马尔科夫链-遍历性与极限分布

合集下载

马尔可夫链及其概率分布

马尔可夫链及其概率分布
即 在 X ( t i ) x i , i 1,2,, n 1条 件 下 , X ( t n )的 条 件 分 布函数等于在条件 X ( t n1 ) x n1下X ( t n )的 条 件 分 布 函 数。
则称过程{X(t),tT}具有马尔可夫性,或称 {X(t),tT}为马尔可夫过程。
称为马氏链在时刻m系统处于状态ai的条件下,在时刻 m+n转移到状态aj的转移概率。
设{Xn,n0},其状态空间为,若对于任意的正 整数n和任意的 ai0 , ai1 ,, ain , ain1 , 定义2
有 P X n 1 a i n 1 X 0 a i0 , X 1 a i 2 , , X n a i n P X n 1 a i n 1 | X n a i n
p10――系统内恰有一顾客正在接受服务的条件 下,经 后系统内无人的概率,它等于在 间 隔内顾客因服务完毕而离去,且无人进入系统 的概率,p10=p(1-q). p11――系统内恰有一顾客的条件下,在 间隔 内,他因服务完毕而离去,而另一顾客进入系 统,或者正在接受服务的顾客将继续要求服务, 且无人进入系统的概率,这p11=pq+(1-p) (1-q). p12――正在接受服务的顾客继续要求服务,且 另一个顾客进入系统的概率,p12=q(1-p).
由于Xn, n=0,1,2,…独立同分布,因而
PX n1 j | X n i PX n1 j q j P { X m 1 j | X m i }
所以{Xn}为齐次马氏链。其一步转移概率P:
pij q j , i , j I .
//例3 排队模型 设服务系统由一个服务员和只可 以容纳两个人的等候室组成,见图7-3。服务规 则是:先到先服务,后来者需在等候室依次排队。 假定一个需要服务的顾客到达系统时发现系统内 已有3个顾客(一个正在接受服务,两个在等候 室排队)则该 顾客即离去。设时间间隔Δt内 将有一个顾客进入系统的概率为q,有一原来被 服务的顾客离开系统(即服务完毕)的概率为p。 又设当Δt充分小时,在这时间间隔内多于一个 顾客进入或离开系统实际上是不可能的。再设有 无顾客来到与服务是否完毕是相互独立的。现用 马氏链来描述这个服务系统。

第四章 马尔可夫链

第四章 马尔可夫链

股市预测
预测股票价格变化 基于历史数据建立模型 考虑股票之间的相关性 用于投资决策和风险管理
05
马尔可夫链的算法
状态转移矩阵算法
定义:状态转移 矩阵算法是马尔 可夫链中用于描 述状态转移概率 的算法
计算方法:根据 历史数据和当前 状态计算未来的 状态转移概率
应用场景:广泛 应用于自然语言 处理、语音识别、 机器翻译等领域
类问题等。
可扩展性强: 马尔可夫链可 以通过增加状 态和转移概率 来扩展模型, 以处理更复杂
的问题。
缺点
状态转移概率矩 阵必须已知
无法处理连续时 间或非齐次过程
无法处理多维或 多状态过程
无法处理非马尔 可夫过程
YOUR LOGO
THANK YOU
汇报人:儿
特点:隐马尔可夫链的状态转移和观测概率是参数化的,需要通过训练数据来估计。
应用:隐马尔可夫链在语音识别、自然语言处理、机器翻译等领域有广泛应用。
算法:隐马尔可夫链的算法包括前向-后向算法、Viterbi算法和Baum-Welch算法等。
04
马尔可夫链的应用
自然语言处理
文本分类:利 用马尔可夫链 对文本进行分 类,如垃圾邮 件过滤、情感
01
添加章节标题
02
马尔可夫链的定义
状态转移
定义:马尔可夫链的状态转移概率是描述状态之间转移的规则
特性:状态转移具有无记忆性,即下一个状态只与当前状态有关,与过去状态无关
转移矩阵:描述状态转移概率的矩阵
稳态分布:在长期状态下,马尔可夫链将趋于一个稳态分布,该分布描述
YOUR LOGO
马尔可夫链
,a click to unlimited possibilities

