高通信速率和数据吞吐量。
雷达领域的应用
距离测量
调频调相技术可以用于雷达中,通过测量信号的往返时间来计算 目标距离。
速度测量
雷达通过多普勒效应可以测量目标的相对速度,调频调相技术可 以提高测速的精度和分辨率。
目标识别
调频调相技术可以提高雷达的目标识别能力,通过对回波信号的 分析和处理,实现对目标类型的识别和分类。
调频调相及其解调
• 引言 • 调频调相的基本原理 • 调频的实现方法 • 调相的实现方法 • 解调技术 • 调频调相的应用场景 • 总结与展望
01
引言
背景介绍
调频调相技术是通信领域中的 重要技术之一,广泛应用于广 播、电视、无线通信等领域。
调频调相技术能够实现信号的 调制和解调,从而实现对信号 的传输和接收。
关于调频、调幅、调相

关于调频、调幅、调相关于调频、调幅、调相2008-03-26 09:54调幅:调制信号使载波的幅度随之变化;而调频:是使频率或相位随之变化。
发——调频,收——调幅:在特定的条件下应该可以接收到,只是检波效率不一定高。
比如:接收机(调幅)的回路对调频信号来讲处在斜率检波(参见有关无线电资料)状态时,就可以低效率的接收到调频信号。
调频和调相不同,调相的同时,频率一定会变化,但是调频的时候相位不一定变化。
++++++++++++++++++++++++++++++++幅与调频有什么区别?1.调频比调幅抗干扰能力强外来的各种干扰、加工业和天电干扰等,对已调波的影响主要表现为产生寄生调幅,形成噪声。
调频制可以用限幅的方法,消除干扰所引起的寄生调幅。
而调幅制中已调幅信号的幅度是变化的,因而不能采用限幅,也就很难消除外来的干扰。
另外,信号的信噪比愈大,抗干扰能力就愈强。
而解调后获得的信号的信噪比与调制系数有关,调制系数越大,信噪比越大。
由于调频系数远大于调幅系数,因此,调频波信噪比高,调频广播中干扰噪声小。
2.调频波比调幅波频带宽频带宽度与调制系数有关,即:调制系数大,频带宽。
调频中常取调频系数大于1,而调幅系数是小于1的,所以,调频波的频带宽度比调幅波的频带宽度大得多。
3.调频制功率利用率大于调幅制发射总功率中,边频功率为传送调制信号的有效功率,而边频功率与调制系数有关,调制系数大,边频功率大。
由于调频系数mf大于调幅系数ma,所以,调频制的功率利用率比调幅制高。
++++++++++++++++++++++++++++++调频和调幅区别就像是手机的GSM和CDMA一样,是不同的传输方式,CDMA的技术要比GSM先进的不知多少,但是133的手机信号未必比139的手机信号强,反而不如。
为什么同样的139的手机,有些厂家的信号强,有些厂家的信号弱呢?就是说一个产品的好与坏不是传输方式决定的,而是由厂家的技术能力和产品完成度来决定的。
调频与调相

t
2
| m(t) |max
A2 / 2 N0 fm
G
So / No Si / Ni
3
2 FM
E
m
t 2
BFM
|
m(t
)
|2
max
fm
6F2M (FM
1)
E
m
t
2
|
m(t
)
|2
max
单频情况
|
m(t)2 m(t) |2max
1/ 2
讨论
当 FM
1 时,我们可以得到G
3
3 FM
,
所以调频方式具有很好的抗噪声性能。
SFM
(t)
A cos(c t
KFM Am fm
sin mt)
A cos(ct FM sin mt)
这里
FM
KFM Am fm
称为调频指数(最大频偏/信号最高频 率)。
单频调频信号波形
SFM (t) Acosct cos( FM sinmt) Asinct sin( FM sinmt)
1
Nout 4 2 A2
fm fm
(2
f
)2
N0df
2 3A2
N0
f
3 m
解调后,输出信噪比为
Sout
Nout
KF2M E m
t
2 3A2 2N0 fm3
3A2 KF2M
2N0
f
3 m
E m
t
2
因为
FM
K FM
| m(t) |max fm
Sout
Nout
3
2 FM
E m
a1 cos1 a2 cos2 a cos
调频调幅调相

调频调幅调相
调频、调幅、调相是无线电通信中常用的三种调制方式。
它们分别是通过改变载波频率、振幅和相位来传输信息信号的。
下面将分别介绍这三种调制方式的原理和应用。
调频是指通过改变载波频率来传输信息信号。
在调频调制中,信息信号被转换成一个高频信号,然后这个高频信号被调制到一个载波信号上。
调频调制的优点是抗干扰能力强,传输距离远,适用于广播、电视、卫星通信等领域。
调幅是指通过改变载波振幅来传输信息信号。
在调幅调制中,信息信号被转换成一个低频信号,然后这个低频信号被调制到一个载波信号上。
