马尔科夫链

合集下载

第四章 马尔可夫链

第四章 马尔可夫链

股市预测
预测股票价格变化 基于历史数据建立模型 考虑股票之间的相关性 用于投资决策和风险管理
05
马尔可夫链的算法
状态转移矩阵算法
定义:状态转移 矩阵算法是马尔 可夫链中用于描 述状态转移概率 的算法
计算方法:根据 历史数据和当前 状态计算未来的 状态转移概率
应用场景:广泛 应用于自然语言 处理、语音识别、 机器翻译等领域
类问题等。
可扩展性强: 马尔可夫链可 以通过增加状 态和转移概率 来扩展模型, 以处理更复杂
的问题。
缺点
状态转移概率矩 阵必须已知
无法处理连续时 间或非齐次过程
无法处理多维或 多状态过程
无法处理非马尔 可夫过程
YOUR LOGO
THANK YOU
汇报人:儿
特点:隐马尔可夫链的状态转移和观测概率是参数化的,需要通过训练数据来估计。
应用:隐马尔可夫链在语音识别、自然语言处理、机器翻译等领域有广泛应用。
算法:隐马尔可夫链的算法包括前向-后向算法、Viterbi算法和Baum-Welch算法等。
04
马尔可夫链的应用
自然语言处理
文本分类:利 用马尔可夫链 对文本进行分 类,如垃圾邮 件过滤、情感
01
添加章节标题
02
马尔可夫链的定义
状态转移
定义:马尔可夫链的状态转移概率是描述状态之间转移的规则
特性:状态转移具有无记忆性,即下一个状态只与当前状态有关,与过去状态无关
转移矩阵:描述状态转移概率的矩阵
稳态分布:在长期状态下,马尔可夫链将趋于一个稳态分布,该分布描述
YOUR LOGO
马尔可夫链
,a click to unlimited possibilities

马尔可夫链

马尔可夫链

马尔可夫链马尔可夫链(Markov chains )是一类重要的随机过程,它的状态空间是有限的或可数无限的。

经过一段时间系统从一个状态转到另一个状态这种进程只依赖于当前出发时的状态而与以前的历史无关。

马尔可夫链有着广泛的应用,也是研究排队系统的重要工具。

1) 离散时间参数的马尔可夫链 ①基本概念定义 5.7 设{()0,1,2,}X n n ∙∙∙=,是一个随机过程,状态空间{0,1,2,}E =,如果对于任意的一组整数时间120k n n n ∙∙∙≤<<<,以及任意状态12,,,k i i i E ∈,都有条件概率11{()|()}k k k k P X n i X n i --=== (5-17)即过程{()0,1,2,}X n n ∙∙∙=,未来所处的状态只与当前的状态有关,而与以前曾处于什么状态无关,则称{()0,1,2,}X n n ∙∙∙=,是一个离散时间参数的马尔可夫链。

当E 为可列无限集时称其为可列无限状态的马尔可夫链,否则称其为有限状态的马尔可夫链。

定义5.8 设{()0,1,2,}X n n ∙∙∙=,是状态空间{0,1,2,}E =上的马尔可夫链,条件概率(,){()|()}ij p m k P X m k j X m i i j E =+==∈,、 (5-18)称为马尔可夫链{()0,1,2,}X n n ∙∙∙=,在m 时刻的k 步转移概率。

k 步转移概率的直观意义是:质点在时刻m 处于状态i 的条件下,再经过k 步(k 个单位时间)转移到状态j 的条件概率。

特别地,当1k =时,(,1){(1)|()}ij p m P X m j X m i =+== (5-19)称为一步转移概率,简称转移概率。

如果k 步转移概率(,)ij p m k i j E ∈,、,只与k 有关,而与时间起点m 无关,则{()}X n 称为离散时间的齐次马尔可夫链。

定义5.9 设{()0,1,2,}X n n ∙∙∙=,是状态空间{0,1,2,}E ∙∙∙=上的马尔可夫链,矩阵000101011101(,)(,)(,)(,)(,)(,)(,)(,)(,)(,)n n j j jn p m k p m k p m k p m k p m k p m k P m k p m k p m k p m k ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦(5-20) 称为{()}X n 在m 时刻的k 步转移概率矩阵。

马尔可夫链

马尔可夫链

马尔可夫链
马尔可夫链(Markov Chain, MC)是概率论和数理统计中具有马尔可夫性质(Markov property)且存在于离散的指数集(index set)和状态空间(state space)内的随机过程(stochastic process)。

适用于连续指数集的马尔可夫链被称为马尔可夫过程(Markov process),但有时也被视为马尔可夫链的子集,即连续时间马尔可夫链(Continuous-Time MC, CTMC),与离散时间马尔可夫链(Discrete-Time MC, DTMC)相对应,因此马尔可夫链是一个较为宽泛的概念。