马尔可夫链课件

马尔可夫链课件
1的概率向左或向右移动一 3
格,或以
Q现在处于1(或5)这 1的概率留在原处;如果 3
一点上,则下一时刻就以概率1移动到2(或4)这点上,1 和5这两点称为反射壁,这种游动称为带有两个反射壁的
随机游动。以Xn表示时刻n时Q的位置,说明{Xn,n =
0,1,2 …}是一齐次马氏链,并写出它的一步转移概率矩 阵。
二、转移概率
定义3 设 { X n,n 0} 是齐次马尔可夫链,其一步 矩阵的每一行都 转移概率为 pij (i, j S ),记 是一条件分布律
p00 p10 P ( pij ) p 20 pi 0
.
p 01 p 02 p11 p12 p 21 p 22 pi1 pi 2
1 2 3 4 5
三、马氏链的例子
解:它的一步转移概率矩阵为: 0 1 0 0 0
1 3 P 0 0 0
1 3 1 3 1 3 1 3 1 3
0
1 3 1 3
0 0
0
1
0 0 1 3 0
如果把1这点改为吸收壁,即Q一旦到达1这一点,则永远 留在点1时,此时的转移概率矩阵为:
• 第一节 基本概念 • 第二节 状态的分类及性质 • 第三节 极限性态及平稳分布
• 第四节 Markov链的应用
第一节
基本概念
一、Markov链的定义 二、转移概率 三、Markov链的例子 四、n步转移概率,C-K方程
第一节
基本概念
一、Markov链的定义
马尔可夫性(无后效性 )过程(或系统)在时刻t 所处的状态为已知的条件下,过程在时
1 1 3 P 0 0 0 0
1 3 1 3
0

2012第四章马尔可夫链

2012第四章马尔可夫链

随机过程第四章:马尔可夫链第四章:马尔可夫链4.1 马尔可夫链定义4.2 一步转移概率及多步转移概率4.3 初始概率及绝对概率4.4 遍历的马尔可夫链及平稳分布4.5 马尔可夫链状态分类4.6 状态空间的分解时间、状态都是离散的马尔可夫过程,称为马尔可夫链。

时间连续、状态离散的马尔可夫过程,称为连续时间的马尔可夫链。

时间、状态都是连续的马尔可夫过程,就是马尔可夫过程。

例如:天气预报…质点的随机游动…赌博输光问题…生死链…4.1 马尔可夫链定义例如:在某数字通信系统中传递0,1两种信号,且传递需要经过若干级。

因为系统中有噪声,各级将造成错误,若某级输入0,1信号后,其输出不产生错误的概率为p,产生错误的概率为1-p,则该级的输入输出状态构成了一个两个状态的马氏链。

例题4-1:设马尔可夫链{X n ,n∈T}有状态空间I={0,1},其一步转移概率矩阵为求和两步转移概率矩阵P (2) 。

⎟⎟⎠⎞⎜⎜⎝⎛=11100100p p p p P }0|0{2==+m m X X P设质点在数轴上移动,每次移动一格,向右移动的概率为p,向左移动的概率为q=1-p,这种运动称为无限制随机游动。

以X n 表示时刻n质点所处的位置,则{X n ,n∈T}是一个齐次马尔可夫链,求一步和k步转移概率。

,1,1, 1 0 (j i-1,i+1) i i i i i j P p P q p P +−⎧=⎪==−⎨⎪=≠⎩解:一步转移概率为:...........................q 0 p 0 0......0 q 0 p 0......0 0 q 0 p...........................P ⎛⎞⎜⎟⎜⎟⎜⎟=⎜⎟⎜⎟⎜⎟⎝⎠例题4-2:无限制随机游动质点在数轴上移动,规律同上例。

