中考数学计算题专项训练(2020年整理).doc
2020年中考数学基础复习 计算题基础练习三(含答案)

2020 年中考数学基础复习
7.解方程组:
计算题基础练习三
1.计算:
﹣6+(﹣2)3×(
)÷( )2÷(﹣3).
2.化简:-2(2x2-xy)-4(x2+xy-1)
8.解方程:
+1= .
3.化简:2a(a-b)-(2a+b)(2a-b)+(a+b)2.
9.解不等式:
4.化简:
(
x2 x 1
x
1)
x x2 1
9.答案为:
;
10.答案为:﹣2≤x<0.
11.解:原方程可变形为
=
﹣
1,整理得:14x=28,解得:x=2, 检验 x=2 时,方程的分母为 0,∴原方程 无解.
12.答案为:x1=1+ ,x2=1﹣ ; 13.答案为:y1=y2=-1.5.
14.答案为:x1=5,x2=﹣1.
1 15.答案为:(1) x 1 ;(2)-1.
.
10.解不等式组: 在数轴上表示出来:
,并把解集
5.计算:
.
6.解方程:
11.解方程:
=
﹣1.
12.解方程:x2﹣6x﹣16=0(用配方法)
16.已知 a=
,b=
,
(1)求 ab,a+b 的值;
(2)求 的值.
13.解方程:4y2+4y-1=-10-8y.
14.解方程:(x﹣1)(x﹣3)=8.
15.已知 A= x2 2x 1 x x2 1 x 1
(1)化简 A; (2)若 x 满足-1≤x<2,且 x 为整数,请选择 一个适合的2.原式=6xy-4. 3.原式=-a2+2b2.
中考数学计算题训练

中考数学计算题训练中考数学计算题专项训练一、训练一1.计算:1) sin45° - 1/2 + 3/8;2) 2×(-5) + 23 - 3÷4 + 2^2 + (-1)^4 + (5-2) - |-3|;3) -1-16+(-2)^2/(2×1) + 1001+12-33×tan30°;6) -2+(-2)+2sin30°;8) (-1)-16+(-2)^2/[(2×1)+(1×1)]。
2.计算:[-1/2 + 1/3×(-tan45°)] + 3/2.3.计算:1/3 - 2^-1 - (2010-2012+(-1)^-1)/(1001+12-33×tan30°)。
4.计算:18-[cos60°/(2-1-4sin30°)]+[(2-2)/(2-1)]。
5.计算:[cos60°/(-1)]-1^20+|2-8|-2^-1×(tan30°-1)。
二、训练二(分式化简)1.化简:2x/(x^2-4x-2) - 1/(x-2)。
2.化简:(1+1/(x-2))/(x^2-4)。
3.化简:(1-a)/(2a-1) ÷ [(a^2+2a+1)/(3-a^5)]。
4.化简:[(a-1)/(a^2-1)] ÷ [(a-1)/(2a-1)],其中a≠-1.5.化简:[2x/(x+1)(x-1)] + [1/2(x-1)]。
6.化简:[1/(x-2)^2] ÷ [1/(x^2-4x+1)],其中x≠1.7.化简:[1-(a-1)/(2a)] ÷ [(a^2+2a)/(a-1)],其中a≠a。
8.化简:[2/(a+2)-(a-2)/(a-1)] ÷ [2/(a+1)-2/(a-2)],其中a为整数且-3<a<2.9.化简:[(11/2)x+2]/(x-y) + [9/(x^2+2xy+y^2)],其中x=1,y=-2.10.化简:[(1/2)-(1/12)x]/[2/(x-4)-x/(x^2-4)],其中x=2(tan45°-cos30°)-1.三、训练三(求解方程)1.解方程x-4x+1=0.2.解分式方程(3x-2)/(x+1) + (2x+1)/(x-2) =3.3.解方程:x^3-2x^2+5x-6=0.4.解方程:(x-1)/(x+1) + (x+1)/(x-1) = 4.5.解方程:(x-2)/(x+1) + (x+1)/(x-2) = 2.四、解不等式1.解不等式 $x+2>1$,得 $x>-1$,整数解为 $x\in(-1,+\infty)$。
2020年中考数学 基础复习 计算题专项练习(含答案)

计算题专项练习
1.计算:
﹣6+(﹣2)3×(
)÷( )2÷(﹣3).
