基因工程抗体
基因工程抗体名词解释

基因工程抗体名词解释基因工程抗体是利用基因工程技术对人工合成抗体进行定制和改造的一种生物工程技术。
抗体是一种由免疫系统产生的蛋白质,它可以识别和结合体内外的异物,从而协助机体进行免疫防御。
基因工程抗体通过选择性克隆和定制抗体基因序列,可以产生特异性更强、稳定性更好、生产成本更低的抗体。
基因工程抗体包括以下几种:1. 单克隆抗体(Monoclonal Antibodies):基因工程技术可以使得单个淋巴细胞克隆产生大量相同的抗体,从而获得具有高度特异性的单克隆抗体。
这种抗体广泛应用于医学诊断、疾病治疗和科学研究等领域。
2. 重链抗体(Recombinant Antibodies):重链抗体是利用基因工程技术使抗体重链蛋白的编码基因与其他蛋白的编码基因相融合,生成融合抗体。
这种重链抗体可以通过改变其结构和功能来提高其生物活性和稳定性。
3. 组合抗体(Bispecific Antibodies):基因工程技术可以将两种不同的单克隆抗体的编码基因进行融合,产生具有双特异性的组合抗体。
这种抗体可以同时结合两个不同的目标分子,从而实现更强的疗效和更多样化的应用。
4. 人源化抗体(Humanized Antibodies):由于小鼠源抗体和人类抗体在体内效价和安全性方面存在差异,基因工程技术可以通过改造抗体的基因序列,使得抗体具有更接近人类抗体的结构和功能。
这种人源化抗体更适合在治疗和预防疾病时使用。
基因工程抗体的应用广泛,其中的一些常见应用包括:1. 肿瘤治疗:通过基因工程技术,可以定制针对特定肿瘤抗原的单克隆抗体,用于治疗癌症。
2. 自身免疫性疾病治疗:基因工程抗体可以定制具有特异性和高效的抗体,用于治疗自身免疫性疾病,如类风湿性关节炎和系统性红斑狼疮等。
3. 传染病治疗:通过基因工程技术,可以改造抗体的结构和功能,用于治疗传染病,如艾滋病、流感和乙肝等。
4. 分子诊断:基因工程抗体可以用于检测和诊断疾病,如癌症标志物的检测和感染性病原体的检测等。
基因工程抗体的例子

基因工程抗体的例子
基因工程抗体是通过基因重组技术将特定抗体基因导入至其他生物细胞中,使其具备产生抗体的能力,从而实现大规模生产高效、高纯度的抗体。
以下是一些基因工程抗体的例子:
1. 重组抗体药物:例如,重组人源单克隆抗体药物,如阿达木单抗(Adalimumab)和帕尼单抗(Panitumumab),用于治疗自身免疫疾病和某些癌症。
2. 基因工程抗体治疗疫苗:例如,COVID-19疫苗中使用的mRNA 疫苗,通过基因工程技术将病毒的抗原编码序列导入到人体细胞中,诱导免疫系统产生抗体来抵抗病毒感染。
3. 重组抗体诊断试剂:例如,基因工程技术可用于生产特定病原体抗体,如新冠病毒SARS-CoV-2抗体,用于开发快速诊断试剂盒,帮助早期检测和诊断疾病。
4. 基因工程抗体治疗:例如,CAR-T细胞疗法,通过基因工程技术将患者自身T细胞中的受体基因改造,使其能够识别和杀死癌细胞,用于治疗某些血液恶性肿瘤。
5. 基因工程抗体生产:基因工程技术可用于大规模生产特定抗体,如重组人源单克隆抗体,用于研究和治疗领域。
这些基因工程抗体的例子说明了基因工程技术在抗体研究、生产和
应用中的重要性和广泛应用性。
基因工程抗体

四.超变区多肽
抗体抗原结合是经过补体决定区(CDR)来 实现。因此,CDR是构成抗原抗体结合的最小 结构单位。根据这一特点,可以设计出那些 在抗原识别及亲和力方面有重要意义的CDR多 肽,直接用于诊断或治疗,可望获得理想的 结果。这种只含有一个CDR多肽的抗体,称为 超变区多肽,亦称为最小识别单位(minimal recognition unit, MRU)。
如:免疫分子检测; 免疫导向药物治疗恶性肿瘤 --- McAb抗癌药物(毒素或 放射核素偶联)。
多克隆抗体与单克隆抗体的比较
多克隆抗体
单克隆抗体
来源 动物免疫血清、恢复期病人血 多为鼠源性 清或免疫接种人群
特点 来源广泛、制备容易
纯度高、特异性强、效价高、少 或无血清交叉反应
组成 针对不同抗原表位的抗体的混 针对单一表位,结构和组成高度
HV sequences contact the antigen.