调幅调制的优点是简单易实现,适用于短距离通信和音频信号传输。
调相是指通过改变载波相位来传输信息信号。
在调相调制中,信息信号被转换成一个低频信号,然后这个低频信号被调制到一个载波信号上。
调相调制的优点是抗多径干扰能力强,适用于雷达、导航、通信等领域。
除了以上三种调制方式,还有一种常用的调制方式是脉冲调制。
脉冲调制是指通过改变脉冲的宽度、间隔和幅度来传输信息信号。
脉冲调制的优点是传输速率高,适用于数字信号传输。
调频、调幅、调相是无线电通信中常用的三种调制方式,它们各有
优点,应用范围也不同。
在实际应用中,需要根据具体情况选择合适的调制方式,以达到最佳的传输效果。
通信电子技术电子调频波与调相的比较

根据调频波的数学表达式以及瞬时角频率)(t ω和瞬时相位)(t ϕ的基本关系可知: 调频波的调频系数Ω∆=Ω=Ωω
m
f f U k m 调频波的最大角频偏m f f U k t u k ΩΩ==∆max )(ω 调频波的最大相移f t f t
m dt
t u k t ==∆=∆⎰⎰Ωmax 0max 0)()(ωϕ
根据调相波的数学表达式以及瞬时角频率)(t ω和瞬时相位)(t ϕ的基本关系可知:
调相波的调相系数m p p U k m Ω=∆=ϕ
调相波的最大相移m p p U k m Ω==∆ϕ 调相波的最大角频偏m p p U k dt t du k dt t d ΩΩΩ==∆=∆max
max )()(ϕω 由此可知,在调频中,最大角频偏ω∆与调制信号频率Ω无关,最大相移ϕ∆则与调制信号频率Ω成反比;在调相中,最大角频偏ω∆与调制信号频率Ω成正比,最大相移ϕ∆则与调制信号频率Ω无关。
这是两种调制的根本区别。
信号的三种调制方式

y ( x) c1 J ( x) c 2Y ( x)
齿轮故障特征
1.在各种齿轮故障诊断方法中,以振动检测为基础的齿 轮故 障诊断方法具有反映迅速、测量简便、实时性 强等优点。 2.齿轮发生断齿情况下其振动信号冲击能量达到最大, 均方值和峰值减小,表明齿轮传动接触减少,对经过磨合 期的齿轮,接触减少只可能是齿轮断齿或磨损厉害,但因 峭度和峰值指标增大,又表明齿轮存在较强的振动冲击, 而磨损厉害并不会出现较大的冲击振动信号,所以齿轮发 生的是 x] p( x)dx
4
式中x(t)为瞬时振幅,x杠为振幅均值,p(x)为概率密度, σ为标准差
1 K N
xi x i 1 t
N
4
式中xi为瞬时振幅,x杠为振幅均值,N为采样长度, σt为标准差。 峭度(Kurtosis)K是反映振动信号分布特性的数值 统计量,是4阶中心矩,峭度指标是无量纲参数, 由于它与轴承转速、尺寸、载荷等无关,对冲击信 号特别敏感,特别适用于表面损伤类故障、尤其是 早期故障的诊断。在轴承无故障运转时,由于各种 不确定因素的影响,振动信号的幅值分布接近正态 分布,峭度指标值K≈3;随着故障的出现和发展,振 动信号中大幅值的概率密度增加,信号幅值的分布 偏离正态分布,正态曲线出现偏斜或分散,峭度值 也随之增大。峭度指标的绝对值越大,说明轴承偏 离其正常状态,故障越严重,如当其K>8时,则很 可能出现了较大的故障。
4.均方根值由于对时间取平均值,因而适用于像磨损、表面裂 痕无规则振动之类的振幅值随时间缓慢变化的故障诊断。
X 1 N
x
1
N
i
2
5.齿轮偏心是指齿轮的中心与旋转轴的中心不重合,这种故障 往往是由于加工造成的。 (1)时域特征 当一对互相啮合的齿轮中有一个齿轮存在偏心时,其振动波 形由于偏心的影响被调制,产生调幅振动,图为齿轮有偏心 时的振动波形。
调频与调相实验报告

调频与调相实验报告实验目的通过实验研究调频与调相技术,了解它们在通信系统中的应用和原理。
实验原理调频是改变调制信号的频率,以便将信息信号传输到载波信号中。
调相是改变调制信号的相位,以便将信息信号传输到载波信号中。
调频与调相常用于通信系统中的调制和解调过程。
实验内容1. 调频实验首先,我们将一个正弦信号作为调制信号,用函数发生器产生一个正弦载波信号。
然后,将调制信号与载波信号相乘得到调频信号。
我们通过示波器观察调频信号与载波信号的波形。
2. 调相实验这次,我们使用一个正弦信号做为调制信号,同样使用函数发生器产生一个正弦载波信号。
然后,将调制信号分别与两个相位差相差90度的载波信号相乘得到两个调相信号。
我们通过示波器观察两个调相信号的波形,并进行对比分析。
实验步骤调频实验1. 准备实验仪器和器材。
- 准备一个函数发生器、一个示波器和所有所需的连接线。
确保仪器的工作状态良好。
2. 连接电路。