6.化简:5(a2b﹣3ab2)﹣2(a2b﹣7ab2) 7.化简:2x2﹣(﹣x2+3xy+2y2)﹣(x2﹣xy+2y2)
2.计算:
8.化简:2(ab2-2a2b)-3(ab2 a2b)+(2ab2-2a2b)
13.原式=3a2b﹣2ab2+2ab2=3a2b. 14.解:(2x﹣7y)(3x+4y﹣1)=6x2+8xy﹣2x﹣21xy﹣
28y2+7y=6x2﹣13xy﹣2x+7y﹣28y2; 15.解 :原 式 =4(x2+2x+1) ﹣ (4x2﹣ 25)=4x2+8x+4 ﹣
4x2+25=8x+29. 16.原式=3x2+6-3x2+3.
30.方程组的解为: .
31.答案为:x=3,y=0.5. 32.解:去分母,得 2x+3(x﹣3)>6,
去括号,得 2x+3x﹣9>6, 移项得,2x+3x>6+9, 合并同类项,得 5x>15, 把 x 的系数化为 1,得 x>3. 33.解:去分母得,2(y+1)﹣3(2y﹣5)<12, 去括号得,2y+2﹣6y+15<12, 移项得,2y﹣6y<12﹣15﹣2, 合并同类项得,﹣4y<﹣5,
3.计算:
9.计算:
.
4.计算:
10.计算:
5.化简:3a2b-[2ab2-2(-a2b+4ab2)]-5ab2
11.计算:
.
第1页共7页
初中数学计算题专项训练

中考数学计算题专项训练 一、训练一(代数计算) 1. 计算:(1)3082145+-Sin(2)(3)2×(-5)+23-3÷12(4)22+(-1)4+(5-2)0-|-3|; (6)︒+-+-30sin 2)2(20 (8)()()022161-+--2.计算:345tan 3231211-︒-⨯⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-- 3.计算:()()()︒⨯-+-+-+⎪⎭⎫⎝⎛-30tan 331212012201031100124.计算:()()0112230sin 4260cos 18-+︒-÷︒--- 5.计算:1201002(60)(1)|28|(301)21cos tan -÷-+--⨯-- 二、训练二(分式化简)注意:此类要求的题目,如果没有化简,直接代入求值一分不得! 考点:①分式的加减乘除运算 ②因式分解 ③二次根式的简单计算1.. 2。
21422---x x x 3.(a+b )2+b (a ﹣b ). 4. 11()a a a a --÷ 5.2111x x x -⎛⎫+÷ ⎪⎝⎭6、化简求值(1)⎝⎛⎭⎪⎪⎫1+ 1 x -2÷ x 2-2x +1 x 2-4,其中x =-5.(2)(a ﹣1+)÷(a 2+1),其中a=﹣1.(3)2121(1)1a a a a++-⋅+,其中a =2-1. (4))252(423--+÷--a a a a , 1-=a (5))12(1aa a a a --÷-,并任选一个你喜欢的数a 代入求值.(6)22121111x x x x x -⎛⎫+÷ ⎪+--⎝⎭然后选取一个使原式有意义的x 的值代入求值7、先化简:再求值:⎝ ⎛⎭⎪⎪⎫1-1a -1÷a 2-4a +4a 2-a ,其中a =2+ 2 .8、先化简,再求值:a -1a +2·a 2+2a a 2-2a +1÷1a 2-1,其中a 为整数且-3<a <2.9、先化简,再求值:222211yxy x x y x y x ++÷⎪⎪⎭⎫⎝⎛++-,其中1=x ,2-=y .10、先化简,再求值:222112()2442x x x x x x-÷--+-,其中2x =(tan45°-cos30°) 三、训练三(求解方程)1. 解方程x 2﹣4x+1=0. 2。
(完整版)初三中考数学计算题训练及答案

1 23 8 3 ﹣ ﹣1.计算:22+|﹣1|﹣ 9.2 计算:( 13)0 -( 2 )-2 + tan45°13.计算:2×(-5)+23-3÷2.4. 计算:22+(-1)4+(5-2)0-|-3|;5.计算: Sin 450 -+ 6.计算: - 2 + (-2)0 + 2 s in 30︒ .( 1)0 + ∣2 3∣ + 2sin 60° 7.计算 ,8.计算:a(a-3)+(2-a)(2+a)∣﹣5∣ + 22﹣( + 1)00 39.计算:10. 计算: -- (-2011) + 4 ÷(-2)11.解方程 x 2﹣4x+1=0.12.解分式方程2 =x + 23x - 23 13.解方程:x=2x-1.14.