epitope
Ig胚系基因结构特点
在Ig分子多肽 链中,κ型、λ 型轻链和Ig的 重链分别写作 Igκ、Igλ和IgH ,基因依次写 作IGK、IGL和 IGH,其分别 位于第2、22 和14号染色体 上。
13
重链: 位于14号染色体,可分为4组
甚少 3.生产成本高,难于普及应用
人杂交瘤技术未获真正突破原因:融合率低、 建株难、不稳定、产量低、人体不能随意 免疫
新思路:尽量减少抗体中的鼠源成分,但又 尽量保留原有的抗体特异性。
基因工程抗体:根据研究者的意图,采用基 因工程方法,在基因水平,对免疫球蛋白 基因进行切割、拼接或修饰后导入受体细 胞进行表达,产生新型抗体,主要包括嵌 合抗体、人源化抗体、小分子抗体、抗体 融合蛋白和双特异性抗体。
基因工程抗体名词解释

基因工程抗体名词解释
基因工程抗体是由人工合成或修改的基因来产生的抗体,也称为重组抗体。
与传统的抗体不同,基因工程抗体不受限于动物来源,可以通过人工合成的方式来获得。
基因工程抗体的制备过程包括选择目标抗原、构建重组抗体基因、转染宿主细胞、高效表达和纯化等步骤。
因为基因工程抗体可以定制化地设计和制备,具有高度特异性和亲和力,因此在生物医学研究、临床诊断和治疗等方面具有广泛的应用前景。
常见的基因工程抗体包括单克隆抗体、人源化抗体、嵌合抗体和重组抗体等。
其中,单克隆抗体是指由单一克隆细胞产生的抗体,具有高度特异性和一致性;人源化抗体是将动物源的抗体人源化,避免了人体免疫系统对异种抗体的攻击;嵌合抗体是将两种或以上不同来源的抗体结合起来产生的新型抗体,具有更广泛的抗原覆盖范围和高亲和力;重组抗体则是根据目标抗原的结构和性质,设计并合成新的抗体基因来产生新型抗体,具有更高的特异性和亲和力。
基因工程抗体的发展将会在生物医学领域带来更多的应用和发展机会,同时也将推动基础研究和药物研发的进步。
基因工程抗体

展望
基因工程抗体由于将抗体基因置于人的操作之 下,抗体分子的大小、亲和力的高低、对细胞 毒性的强弱,以及是否接上其它有用的分子等 都可根据治疗和诊断的要求进行设计,这是杂 交瘤技术所不及的,因此有着强大的生命结束仅依靠免 疫获得抗体的状况。
用三乙撑胺Co3+盐作为金属离子辅因子,所用 半抗原分子带有一肽键。且通过羧酸根及仲胺 基与金属离子相连。将此半抗原通过共价键连 接在载体蛋白上免疫动物后产生的抗体,在金 属离子复合物作为辅因子的参与下,这些抗体 酶能选择性水解甘氨酸和丙氨酸之间的肽键, 其转化数达6×10-4。
4.基因工程抗体技术
催化抗体(catalytic antibody)
催化抗体也叫抗体酶(abzyme),是具 有催化活性的免疫球蛋白,它兼具抗体 的高度选择性和酶的高效催化性
1986年Lerner和Schultz两个研究小组研究已取得了相当 广泛的成功。
在亲和性和结合特异性方面,抗 体-抗原的相互作用与酶-底物的 相互作用相似。
抗体与处于稳定、低能构型的抗原作用,而酶 与处于不稳定、高能的过渡态底物结合。酶结 合能量帮助打开底物分子的化学键。
抗体酶的结构应该与底物过渡态互补。但这种 过渡态往往只存在短时间,所以研究者必须先 制备底物过渡态的稳定低能类似物,然后制备 抗体酶。
优点
这类抗体具有分子量小,作为外源性蛋 白的免疫原性较低;在血清中比完整的 单克隆抗体或F(ab)2片段能更快地被清 除;无Fc片段,体内应用时可避免非特 异性杀伤;能进入实体瘤周围的微循环 等优点。
(四)Ig相关分子
原理:可将抗体分子的部分片段(如V区 或C区)连接到与抗体无关的序列上(如 毒素),就可创造出一些Ig相关分子
基因工程抗体PPT课件

cover illustration Antibody single-chain fragment stability-engineered by point mutations (A) and by a CDR-graft to the most stable human consensus framework (B). Insufficient thermodynamic stability can limit the use of particular antibody fragments as targeting moieties in therapeutic constructs, such as e.g. immunotoxins or immunoliposomes. This limitation can be overcome by a graft of the antigen combining site to a more stable antibody framework. However, such grafts sometimes fail to reach the superior stability of the acceptor framework. Comparison with the stabilization obtained with a set of designed point mutations shows that this is not always due to destabilizing interactions within the complementary determining regions, but to subtle structural differences between different classes of antibody frameworks that introduce strain in CDR grafts to divergent frameworks. For further details please see Kügler et al. (pp.135–148) and Honegger et al. (pp. 121–134).