当质点一旦达到X n =0时,X n+1就停留该0状态,这种状态称为吸收态。

{X n ,n∈T}是一个齐次马尔可夫链,求一步转移概率。

马尔科夫链-遍历性与极限分布

马尔科夫链-遍历性与极限分布

+(
p q
)2
]-1
例2 若例1中,质点只能取1,2,3三个点,一
步转移概率矩阵为
0 1 0
p q
0
p

0 1 0
讨论该链的遍历性,若具有遍历性,则 计算其极限分布(平稳分布)
0 1 0

p q
0
p

0 1 0
q 0 p
p(2) 0

设初始分布:
p(0) i

qi ,
i
1, 2,...,
其中,qi,i 1, 2,... 是平稳分布
又,对于平稳分布 qj,j 1, 2,... ,有
qj = qi pij

qk
pki

pij
i
i k


qk

pki
pij


qk pkj (2)
在此称为转移概率的极限分布
有限状态的遍历的马尔科夫链必存在极限分布
遍历性
说明2: 若马尔科夫链为无限状态的,则有,

pij (n) 1, j E
j 1
M
pij (n) 1 j 1
又因为 即
M

M
lim
M
lnim
j 1
pij (n)

lim
马尔科夫链的遍历性
遍历性
定义1 若马尔科夫链中的所有状态互通且均为 非周期的正常返状态,则称该链是遍历的
定义2 若马尔科夫链转移概率的极限
lim
n
pij (n)

pj,
i, j E

随机过程课件-马尔可夫链

随机过程课件-马尔可夫链
定理二
对于不可约的马尔可夫链,其极限分 布是遍历的,即极限分布与初始状态 无关。
05
马尔可夫链的模拟与实现
随机数生成
伪随机数生成器
使用数学公式和种子值生成一系列近似 随机的数列。
VS
真随机数生成器
利用物理现象(如电路噪音)产生真正的 随机数。
马尔可夫链蒙特卡洛方法
采样分布
通过多次重复模拟马尔可夫链的路径来估计 某个事件的概率或某个参数的值。
收敛性
随着模拟次数的增加,估计值逐渐接近真实 值。
马尔可夫链在决策分析中的应用
要点一
决策树
要点二
强化学习
将马尔可夫链应用于决策分析中,帮助决策者评估不同策 略的风险和收益。
在强化学习中,马尔可夫链用于描述环境状态转移和奖励 函数。
06
马尔可夫链的扩展与改进
时齐马尔可夫链
定义
时齐马尔可夫链是指时间 参数为离散的马尔可夫链 ,其状态转移概率不随时 间而变化。
遍历性是马尔可夫链达到平稳分布的必要条件之一,也是判 断马尔可夫链是否具有唯一平稳分布的重要依据。
03
马尔可夫链的转移概率
转移概率的定义与性质
定义
马尔可夫链中,给定当前状态$i$,未来状态$j$在某个时间步长内发生的概率称为转移 概率,记作$P(i,j)$。
性质
转移概率具有非负性、归一性和时齐性。非负性指$P(i,j) geq 0$;归一性指对于每个 状态$i$,所有可能转移到该状态的转移概率之和为1,即$sum_{ j} P(i,j) = 1$;时齐性
周期性会影响马尔可夫链的平稳分来自的性质和计算。状态空间的分解
状态空间的分解是将状态空间划分为若干个子集,每个子集内的状态具有相似的 性质和转移概率。

人教版A版高中数学选修4-9:马尔可夫性与马尔可夫链_课件1

人教版A版高中数学选修4-9:马尔可夫性与马尔可夫链_课件1

pN ,1 p,
p1,N q,
我们可以用通俗的语言来描述马尔可夫性:
我们把“n”看成“现在”,则“n+1”则是“未 来”,小于n的整数看成是“过去”。那么,在 已知现在状态的情况下,将来的随机变化规律和 过去的状态无关。
在现实生活中,有很多随机变量序列都具有马尔 可夫性。一般地,我们将这种具有马尔可夫性的 随机变量序列为马尔可夫链,并把序列中的随机 变量的所有可能取值的集合称该马尔可夫链的状 态空间。
N
j 0, j 1的唯一解.
j1
在现实生活中,我们所探讨的问题的状态可能会 随时改变。一台旧摆钟,它时而准时,时而不准 时。随着时间的变化,它会从“不准时”变成 “准时”状态,经过人为调整后,摆钟又可以从 “不准时”变成“准时”状态。像这种状态随时 间的推移而改变的决策问题就会变得复杂。
马尔可夫性与 马尔可夫链
重点与难点
1.重点
马氏链n步转移概率的确定
2.难点
有限维分布律的计算方法 遍历性问题
马尔可夫过程
具有马尔可夫性的随机过程称为马尔可夫过程。
马尔可夫性(无后效性) 过程或(系统)在时刻t0所处的状态为已知的
条件下,过程在时刻t t0所处状态的条件分布与 与过程在时刻t0之前所处的状态无关的特性称为 马尔可夫性或无后效性。
当状态随着时间的推移而转化时,我们采用马尔 可夫链处理这一类问题。
典型例题
例1 艾伦非斯特(Ehrenfest )模型
设一个坛子装有c个球,它们或是红色的,或 是黑色的.从坛中随机地摸出一个球,并装入一个 另一种颜色的的球, 经过n次摸换, 研究坛中的黑 球数. 解 以Xn,n 1表示第n次摸球后坛中的黑球数.
3 16 2 16 24