已知|a﹣1|+ab + 2=0,求方裎x+bx=1 的解.x 315.解方程:x2+4x-2=0 16.解方程:x - 1 - 1 - x = 2.{2x+3<9-x,) 17.(2011.苏州)解不等式:3﹣2(x﹣1)<1.18.解不等式组:2x-5>3x.⎧x - 2 6(x + 3) ⎧⎪x + 2 > 1, 19.解不等式组⎨( -1)- 6 ≥ 4(x +1) 20.解不等式组⎨x +1 < 2.⎩5 x ⎩⎪ 2初中计算题训练2 12 1 2 1 21 2 1 2答案1.解: 原式=4+1﹣3=22.解:原式=1-4+1=-2.3.解:原式=-10+8-6=-84.解:原式=4+1+1-3=3。
1 5.解:原式= -2 + 2 = 2 . 6. 解:原式=2+1+2× =3+1=4.2 27. 解:原式=1+2﹣ 3+2× 2 =1+2﹣ 3+ 3=3.8.解: a (a - 3)+ (2 - a )(2 + a )= a 2 - 3a + 4 - a 2 =4 - 3a9. 解:原式=5+4-1=810. 解:原式= 3 -1- 1=0.2211. 解:(1)移项得,x 2﹣4x=﹣1,配方得,x 2﹣4x+4=﹣1+4,(x ﹣2)2=3,由此可得 x ﹣2=± 3,x =2+3,x =2﹣ 3;(2)a=1,b=﹣4,c=1.b 2﹣4ac=(﹣4)2﹣4×1×1=12>0.4 ± 12x=2 =2± 3, x =2+ 3,x =2﹣ 3.12.解:x=-10 13.解:x=314. 解:∵|a﹣1|+1b + 2=0,∴a﹣1=0,a=1;b+2=0,b=﹣2.1 ∴x ﹣2x=1,得 2x 2+x ﹣1=0,解得 x =﹣1,x =2. 1 1经检验:x =﹣1,x =2是原方程的解.∴原方程的解为:x =﹣1,x =2. 15.解: x =-4 ±16 + 8 = -4 ± 2 6 = - 2 ± 2 216. 解:去分母,得 x +3=2(x -1) . 解之,得 x =5. 经检验,x =5 是原方程的解. 17. 解:3﹣2x+2<1,得:﹣2x <﹣4,∴x>2. 18.解:x <-519.解: x ≥ 1520. 解:不等式①的解集为 x >-1;不等式②的解集为 x +1<4 x <3故原不等式组的解集为-1<x <3.2 36。
专题01 数与式-2020年中考数学真题分专题训练(湖南专版)(教师版含解析)

2020年中考数学真题分项汇编(湖南专版)专题01 数与式1. (2020年湖南长沙中考)(-2)3的值等于( )A . -6B . 6C . 8D . -8【答案】D【解析】(-2)3的含义为3个-2的乘积,故选D 2. (2020年湖南常德中考)4的倒数为( )A .41 B .2 C .1 D .﹣4【分析】根据倒数的意义,乘积是1的两个数叫做互为倒数,求倒数的方法,是把一个数的分子和分母互换位置即可,是带分数的化成假分数,再把分子分母互换位置,据此解答. 解:4的倒数为41. 故选:A .3. (2020年湖南株洲中考)a 的相反数为-3,则a 等于( )A . -3B . 3C . 3±D .13【答案】B【分析】根据相反数的定义解答即可.【详解】解:因为3的相反数是﹣3,所以a =3. 4. (2020年湖南张家界市中考)12020的倒数是( ) A . 12020- B . 12020 C . 2020D . 2020-【答案】C【解析】根据倒数的定义解答即可. 【详解】解:∵12020×2020=1,∵12020的倒数是2020. 故答案为C .5. (2020年湖南怀化中考)下列数中,是无理数的是( )A . 3-B . 0C .13D .【答案】D【分析】根据无理数的三种形式求解即可.【详解】解:-3,0,13故选:D .6. (2020年湖南岳阳中考)-2020的相反数是( )A . 2020B . -2020C .12020D . -12020【答案】A【分析】根据相反数直接得出即可. 【详解】-2020的相反数是2020, 故选A .7. (2020年湖南湘西中考)下列各数中,比2-小的数是( )A . 0B . 1-C . 3-D . 3【答案】C【解析】根据大于0的数是正数,而负数小于0,排除A 、D ,而-1>-2,排除B ,而-3<-2,从而可得答案. 