《基因工程抗体》PPT课件

(三)单链抗体(single-chain antibody
) • 又称FV分子。
• 目的:基因工程手段构建更小的具有结合抗原能力的抗体片段,即FV分子或单链抗体 蛋白。
• 本质:是由VL区氨基酸序列与VH区氨基酸序列经肽连接物(linker)连接而成。此外肽 连接物还可将药物、毒素或同位素与单链抗体蛋白相融合。
优点
• 这类抗体具有分子量小,作为外源性蛋白的免疫原性较低;在血清中比完整的单 克隆抗体或F(ab)2片段能更快地被清除;无Fc片段,体内应用时可避免非特异性 杀伤;能进入实体瘤周围的微循理:可将抗体分子的部分片段(如V区或C区)连接到与抗体无关的序列上(如 毒素),就可创造出一些Ig相关分子
• 催化抗体制备技术的开发预示着可以人为生产适应各种用途的,特别是自然界不存在 的高效催化剂,对生物学、化学和医药等多种学科有重要的理论意义和实用价值。
(二)催化抗体的制备
• 催化抗体(抗体酶)技术是化学和免疫生物学的研究成果在分子水平交叉渗透的产物 ,是将抗体的极其多样性和酶分子的巨大催化能力结合在一起的蛋白质分子设计的新 方法,故而显示出较高的理论和实用价值,成为酶工程领域中的研究热点。
2. 导入骨髓瘤细胞,使之表达嵌合重链 3. 再将小鼠杂交瘤细胞的Ig VL基因与人的CL基因相连 4. 转染含嵌合重链的小鼠骨髓瘤细胞 5. 筛选分泌鼠-人嵌合抗体的骨髓瘤细胞
所分泌的嵌合抗体与原杂交瘤细胞分 泌的抗体特异性和亲和力相同,但减 少了抗体中的鼠源性成分
(二)重构抗体(reshaping anti body)
基因工程抗体
(genetic engineering antibody)
• 随着DNA重组技术以及其它分子生物学技术的发展,人们利用基因工程技术来制备抗体 分子,这种抗体分子称为基因工程抗体,这是分子水平的抗体。
基因工程抗体的名词解释

基因工程抗体的名词解释
嘿,你知道基因工程抗体吗?这可不是什么普通的玩意儿啊!基因
工程抗体就像是一个被精心打造的超级武器!比如说,普通抗体可能
就像一把普通的剑,能战斗,但能力有限。
而基因工程抗体呢,那简
直就是一把经过高科技改良的激光剑,威力超强!
基因工程抗体呀,是通过基因工程技术对抗体进行改造和重组得到的。
这就好像是给抗体来了一场华丽的变身秀!科学家们就像是神奇
的魔法师,运用各种技术手段,让抗体变得更强大、更精准、更有针
对性。
想象一下,疾病就像是一群可恶的小怪兽,而基因工程抗体就是专
门来对付它们的超级英雄。
它可以精准地找到那些小怪兽,然后毫不
留情地发起攻击。
你看啊,在医学领域,基因工程抗体可是有着大用处呢!它能帮助
医生们更有效地诊断疾病,就像一个敏锐的侦探,能迅速找出问题所在。
而且在治疗疾病方面,它也是一把好手,能给患者带来新的希望。
我记得有一次,我和朋友聊天,说到基因工程抗体,他一脸茫然。
我就给他解释,就像给他打开了一扇通往新世界的大门。
他惊叹道:“哇,原来还有这么神奇的东西!”