马尔可夫链——精选推荐

马尔可夫链——精选推荐

21021210分布马尔可夫过程及其概率1§马尔可夫过程的定义、1211111121.简称马氏链可夫链,马尔可夫过程称为马尔时间和状态都是离散的课稿南京邮电大学孔告化讲22110}|{),(i m j n m i j a X a X P n m m P ===++记马氏链的转移概率、221021210.),(的转移概率转移到状态在时刻条件下,处于状态为马氏链在时刻称j i i j a n m a m n m m P ++课稿南京邮电大学孔告化讲.))(()(步转移概率矩阵为称n n P n P i j =⎟⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎜⎝⎛==M ML M M L L L M L M M L L L L )()()()()()()()()())(()(212222111211n P n P n P n P n P n P n P n P n P n P n P N N N N N N i j LLN a a a 21MM N a a a 21矩阵齐次马氏链的转移概率、3Ia a n P j i i j ∈≥,0)()1(Ia n P i j i j ∈=∑∞=1)()2(1课稿南京邮电大学孔告化讲111⎟⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎜⎝⎛==M M L M M L L L M L M M L L L L N N N N N N p p p p p p p p p P P 212222111211)1(L L N a a a 21M M N a a a 211课稿南京邮电大学孔告化讲这一点上。

或移动到就以概率,则下一时刻或现在位于点的概率停在原处;如果一格,或以的概率向左或向右移动则下一时刻各以现在位于点是:如果发生游动。

游动的规则等时刻秒秒、仅在上作随机游动,并且仅在如图所示直线的点集设一醉汉一维随机游动例题)4(21)5(13/13/1),51(21}5,4,3,2,1{)(:Q i i Q I Q <<=L 12345过程,是一随机则的位置,时表示时刻若以},2,1,0,{L =n X Q n X n n 而且当时,等以后的行为只与有关,而与质点以前是如何到是完全无关的,所以,它是一个马氏链,且为齐次马氏链。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

无限状态的遍历的马尔科夫链不一定存在极限分布,只 有其极限概率构成概率分布时才存在极限分布
绝对概率的极限
lim
n
p(n) j
lim
n
i
pi(0) pij (n)
i
p(0) i
lim
n
pij
(n)
i
p(0) i
pj
pj

lim
n
p(n) j
pj
即:绝对概率的极限与转移概率的极限相同
平稳分布
定义 若有限或无限数列 qj , j 1.2,... 满足

设初始分布:
p(0) i
qi ,
i
1, 2,...,
其中,qi,i 1, 2,... 是平稳分布
又,对于平稳分布 qj,j 1, 2,... ,有
qj =
qi pij
qk
pki
pij
i
i k
qk
pki
pij
qk pkj (2)
k i
k
更一般的,有 q j = qi pij (n)
(1)qj 0, (2) qj 1
j
则称它是概率分布
如果此概率分布满足
q j = qi pij
i
则称它是平稳分布
具有遍历性的马尔科夫链的平稳分布
C-K方程: pij (n)=pij (k l) pir (k)prj (l)
r
令 l 1, 则 pij (k 1) pir (k)prj (1)
1 0 0
p q
0
p
0 0 1
讨论该链的遍历性,若具有遍历性,则 计算其极限分布(平稳分布)
1 0 0