【详解】根据正负数的定义,可知-2<0,-2<3,故A 、D 错误; 而-2<-1,B 错误;-3<-2,C 正确; 故选C .8. (2020年湖南株洲中考)一实验室检测A 、B 、C 、D 四个元件的质量(单位:克),超过标准质量的克数记为正数,不足标准质量的克数记为负数,结果如图所示,其中最接近标准质量的元件是( )A .B .C .D .【答案】D【解析】分别求出每个数的绝对值,根据绝对值的大小找出绝对值最小的数即可. 【详解】∵|+1.2|=1.2,|-2.3|=2.3, |+0.9|=0.9,|-0.8|=0.8, 0.8<0.9<1.2<2.3,∵从轻重的角度看,最接近标准的是选项D 中的元件9. (2020年湖南省衡阳市中考)-3相反数是( )A . 3B . -3C .13D . 13-【答案】A【解析】根据相反数的定义可得答案. 【详解】解:3-的相反数是3.故选A .10. (2020年湖南湘潭中考)-6的绝对值是( )A . -6B . 6C . -16D .16【答案】B【分析】在数轴上,表示一个数的点到原点的距离叫做这个数的绝对值. 【详解】负数的绝对值等于它的相反数,所以-6的绝对值是6 故选B11. (2020年湖南长沙中考)下列运算正确的是 ( ) A .523=+ B . 628x x x =÷ C . 523=⨯ D . 725a a =)(【答案】B【解析】A 选项,非同类二次根式不能直接相加,错误; B 选项,同底数幂相除,底数不变,指数相减,正确; C 选项,623=⨯,错误;D 选项,幂的乘方,底数不变,指数相乘,应为1025a a =)(,错误。
2020中考数学 计算专题:数与式(含答案)

2020中考数学计算专题:数与式(含答案)一、选择题(本大题共6道小题)1. -2的相反数是()A. 2B. -22 C. - 2 D. -22. 下列分式中,最简分式是()A. x2-1x2+1B.x+1x2-1C.x2-2xy+y2x2-xyD.x2-362x+123. 计算(√12-3)0+√27--√33-1的结果是()A.1+83√3B.1+2√3C.√3D.1+4√34. 在数学活动课上,同学们利用如图的程序进行计算,发现无论x取任何正整数,结果都会进入循环.下面选项一定不是..该循环的是()A. 4,2,1B. 2,1,4C. 1,4,2D. 2,4,15. 南宋数学家杨辉在其著作《详解九章算法》中揭示了(a+b)n(n为非负整数)展开式的项数及各项系数的有关规律如下,后人也将下表称为“杨辉三角”.(a+b)0=1(a+b)1=a+b(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5…则(a+b)9展开式中所有项的系数和是()A .128B .256C .512D .10246. a是不为1的有理数,我们把11-a 称为a 的差倒数,如2的差倒数为11-2=-1,-1的差倒数为11-(-1)=12.已知a 1=5,a 2是a 1的差倒数,a 3是a 2的差倒数,a 4是a 3的差倒数,…,以此类推,a 2019的值是 ( )A .5B .-14C .43D .45二、填空题(本大题共6道小题)7. 如果a -b -2=0,那么代数式1+2a -2b 的值是 .8. 64的立方根为 .9. 化简:x +3x 2-4x +4÷x 2+3x (x -2)2=________.10. 计算:x x -1-1x -1=________.11. 定义运算a ⊗b =a(1-b),下面给出了关于这种运算的几个结论:①2⊗(-2)=6;②a ⊗b =b ⊗a ;③若a +b =0,则(a ⊗a)+(b ⊗b)=2ab ;④若a ⊗b =0,则a =0. 其中正确结论的序号是________.(在横线上填上你认为所有正确结论的序号)12. 已知:[x ]表示不超过x 的最大整数.例:[4.8]=4,[-0.8]=-1.现定义:{x }=x -[x ],例:{1.5}=1.5-[1.5]=0.5,则{3.9}+{-1.8}-{1}= .三、解答题(本大题共5道小题)13. 先化简,再求值:3x+2+x -2÷x 2-2x+1x+2,其中|x|=2.14. 化简(x -1x )÷x 2-2x +1x 2-x.15. 先化简,再求值:a a -b (1b -1a)+a -1b ,其中a =2,b =13.16. 老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了如图所示一个二次三项式,形式如下:-3x =x 2-5x +1.(1)求所捂的二次三项式;(2)若x =6+1,求所捂二次三项式的值.17. 