基因工程抗体的发展真的是太迅速了,就像火箭一样蹭蹭往上冲!
它不断地给我们带来惊喜和希望。
难道你不想多了解了解它吗?它真
的是太有趣、太重要了!我觉得基因工程抗体就是未来医学的一颗闪耀明星,它会给我们的健康带来更多的保障和奇迹!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基因工程抗体生命科学学院 09动物医学学号:2009082554 姓名:张孝辉指导老师:郑新添【摘要】:基因工程抗体以其独特的优点(免疫原性低、可按人的意愿加以改造等)正逐渐取代动物源性单抗。
随着基因工程和蛋白质工程等生物技术在抗体研制领域的广泛应用, 适应不同需要的基因工程抗体的种类日趋多样化, 构建日趋合理化, 在体内的生物学效应也日臻完善, 使之较天然单抗的治疗效果更好, 范围更广, 并在初步临床试用中展示了光辉的前景。
【关键词】:基因工程抗体; 生物技术【前言】:单抗作为一种有效的新型生物制剂促进了基础医学、临床医学、生物学、农学等众多生命学科的发展, 尤其在疾病的预防、诊断及治疗方面的作用日益重要。
然而作为体内的应用, 啮齿类动物单抗的高免疫原性, 使所有病人均发生不同程度的人抗鼠抗体反应(HAMA), 削弱了治疗的有效性, 并对清除抗体的器官产生毒性损害, 因此其应用严重受限。
为了创造出更理想的治疗用抗体分子, 将制备单抗的细胞工程技术与生产重组分子的基因工程技术和蛋白质工程技术相结合, 产生了基因工程抗体。
短短的几年研究使得这个领域的发展日新月异, 目前已成为抗体应用研究的热点。
但随着研究的深入进展, 也暴露出许多问题。
目前在以单抗为基础的临床治疗研究中, 面临五个最重要的问题及技术挑战:(1)使基因工程抗体具有与亲本抗体相一致的亲和力及特异性;(2)克服人抗动物单抗及人抗任何与单抗相交联的细胞毒性物质的免疫反应;(3)制备合适的细胞毒性物质;(4)符合体内药物动力学及生物分布特性;(5)高产量, 低成本。
本文综述了近几年国内外学者为攻克这几个难题在基因工程抗体领域所做的努力及研究进展。
1.基因工程抗体概述基因工程抗体又称重组抗体, 是指利用重组DNA 及蛋白质工程技术对编码抗体的基因按不同需要进行加工改造和重新装配, 经转染适当的受体细胞所表达的抗体分子。
目前报道的基因工程抗体很多, 分类方法不一, 大体可以分为三类。
1.1完整的抗体分子该类抗体类似于天然抗体分子, 但经改造后更接近于人的免疫球蛋白, 可在一定程度上降低HAMA。
1.1.1嵌合抗体(chimeric antibody):由在基因水平上连接的小鼠抗体V 区及人抗体C 区组成。
这种抗体含 75%~ 80%人抗体, 20%鼠抗体, 保留了原来鼠源单抗的特异性, 但对人体仍具一定的免疫原性。
1.1.2人源化抗体(humanized antibody)又称重构型抗体、改型抗体(reshaped antibody)或CDR 移植抗体(CDR grafting antibody):通过置换三个发夹状环的鼠抗体超变区(又称互补决定区,CDR), 使构成抗原结合部位的轻重链各 3 个CDR 区是鼠源的, 其余均为人源的。
该抗体对人的免疫原性大大降低, 但与抗原的亲和力也有所下降。
虽然目前通过选择与鼠单抗同源性大的抗体及改变骨架(fragment region, Fr)上某些关键的氨基酸残基或遮蔽鼠单抗CDR 表面的残基(veneering) 等方法,人源化抗体与抗原的亲和力只能达到原先鼠源单抗的33%~ 35%。
而且杂交瘤技术使人们可能在稳定的细胞株中生产任何一种单抗,该技术已广泛应用于科研及临床诊治中。