- 将函数发生器的输出与示波器的输入相连。
保持信号传输顺畅,确保连接正确。
3. 设定函数发生器和示波器参数。
- 在函数发生器上调整频率和幅度,分别设定合适的数值。
4. 开始实验。
- 打开示波器和函数发生器,观察调频信号和载波信号的波形变化。
5. 记录实验数据。
- 观察并记录不同频率和幅度下调频信号和载波信号的波形。
调相实验1. 准备实验仪器和器材。
- 准备一个函数发生器、一个示波器和所有所需的连接线。
确保仪器的工作状态良好。
2. 连接电路。
- 将函数发生器的输出与示波器的输入相连。
保持信号传输顺畅,确保连接正确。
3. 设定函数发生器和示波器参数。
- 在函数发生器上调整频率和幅度,分别设定合适的数值。
4. 开始实验。
- 打开示波器和函数发生器,观察两个调相信号的波形变化。
5. 记录实验数据。
- 观察并记录不同相位差下两个调相信号的波形。
实验结果通过调频实验,我们观察到调频信号的频率随着调制信号的改变而变化。
而通过调相实验,我们观察到两个调相信号的相位差决定信号的相位变化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
4 2 A2
(2 f ) 2 N 0
N out
2 3 (2 f ) N df N f 0 0 m 4 2 A2 fm 3 A2
fm 2
1
解调后,输出信噪比为
2 2 2 Sout 3 A K FM 3 A 2 2 2 K FM E m t E m t 3 3 2N0 fm Nout 2N0 fm
调频解调
鉴频器
带通及 限幅
微分
包络检波
低通
鉴频
鉴频原理
调频信号经过微分后得
t dS FM (t ) A c 2 K FM m t sin( c t 2 K FM m( )d ) dt
经过包络检波、低通后得
r t A c 2 K FM m t
1
FM
) 2(f max f m ) 2( FM 1) f m
窄带调频
当KFM<<1时,
s t A cos c t 2 K FM m d
t
A cos c t 2 K FM m d A sin c t
1
2
因鉴频器的输出正比于瞬时频偏,所以只考虑合成信号的瞬时相位。 (一)大信噪比下,A>>V(t)
V (t ) c t (t ) sin (t ) ( t ) A
解调器的输出电压与输入信号的瞬时频偏成正比,所以
vo (t )
1 d 1 d (t ) 1 d V (t ) sin (t ) (t ) fc 2 dt 2 dt 2A dt
其它解调方法*
调频负反馈解调
加入负反馈(重新调频得到的信号)使鉴频器 输入端得调制指数很小,因此可以使带通滤波 器带宽很小,起到抑制噪声的作用。
利用锁相环作调频解调器
锁相环跟踪频率变化的能力
调频信号的抗噪性能
分析模型
S FM (t )
带通 鉴频 低通
S o (t ) n (t )
ni (t )
解调器输出信号分量为
So (t ) KFM m(t )
输出信号平均功率为
So K
2 FM
2 E m t
解调器输出噪声为
1 d V (t ) sin (t ) (t ) no (t ) 2A dt
信噪比较高的情况下,可以证明 (t ) (t ) 是均匀分布 ,因此
A sin c t 2 J 2 n 1 FM sin 2n 1 m t n 1
由上可以得到:
单频信号经过调频之后,其频谱分量为无穷多 个,即产生了新的频率分量。 每个频率分量的大小不一。
单频调频波形示意
单频频率0.5,载波50Hz,KFM=5(FM=1.59),KPM=5 (上图调频,下图调相)
频分复用
基本思路
多个用户同时通过一个信道,每个用户通过划 分不同的频带来区分,以达到互不干扰的目的。
例:
FM立体声广播信号 全电视信号
1
2
3
4
5
6
f
亮度信号 功率谱密度
色差信号 功率谱密度 伴音信号 功率谱密度
NTSC 3.58M PAL 4.43M SECOM 4.25M 4.40M
经过鉴频器后,噪声的功率谱密度变为抛物线)型, 即在信号的低频处,噪声的功率谱密度小,而在信号 的高频处,信号的功率谱密度大。由于一般信号在高 频分量处,信号的功率本身就小,因此高频分量处的 信噪比就较差。这实际上影响着调频的输出信噪比。 如果在输入端对信号的高频分量放大,而对低频分量 不变,叫预加重,则这种信号经过鉴频器后的输出信 噪比应该是均匀的。 经过低通滤波后,用相反的手段复原高频分量的大小 (去加重),从而恢复原始信号,并且改善了输出信 噪比,也降低了调频的门限。
这里假设当t<0时,m(t)=0(因果信号) 则