分解因式:()()22114m n mn --+2020中考数学 计算专题:数与式-答案一、选择题(本大题共6道小题)1. 【答案】A 【解析】直接利用相反数的概念:只有符号不同的两个数互为相反数.- 2 的相反数是2.2. 【答案】A 【解析】A.x 2-1x 2+1分子分母中无公因式,是最简分式;B.x +1x 2-1=x +1(x +1)(x -1)=1x -1,故不是最简分式;C.x 2-2xy +y 2x 2-xy =(x -y )2x (x -y )=x -y x ,故不是最简分式;D.x 2-362x +12=(x +6)(x -6)2(x +6)=x -62,故不是最简分式. 3. 【答案】D4. 【答案】D 【解析】A.4输入后得到的值为42=2,再将2循环输入得到22=1,再将1循环输入得到3×1+1=4,∴输入4,结果依次是4,2,1;B 和D 中将2输入后得到的值为22=1,再将1循环代入得到3×1+1=4,∴输入2的结果依次是2,1,4,故D 错误;C.1输入后得到的值为3×1+1=4,再将4循环代入得到42=2,∴输入1结果依次是1,4,2.故选D.5. 【答案】C [解析]由“杨辉三角”的规律可知,(a +b )9展开式中所有项的系数和为29=512.6. 【答案】D [解析]∵a 1=5,∵a 2=11-a 1=11-5=-14,a 3=11-a 2=11-(-14)=45,a 4=11-a 3=11-45=5,… ∵这些数以5,-14,45三个数依次不断循环.∵2019÷3=673,∵a 2019=a 3=45,故选D .二、填空题(本大题共6道小题)7. 【答案】58. 【答案】4 9. 【答案】1x 【解析】原式=x +3(x -2)2·(x -2)2x (x +3)=1x. 10. 【答案】1 【解析】原式=x -1x -1=1. 11. 【答案】①③ 【解析】本题考查新定义、求代数式的值、代数式的化简和解12. 【答案】1.1[解析]根据题意可得:{3.9}+{-1.8}-{1}=3.9-3-1.8+2-1+1=1.1,故答案为:1.1.三、解答题(本大题共5道小题)13. 【答案】解:原式=x 2-1x+2÷(x-1)2x+2=(x+1)(x-1)x+2·x+2(x-1)2=x+1x-1.∵|x|=2,∴x=±2,由分式有意义的条件可知:x=2,∴原式=3.14. 【答案】解:原式=x2-1x·x2-xx2-2x+1(2分)=(x+1)(x-1)x·x(x-1)(x-1)2(3分)=x+1.(5分) 15. 【答案】解:原式=aa-b·a-bba+a-1b=1b+a-1b=ab.(4分)故当a=2,b=13时,原式=ab=2×3=6.(6分)16. 【答案】解:(1)x2-5x+1+3x=x2-2x+1(2)x2-2x+1=(x-1)2,当x=6+1时,原式=(6)2=6.17. 【答案】(1)(1)mn m n mn m n+-+++-【解析】()()2222222222 1141421(2) m n mn m n m n mn m n mn m n mn --+=--++=++-+-22(1)()(1)(1)mn m n mn m n mn m n=+--=+-+++-。
初三数学计算题

初三数学计算题中考数学计算题专项训练1.(1)计算:1)Sin45°-1/2+3/82)-3+(-1)+2sin30°3)-1-6+2/33.(1)计算:1)(2/3)^32)2x/(x-3)-(x+1)/(2-x)=1/42.解分式方程:1)x-3/(3-x)-x/(2-x)=-3/82)(x+2)/(x-2)-(x^2-x)/(x^2-4x+4)=1/(x-4)4.解不等式组,并把解集在数轴上表示出来:1-2(x-3)<=3.3x-2<x<=21}6.计算:12-3-(-2006)+27.解不等式组:{3x-11}8.解分式方程:5/(3(x-4)+2)=12/(x+2)10.解不等式组:{(x-1)/(x+1)}*{1/(2x-3)}>=111.先化简再求值:(2a+1)/(a-1)-(2a-2)/(a+1)。
其中a满足a≠112.计算:4-[(2-1)/(5+2)]13.计算:(a-b)/(2ab+1)14.计算:-2+[(1/2)+2sin30°]16.计算:1/(2+1/3)+(-1)/(4-5/2)17.解不等式组:{3(x-2)+4=2x-1}3.(a+b)+b(a-b)。