鼠单抗作为异源性蛋白在人体内可诱发抗鼠抗体(HAMA)的产生(Elliott等,1994),而通过杂交瘤技术获取人单抗,技术上还存在诸多问题,为解决这一难题,鼠单抗人源化成为最早出现的基因工程抗体(Vaughan等,1998)。
1.1.3完整的人抗体(fully human antibody):这是由人淋巴细胞产生的理想的抗体分子, 不包含任何鼠源成分。
此种抗体不仅完全避免了HAMA 的产生, 而且特异性、亲和力不受影响。
尽管利用人细胞制备单抗的工艺尚不成熟, 但抗体库技术、体外亲和力成熟及转基因动物的研究等, 已使生产完整的人抗体成为可能。
【1】1.2抗体分子片段小分子抗体片段具有免疫原性低, 分子量小, 易于渗入目标组织及清除, 不与Fc 受体阳性细胞相结合等优点, 并便于发展其他效应, 如与毒素相连, 融合表达免疫毒素; 与放射性同位素相连, 在体内成像定位检查时本底低, 能呈现清晰图像。
1.2.1 单区抗体又称单域抗体:由单个VH 功能区构成, 制备方法简便。
但亲和力较完整抗体下降了一个数量级, 另外VH 暴露了原先和VL 结合的疏水性表面,影响了其特异性。
因此如果要应用VH 仍需进一步改造。
【2】1.2.2单链抗体:由VH 和VL 中间联以含14~ 15 个氨基酸残基的小肽, 较稳定, 但亲和力比完整抗体及Fab 低, 可能与肽连接物干扰有关。
除此之外, 一些scFv 有很强的聚集趋势。
因此, 双价、三价 scFv 应运而生。
研究表明, 多价 scFv 在结构和功能上更接近亲本抗体, 与抗原结合比单价 scFv 更敏感, 亲和力更高, 几乎与亲本抗体结合抗原的功能一致。
1.2.3 二硫键稳定的Fv :链内二硫键通过联结VH 和VL 功能区中结构上固定的骨架区使VH 和VL 成为一体。
这种方法适用于任何Fv, 因为用来连接二硫键的残基位于结构上固定的骨架区, 链内二硫键远离CDRs, 不干扰抗体与抗原结合。
因此与 scFv 相比,dsFv 更具稳定性及亲和性。
1.2.4 Fab 和嵌合 Fab:Fab 包括重链的VH2CH1 和轻链的VL2CL, 如果CH1 和CL 是人源的, 就为嵌合Fab。
Fab 由于两条链间的非极性相互作用, 很稳定, 而且因为有CH1 便于检测。
基因工程菌表达的Fab 与酶解获得的Fab 具相同的功能。
它的表达有时会比scFv 低, 可能与两条链在细菌周质中的折叠有关, 但亲和力比 scFv 好, 几乎与亲本抗体一致。
1.2.5分子识别单位(molecular recognition unit,MRU ):一种肽或非肽类分子, 表达一个CDR, 可能模拟亲本分子的特异性。
有一些模拟抗体的肽类似物已被合成, 并证明能阻断病毒与细胞的结合;只构建并合成了一例非肽类分子, 完全消除了抗体对人的免疫原性。
MRU分子量小, 在药物动力学、生物分布尤其是组织穿透性、用药规则等方面具优越性, 可能成为显像分子及打靶分子中很重要的一部分。
不过MRU 是否具有同Fab 及Fv 片段一样的亲和力还有待于进一步证实。
【3】1.3新型抗体分子将抗体的部分片段连接到与抗体无关的序列上或被其他功能性分子所取代, 使这些抗体不仅具有与抗原结合的特性, 还能发挥其他效应。
1.3.1 抗体相关分子又称新效能抗体:通过基因拼接、化学交联等方法, 使不同类型抗体分子与酶、化学药物、放射性同位素、生物毒素、超抗原等相结合。
抗体发挥导向及载体效应, 使所连接物质准确无误地聚集于靶组织, 具有特异性高、用量少、副作用小的优点。
1.3.2双特异性抗体又称双功能抗体:这种抗体的两个Fab 段能同时与两个不同的抗原相结合, 如与特异性抗原及效应细胞相结合。