K FM Am SFM (t ) A cos(c t sin m t ) fm
A cos(c t FM sin mt )
这里
FM
K FM Am fm
称为调频指数(最大频偏/信号最高频 率)。
单频调频信号波形
S FM (t ) Acosct cos( FM sin mt ) Asin ct sin( FM sin mt )
A cos(c t (t )) V (t ) cos(c t (t ))
j t j t jct Re Ae V t e e
令
A cos(c t (t )) a1 cos1
V (t ) cos(ct (t )) a2 cos2
KpM称为调相指数
调频信号
瞬时角频偏与信号成正比
t
SFM (t ) A cos(c t 2 K FM m( )d )
单频信号调频
设单频信号
m(t ) Am cos mt
t
则单频调频信号为
SFM (t ) A cos(c t 2 K FM Am cos m d )
cos( FM sin mt ) J 0 ( FM ) 2 J 2n ( FM ) cos2n mt
sin( FM sin m ) 2 J 2 n1 ( FM ) sin(2n 1) m t
n 1
n 1
其中 J n ( FM ) 称为第一类n阶贝赛尔函数。
1 n 2 m ( 1 ) ( ) FM 2 J n ( FM ) m!(n m)! m 0
m
第一类n阶贝赛尔函数
1
0.5
0
-0.5 0 1 2 3 4 5 6 7 8 9 10
单频调频
S FM (t ) A cos c t J 0 FM 2 J 2 n FM cos 2n m t n 1
调相信号
由于频率的变化等效于相位变化,实质上调相信 号与调频信号一样。令
m t m d
'
t
则对m(t)’调相等价于对m(t)调频。 其相应的调相指数ß PM=最大相偏 调相信号的带宽也可以用卡森公式,只是公式中 的调频指数变为调相指数。即
B=2(PM+1)fm
A 输入信号功率 S i 2
噪声功率
SFM (t ) A cos(c t 2 K FM m( )d )
2
t
Ni N0 BFM 2N0 FM 1 f m
经过带通后
Hale Waihona Puke S FM (t ) nc (t ) cosct ns (t ) sin ct S FM (t ) V (t ) cos(ct (t ))
' n ( t ) V ( t ) sin( (t )) no(t) 可以看成ns(t)经过微分器,而 s 是一个均值为0,
BFM 功率为N0BFM的低通型窄带噪声,其带宽范围 2
,
BFM 2
。
1 j 微分器的传输响应函数为 H ( ) 2A
所以,经过微分后噪声的功率谱密度为
因为
FM
K FM | m(t ) |max fm
2 E m t A2 / 2 | m(t ) |max N 0 f m
2 2 E m t B E m t FM 6 2 ( 1) FM FM 2 | m(t ) |max f m | m(t ) |2 max
a1 cos1 a2 cos2 a cos
a cos
a2 sin( 2 1 ) V (t ) sin (t ) (t ) 1 arctg c t (t ) arctg a1 a2 cos( 2 1 ) A V (t ) cos (t ) (t ) 或 a1 sin(1 2 ) A sin (t ) (t ) 2 arctg c t (t ) arctg a2 a1 cos(1 2 ) V (t ) A cos (t ) (t )
例:宽带调频
我们以一种调频广播发射机为例,在这种 发射机中,首先以200KHz为载频,最高 调制信号为15KHz时频偏仅为25Hz,调 频指数为0.00167。而调频广播的最终频 偏为75KHz,因此需要经过倍频。倍频后 新的载频为600MHz,然后用下变频的方 法将发射频率搬移到88-108MHz的调频 广播频带内。
6.6MHz
小结
各种调制、解调方法
调制信号形式、调制方法、解调方法 分析调制解调性能的方法
各种调制解调性能比较
各种调制性能比较
DSB:输入信号功率
SSB:输入信号功率
1 m(t ) 2 2 1 m(t ) 2 4
输出信噪比
输出信噪比
So m(t ) 2 N o n0 BDSB
AM:输入信号功率
单频调频频谱
调频信号带宽
理论上,调频后信号带宽为无限宽。 实际上,Jn(BFM)随着n的增加衰减,因此 高频分量功率呈衰减趋势。
如果认为 | J ( ) | 0.01后的频率分量不计,则可以得到单频 n FM 调频后的信号带宽。 经验公式:卡森公式