4.(a-1)/(5*(1+|a|*x)^2)。
6.1+(1+x-2)/(x^2-4)) where x=-5.1a+1)^2*(2a+1)/(a-1) where a=2-1.3-a)/(5-a-2) where a=-1.2a-4a-2)/(a-1) where a is any chosen number。
2x+1)/(x-1)+2 where x is any chosen number that makes the n defined。
a-4a+4)/(a^2-a) where a=2+2.11/2)x+22/(x-y) where x=1 and y=-2.112/(x^2-2x)/(x^2-4x+4) where x=2(tan45°-cos30°)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年中考数学计算题专项训练一、集训一(代数计算) 1. 计算: (1)3082145+-Sin (2)错误!未找到引用源。
(3)2×(-5)+23-3÷12(4)22+(-1)4+(5-2)0-|-3|;(6)︒+-+-30sin 2)2(20(8)()()022161-+--(9)( 3 )0- ( 12 )-2 + tan45° (10)()()0332011422---+÷-2.计算:345tan 32312110-︒-⨯⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛--3.计算:()()()︒⨯-+-+-+⎪⎭⎫⎝⎛-30tan 331212012201031100124.计算:()()112230sin 4260cos 18-+︒-÷︒---5.计算:120102(60)(1)|28|(301)21cos tan -÷-+--⨯--二、集训二(分式化简)1.. 2。
21422---x x x 、 3. (a+b )2+b (a ﹣b ). 4. 11()a a a a --÷ 5.2111x x x -⎛⎫+÷ ⎪⎝⎭6、化简求值(1)⎝⎛⎭⎫1+ 1 x -2÷ x 2-2x +1 x 2-4,其中x =-5. (2)(a ﹣1+错误!未找到引用源。
)÷(a 2+1),其中a=错误!未找到引用源。
﹣1.(3)2121(1)1a a a a ++-⋅+,其中a 2-1. (4))252(423--+÷--a a a a , 1-=a (5))12(1aa a a a --÷-,并任选一个你喜欢的数a 代入求值. (6)22121111x x x x x -⎛⎫+÷⎪+--⎝⎭然后选取一个使原式有意义的x 的值代入求值(7)8、化简2111x x x -⎛⎫+÷ ⎪⎝⎭9、化简求值:111(11222+---÷-+-m m m m m m ), 其中m =3.10、先化简,再求代数式2221111x x x x -+---的值,其中x=tan600-tan45011、化简:xx x x x x x x x 416)44122(2222+-÷+----+, 其中22+=x12、化简并求值:221122a b a b a a b a -⎛⎫--+ ⎪-⎝⎭,其中322323a b =-=,. 13、计算:332141222+-+÷⎪⎭⎫ ⎝⎛---+a a a a a a a . 14、先化简,再求值:13x -·32269122x x x xx x x-+----,其中x =-6. 15、先化简:再求值:⎝⎛⎭⎫1-1a -1÷a 2-4a +4a 2-a ,其中a =2+ 2 .16、先化简,再求值:a -1a +2·a 2+2a a 2-2a +1÷1a 2-1,其中a 为整数且-3<a <2.17、先化简,再求值:222211y xy x xy x y x ++÷⎪⎪⎭⎫ ⎝⎛++-,其中1=x ,2-=y .18、先化简,再求值:2222(2)42x x x x x x -÷++-+,其中12x =. 19、先化简,再求值:222112()2442x x x x x x-÷--+-,其中2x =(tan45°-cos30°) 20、22221(1)121a a a a a a +-÷+---+. 21、先化简再求值:1112421222-÷+--•+-a a a a a a ,其中a 满足20a a -=. 22、先化简:144)113(2++-÷+-+a a a a a ,并从0,1-,2中选一个合适的数作为a 的值代入求值。