可通过化学交联、二硫键交换连接两种特异性不同的抗体或通过两种杂交瘤细胞融合而制备。
还有人报道用逆转录病毒衍生的穿梭载体进行基因转移来生产。
1.3.3 催化抗体(catalytic antibody)又称抗体酶(abzyme):指具有催化活性的抗体, 不仅能与抗原结合, 还能使他们发生化学转变。
这些抗体明显的作用是选择性结合并降解病毒、肿瘤细胞及其他生理靶细胞表面表达的蛋白质及碳水化合物抗原。
此外, 催化抗体还参与药物、化学制剂、新物质的合成, 并能为基本化学反应提供理论依据。
例如转换态稳定、酸2碱反应及亲电、亲核反应的催化。
自从第一例与酯类水解有关的转换态类似物的催化抗体的研制成功, 已建立了许多方法以提高催化抗体的反应性 , 包括蛋白质工程的应用及协同因子结合位点的设计等。
最近, 还有人报道用抗体库制备出切割各种核酸的抗体酶。
表面表达的噬菌体抗体库也为催化抗体的生产及临床诊断、治疗方面的发展提供了一条可行的途径。
【4】2基因工程抗体生产技术2.1常规技术提取杂交瘤细胞DNA、总RNA 及mRNA, 构建基因组文库或cDNA 文库, 利用抗体“共同引物”(consensus primer)及逆转录PCR 技术扩增、克隆出所需抗体基因,重组入原核或真核表达载体中, 在原核或真核系统中表达。
原核宿主细胞表达成本低, 可大量生产, 目前E. coli系统应用最多。
然而原核细胞不能进行翻译后的加工, 如二硫键的精确形成和糖基化,而这些加工对维持抗体的正确折叠, 保持抗体的结构与功能具有重要的作用。
因此,应用真核系统表达抗体基因有一定意义【5】。
现今用于表达抗体基因的真核细胞多为骨髓瘤细胞,这类细胞表达产量高, 具良好的生物学活性, 但有无致癌潜能尚待深入研究, 因此用昆虫、植物细胞、酵母等表达抗体基因的报道并不鲜见。
但真核细胞转染困难、效率不高、产量有限。
2.2抗体库技术即用细菌克隆取代B 细胞克隆来表达抗体谱(repertoire)。
主要步骤如下:(1)从免疫或未免疫的B 细胞中分离抗体可变区基因;(2)PCR 扩增抗体基因片段, 随机克隆入相应载体, 从而形成组合文库;(3)转化细菌, 表达产物通过多轮抗原亲和吸附, 最终筛选出所需抗体并大量生产。
表面表达的噬菌体抗体库是此项技术的一个突破性进展。
在丝状噬菌体(M 13、Fd)外壳蛋白基因的信号肽序列与编码成熟蛋白序列之间插入外源基因, 并不影响其表达系统。
外源蛋白融合表达在噬菌体外壳蛋白的N 端, 可以自发折叠成天然状态, 具有其生物活性, 不形成包涵体。
它在筛选时检测的不是细菌克隆的可溶性表达产物, 而是噬菌体载体转化细菌后, 融合表达在噬菌体颗粒表面上的噬菌体抗体。
通过多轮抗原吸附22洗脱22扩增, 最终筛选到所需的抗体克隆, 大大简化了筛选过程。
【6】抗体库技术较杂交瘤技术筛选范围缩小、时间缩短, 而且获得的是人源的抗体, 但要获得高亲和力抗体, 还需建立在免疫人体的基础上, 这对某些抗原来说有很大限制。
2.3体外亲和力成熟抗体应答过程中二次应答抗体的亲和力显著高于初次应答的抗体, 此为亲和力成熟现象。
抗体库技术不包括引发突变的过程在内, 而多次免疫人体有很大限制, 因而模拟体内过程, 在体外诱发突变成为获得高亲和力的一条途径。
目前主要的方法为定点突变(替换关键部位的氨基酸)和随机突变(先造成大量随机突变, 再经抗原选择), 避开了免疫人体的限制, 同时其多样性也为难于筛选到的单抗如催化抗体提供了可能。
随机合成库工作量繁重为其不足之处。
2.4转基因动物以人的免疫球蛋白(Ig)基因组取代动物 Ig 基因组, 用相应抗原免疫动物后获得的即为人抗体。