马尔可夫链的命名来自俄国数学家安德雷·马尔可夫以纪念其首次定义马尔可夫链和对其收敛性质所做的研究。

马尔可夫链

马尔可夫链

(3) P( n) P P( n1) (4) P( n) P n
初始概率和绝对概率
初始概率: 绝对概率:
p j (n) P{X n j}, ( j I )
p j P{X 0 j}, ( j I )
初始分布:
{ p j } { p j , j I}
绝对分布:
(第七章)马尔可夫链
马尔可夫链的概念及转移概率 马尔可夫链的状态分类 状态空间的分解 遍历性与平稳分布
马尔可夫过程的四种类型

马尔可夫链

时间、状态都离散 时间离散、状态连续

马尔可夫序列


纯不连续马尔可夫过程

时间连续、状态离散
时间、状态都连续

连续马尔可夫过程(或扩散过程)

(3)函数表达式
[例3] 设 { Xn , nT } 是一个马尔可夫链,其状态
空间 I = {a, b, c},转移矩阵为
1 / 2 1 / 4 1 / 4 P 2 / 3 0 1 / 3 3 / 5 2 / 5 0
求: (1) P{ X 1 b, X 2 c, X 3 a, X 4 c X 0 c};
一步转移概率矩阵
p11 P p21 p12 p22 p1n p2 n
性质: (1) pij 0 , i, j I
(2)
p
jI
ij
1, i I
(随机矩阵)
n 步转移概率
[定义] 称条件概率
( n) pij P{X mn j X m i}, (i, j I , m 0, n 1)
( n) n 0, 0 l < n 和 i , j I ,n 步转移概率 pij 具有下 列性质:

马尔科夫链_马尔可夫过程

马尔科夫链_马尔可夫过程

马尔科夫链_马尔可夫过程一、引言1、马尔科夫链的数学背景马尔可夫链,因安德烈?马尔可夫(A.A.Markov,1856-1922)得名,是数学中具有马尔可夫性质的离散时间随机过程。

该过程中,在给定当前知识或信息的情况下,过去(即当期以前的历史状态)对于预测将来(即当期以后的未来状态)是无关的。

马尔可夫链是随机变量X_1,X_2,X_3...的一个数列。

这些变量的范围,即他们所有可能取值的集合,被称为“状态空间”,而X_n的值则是在时间n的状态。

如果X_{n+1}对于过去状态的条件概率分布仅是X_n的一个函数,则PX_{n+1}=x|X_0, X_1, X_2, \ldots, X_n = PX_{n+1}=x|X_n. 这里x为过程中的某个状态。

上面这个恒等式可以被看作是马尔可夫性质。

2、马尔科夫链的典型应用①马尔科夫链在股指期货投资中的应用马尔科夫链转移矩阵的有效状态以近时点动量策略原时点反转策略为主,有效抓住了上涨和下跌的中期和初期.从而准确的抓住了日内股指波动. ②马尔科夫链在天气预报中的应用通过对马尔科夫链理论和切普曼-柯尔莫哥洛夫方程方程的探讨,,结合天气情况不确定等诸多特点,构想了天气情况预报的马尔科夫链预测模型,给出了马尔科夫链的初始概率和多重转移概率的计算方法,根据此算法可以预报短期天气情况,同时扩展到对未来天气情况趋势的预测。

③马尔科夫链在环境预测中的应用鉴于目前环境质量预测在理论方法和实践上的缺乏,把马尔科夫链引入环境质量的预测中,将各种污染物的浓度变化过程视作马尔科夫过程,通过预测各种污染物的污染负荷系数来推知其浓度值/④马尔科夫链在桥梁状态预测中的研究与应用马尔科夫链以矩阵的形式来表达桥梁状况,通过求解状态转移矩阵,进一步预测桥梁未来数年内的基本状况。

综合考虑了桥梁检修的影响,给出了桥梁检修后不同状态的状态转移矩阵,为进一步引入实际数据做了充分的准备。

3、相关文献《程序设计实践》作者 Brian W.Kernighan程序设计实践并不是只是写代码。

马尔可夫链

马尔可夫链

三.有限维概率分布 马尔可夫链{ X ( t ), t t
0
, t 1 , t 2 , }在初始时刻t 0 的概率
分布:
p j ( t 0 ) P { X ( t 0 ) j },
j 0 ,1, 2 ,
称为初始分布. 初始分布与转移概率完全地确定了马尔可夫链的 任何有限维分布.下面的定理二正是论述这一点. 不妨设齐次马尔可夫链的参数集和状态空间都是 非负整数集,那么有如下定理。
P { X ( k 1 ) j1 , X ( k 2 ) j 2 , , X ( k n ) j n }



p i ( 0 ) p ij1 1 p j1 j22
(k )
( k k1 )
p j n n1 j n n 1
(k k
)
i0
(13.9)
例6 在本节例5中,设初始时输入0和1的概率分别为 1/3和2/3,求第2、3、6步都传输出1的概率.
t 2 t n t n 1
和 S 内任意 n 1 个状态
j1 , j 2 , , j n , j n 1 , 如果条件概率
P { X ( t n 1 ) j n 1 | X ( t 1 ) j1 , X ( t 2 ) j 2 , , X ( t n ) j n }
二:马尔可夫链的分类 状态空间 S 是离散的(有限集或可列集),参数集 T 可为离散或连续的两类. 三:离散参数马尔可夫链 (1)转移概率 定义2 在离散参数马尔可夫链{ X ( t ), t 中,条件概率 P { X ( t
m 1
t 0 , t 1 , t 2 , , t n , }
1