p q
0
p
0 0 1
1 0 0 p(2) q 0 p =p
0 0 1
1 0 0
L ,L ,p(n) q
0
p
=p
0 0 1
显然,转移概率的极限
lim
n
pij
(n)
存在,但是与i有关,即
p1
=[1+
p q
+(
p q
)2
]-1
p2
=(
p q
)[1+
p q
+(
p )2 q
]-1
p3
=(
p q
)2[1+
p q
+(
p q
)2
]-1
例2 若例1中,质点只能取1,2,3三个点,一
步转移概率矩阵为
0 1 0
p q
0
p
0 1 0
讨论该链的遍历性,若具有遍历性,则 计算其极限分布(平稳分布)
遍历性
说明1: 若马尔科夫链为有限状态的,显然有,
满足 即
N
N
N
lim
n
j 1
pij (n)
j 1
lim
n
pij
(n)
j 1
pj
1
N
p j 0, p j 1, j 1, 2,...N j 1
pj , j 1, 2,...N 构成一个概率分布
在此称为转移概率的极限分布
有限状态的遍历的马尔科夫链必存在极限分布
lim
n
pij (n)
pij
因此此链不具有遍历性
0 1 0

p q
0
p
0 1 0
q 0 p
p(2) 0
1
0
q 0 p
0 1 0
p(3) p(2)p q
0
p
p
0 1 0
一般的,有 p(2n 1) p
p(2n) p(2)
显然,转移概率的极限
lim
n
pij
(n)
不存在,
因此此链不具有遍历性
例3 若例1中,质点只能取1,2,3三个点,一 步转移概率矩阵为
的唯一解
j 1
注:此定理给出了求极限分布(平稳分布)的方法
例1 直线上带反射壁的随机游动,如果质点只 能取1,2,3三个点,一步转移概率矩阵为
q p 0 p q 0 p
0 q p
讨论该链的遍历性,若具有遍历性,则 计算其极限分布(平稳分布)
解 计算二步转移概率矩阵
q2 pq qp
p2
p(2)
i
若初始概率是平稳分布,则任意时刻的绝对概 率分布等于初始分布,也即为平稳分布

设初始分布:
p(0) i
qi ,
i
1, 2,...,
其中,qi,i 1, 2,... 是平稳分布
更一般的,有 q j = qi pij (n)
i
又,由绝对分布与初始分布的关系,可得q j
遍历性
说明2: 若马尔科夫链为无限状态的,则有,
Q pij (n) 1, j E j 1
M
pij (n) 1 j 1
又因为 即
M
M
lim
M
lnim
j 1
pij (n)
lim
M
j 1
pj
1
p j 0, p j 1, j 1, 2,...
j 1
pj , j 1, 2,...N 不一定构成一个概率分布
q2
2qp
p2
q2
qp pq p2
即 当k 2时,有 pij (2) 0, 所以,此链具有遍历性,
因而存在平稳分布,极限分布即为平稳分布
下面求极限概率p j,j 1, 2,3,
qp1 qp1
qp2
p1 qp3 p2
pp2 pp3 p3
p1 p2 p3 =1
解方程,可得
r
对具有遍历性的马尔科夫链
令 k ,有
lim
k
pij
(k
1)
lim
k
r
pir (k)prj (1)
r
lim
k
pir (k )prj
r
pr prj

p j pr prj 成立
有限马尔科夫链转移概r率的极限分布一定是平稳分布
无限马尔科夫链转移概率的极限分布不一定是平稳分布
若初始概率是平稳分布,则任意时刻的绝对概 率分布等于初始分布,也即为平稳分布
马尔科夫链的遍历性
遍历性
定义1 若马尔科夫链中的所有状态互通且均为 非周期的正常返状态,则称该链是遍历的
定义2 若马尔科夫链转移概率的极限
lim
n
pij (n)
pj,
i, j E
存在且与 i 无关,则称此马尔科夫链具有遍历性
此时,若满足 pj 0,
pj 1
j
则称 p j , j E 为转移概率的极限分布
i
即 绝对分布为平稳分布
定理 对有限马尔科夫链,如果存在正整数k,使
pij (k) 0, i, j 1, 2,...N
则此链是遍历的
且极限分布
lim
n
pij (n)
pj
pj,j 1, 2,...N
N
是方程组 p j pi pij , j 1, 2,...N
j 1
满足条件
N
(1)p j 0, (2) p j 1
相关文档
最新文档