23、先化简,再求值:)11(x -÷11222-+-x x x ,其中x =2 24、化简:22222369x y x y yx y x xy y x y--÷-++++. 25、先化简,再求值:2224441x x xx x x x --+÷-+-,其中x=-3. 三、集训三(求解方程)1. 解方程x 2﹣4x+1=0. 2。
解分式方程2322-=+x x 3.解方程:3x = 2x -1 . 4。
已知|a ﹣1|+错误!未找到引用源。
=0,求方裎错误!未找到引用源。
+bx=1的解.5.解方程:x 2+4x -2=0 6。
解方程:x x - 1 - 31- x = 2.四、集训四(解不等式) 1.解不等式组,并写出不等式组的整数解.2.解不等式组()()()⎩⎨⎧+≥--+-14615362x x x x 3.解不等式组:⎩⎨⎧2x +3<9-x ,2x -5>3x . 4.解不等式组⎪⎩⎪⎨⎧<+>+.221,12x x 5.解方程组错误!未找到引用源。
,并求错误!未找到引用源。
的值.6.解不等式组⎪⎩⎪⎨⎧-≤-〉-121312x x x x 7. 解不等式组⎩⎪⎨⎪⎧x +23 <1,2(1-x )≤5,并把解集在数轴上表示出来。
8. 解不等式组:102(2)3x x x -≥⎧⎨+>⎩ 9. 解不等式组313112123x x x x +<-⎧⎪++⎨+⎪⎩≤,并写出整数解.五、集训五(综合演练)1、(1)计算: |2-|o 2o 12sin30(3)(tan 45)-+--+; (2)先化简,再求值: 6)6()3)(3(2+---+a a a a ,其中12-=a .2、解方程: 0322=--x x3、解不等式组1(4)223(1) 5.x x x ⎧+<⎪⎨⎪-->⎩,4、 (1)12)21(30tan 3)21(001+-+---;(2))212(112aa a a a a +-+÷--5、(1)︳-33︱-︒30cos 2-12-22-+(3-π)0(2)(-2010)0+31--2sin60°(2) 先化简,再求值.34)311(2+-÷+-x x x ,其中x=3.. (3)已知x 2-2x =1,求(x -1)(3x +1)-(x +1)2的值.6.先化简,再求值:21111211a a a a a a ++-÷+-+-,其中 2.a = 7.先化简,再求值:53(2)224x x x x ---÷++,其中23x =-. 8.解分式方程:2641313-=--x x . 9.解方程组:34194x y x y +=⎧⎨-=⎩10.(1)计算:(-1)2+tan60°-(π+2010)012、已知a 、b 互为相反数,并且523=-b a ,则=+22b a .13、已知⎩⎨⎧=+=+6252y x y x 那么x-y 的值是( )14、若不等式组220x a b x ->⎧⎨->⎩的解集是11x -<<,求()2010a b +的值15、计算:02338(2sin 452005)(tan 602)3---︒-+︒-16 、计算: 131-⎪⎭⎫ ⎝⎛+0232006⎪⎪⎭⎫ ⎝⎛-3-tan60° 一.解答题(共30小题)1.计算题: ①;②解方程:.2.计算:+(π﹣2013)0.3.计算:|1﹣|﹣2cos30°+(﹣)0×(﹣1)2013.4.计算:﹣.5.计算:. 6..7.计算:.8.计算:.9.计算:.10.计算:.11.计算:.12..13.计算:.14.计算:﹣(π﹣3.14)0+|﹣3|+(﹣1)2013+tan45°.15.计算:.16.计算或化简:(1)计算2﹣1﹣tan60°+(π﹣2013)0+|﹣|.(2)(a﹣2)2+4(a﹣1)﹣(a+2)(a﹣2)17.计算:(1)(﹣1)2013﹣|﹣7|+×0+()﹣1;(2).18.计算:.19.(1)(2)解方程:.20.计算:(1)tan45°+sin230°﹣cos30°•tan60°+cos245°;(2).21.(1)|﹣3|+16÷(﹣2)3+(2013﹣)0﹣tan60°(2)解方程:=﹣.22.(1)计算:.(2)求不等式组的整数解.23.(1)计算:(2)先化简,再求值:(﹣)÷,其中x=+1.24.(1)计算:tan30°(2)解方程:.25.计算:(1)(2)先化简,再求值:÷+,其中x=2+1.26.(1)计算:;(2)解方程:.27.计算:.28.计算:.29.计算:(1+)2013﹣2(1+)2012﹣4(1+)2011.30.计算:.。