马尔可夫链

马尔可夫链
k 1 m
P (x n 1 k | x 0 i )P (x n j | x n 1 k ) rij (n 1)Pkj
k 1 k 1 m
m
n 步转移概率矩阵: rij (n ) 看成一个二维矩阵第 i 行第 j 列的元素。 讨论 n 时: 例 1 中,每一个 rij (n ) 都收敛于一个极限值,不依赖于初始状态 i。
Wj Wk pkj
k 1 m
1 Wk
k 1
m
3、另外有
Wj 0 ,对于所有的非常返状态 j Wj 0 ,对于所有的常返状态 j
1 Wm ] [0 0 1] ,可用 MATLAB 解决。 pm1 pmm 1 1
P(x 0 i0 , x1 i1, , x n in ) P(x 0 i0 )Pi i Pi i Pi
01 12 n 1 n
i
图形上,一个状态序列能表示为在转移概率图中的一个转移弧线序列。在给定初始状态下, 该路径的概率等于每个弧线上转移概率的乘积。 n 步转移概率 定义: rij (n ) P (x n i | x 0 i ) 计算在当前状态条件下,未来某个时期状态的概率分布。 当前状态 i,n 个时间段后的状态将是 j 的计算公式:C-K 方程
1 0 0 0 0.3 0.4 0.3 0 0 0.3 0.4 0.3 0 0 1 0
转移概率图
例 3:一个教授抽取测试卷子。卷子的难度分成 3 种:困难、中等和容易。如果本次抽到的 困难的卷子,则下次分别有 0.5 的概率抽中中等和容易的卷子。如果本次抽到的是中等的卷 子,则下次仍旧 0.5 的概率为中等难度,另外有 0.25 的概率抽中困难或容易的卷子。如果本 次抽到的是容易的卷子, 则下次仍旧 0.5 的概率为容易难度, 另外有 0.25 的概率抽中困难或 中等的卷子。 转移概率矩阵

马尔可夫链的定义及例子

马尔可夫链的定义及例子

3、转移概率
定义 i, j S, 称 P Xn1 j Xn i
的一步转移概率。
pij n 为n时刻
若i, j S, pij n pij ,即pij与n无关,称转移概率
具有平稳性.此时称{Xn,n≥0}为齐次(或时齐的)马尔 可夫链。记P=(pij),称P为{Xn,n≥0}的一步转移概率矩阵.
0
j!
j 0,1, i
pi0公式略有不同,它是服务台由有i个顾客转为空闲的
概率,即第n个顾客来到时刻到第n+1个顾客来到时刻之
间系统服务完的顾客数≥i+1。

pi0 P X n1 0 X n i P(Yn i 1) P(Yn k) k i1
et (t)k dG t ,

0 P{Yn
j Tn1 x}dG x
( x) j exdG x, j 0,1, 2,
0 j!
因此, {Xn,n≥1}是马尔可夫链。其转移概率为
P0 j P( X n1 j X n 0) P(Yn j X n 0)
P(Yn
P( X n1 in1 X n in )
所以{Xn,n≥0}是马尔可夫链,且
pij P( X n1 j X n i) P( f i,Yn1 j) P( f i,Y1 j)
二、切普曼-柯尔莫哥洛夫方程
1,随机矩阵 定义:称矩阵A=(aij)S×S为随机矩阵,若aij ≥0,且
一步转移概率矩阵

0.5009
0.0458 0.2559 0.1388 0.2134
0.0466 0.0988 0.36584 0.14264
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
马尔科夫链是一种随机过程,其特点是“无记忆性”,即下一状态只与当前状态有关。转移概率描述了从一个状态到另一个状态的可能性率。马尔科夫链的概率分布随时间演变,最终达到一个稳定的分布,称为极限分布。遍历性是马尔科夫链的一个重要性质,意味着链能够访问到每一个状态,且长时间运行后,各状态的出现概率趋于稳定。文档通过两个例子,详细解释了如何判断马尔科夫链是否具有遍历性,并如何求解其极限分布。第一个例子通过计算特征值和特征向量,展示了遍历性的判定和极限分布的求解过程;第二个例子则通过直观的转移概率矩阵,说明了带有反射壁的随机游动也是遍历的,并给出了其极限分布。
相关文档
最新文档