影响激光焊接质量的工艺参数

合集下载

激光焊接工艺参数

激光焊接工艺参数

激光焊接工艺参数激光焊接是一种高效、高质量、非接触的焊接方法,广泛应用于精密零件的制造、电子产品的组装、汽车工业、航空航天等领域。

激光焊接工艺参数对焊接质量和效率起着重要的影响。

下面将介绍一些常用的激光焊接工艺参数。

1.激光功率:激光焊接的功率决定了熔池的温度和熔化的能量。

功率过高会导致焊缝过深、过宽,功率过低则影响焊接质量。

根据不同材料和焊接要求,选择合适的激光功率,通常在几百瓦到几千瓦之间。

2.焦距:焦距是指激光束通过聚焦镜后在焊接部位形成的焦点与工件表面之间的距离。

焦距的选择与焊接材料的厚度、焊枪的设计、激光束的直径等因素相关。

焦距过大会导致焊接深度不够,焦距过小则容易引起溅射和熔洞。

3.光斑直径:光斑直径影响焊缝的宽度和深度。

通常情况下,焊接深度正比于光斑直径的平方。

选择合适的光斑直径可以控制焊缝的大小和形状。

4.扫描速度:扫描速度是指焊接头在工件上移动的速度。

扫描速度的选择要根据焊接材料的导热性和热膨胀系数来确定。

过高的扫描速度可能导致焊缝无法充分熔化,过低的扫描速度则容易引起过热和熔洞。

5.激光脉冲频率:激光脉冲频率决定了激光束的脉冲数。

较低的脉冲频率可以增加焊缝的深度,较高的脉冲频率则可以增加焊缝的宽度。

根据焊接要求选择合适的脉冲频率。

6.各向异性系数:各向异性系数是指焊接材料在激光束照射下沿不同方向扩散的能力。

不同金属材料的各向异性系数差异较大,选择合适的激光焊接参数可以减小焊缝形状的变化。

7.激光束模式:激光束的光斑形状可以通过调整激光器的谐振腔或使用适当的光学元件来改变。

常见的激光束模式包括高斯模式、倍高斯模式和束团模式等。

不同的光斑形状对焊接质量和效率有影响。

总结起来,激光焊接工艺参数包括激光功率、焦距、光斑直径、扫描速度、激光脉冲频率、各向异性系数和激光束模式等。

通过合理地选择这些参数,可以实现高质量、高效率的激光焊接。

激光器焊接工艺参数优化及其对焊接质量的影响分析

激光器焊接工艺参数优化及其对焊接质量的影响分析

激光器焊接工艺参数优化及其对焊接质量的影响分析激光器焊接工艺是一种常用的焊接方法,具有高效、精确和稳定等优点,广泛应用于制造业中。

激光器焊接工艺的参数对焊接质量有着重要的影响,合理的参数选择能够提高焊接质量,提高生产效率。

本文将探讨激光器焊接工艺参数优化及其对焊接质量的影响。

激光器焊接工艺参数主要包括激光功率、激光束直径、焦距、激光脉冲频率、焊接速度等。

这些参数直接影响焊缝形成和焊接质量的稳定性。

在确定这些参数时,需要综合考虑焊接材料的性质、焊件的类型和大小、焊接要求等因素。

首先,激光功率是指激光器单位时间内发出的能量,决定了焊接过程中的热输入量。

功率过低会导致焊缝质量不良,功率过高则容易引起焊缝溶洞、熔皮等缺陷。

因此,选择合适的激光功率非常重要。

在确定激光功率时,可以通过试验和经验总结得到一些关于功率与焊缝质量之间的关系,以便更好地选择合适的功率。

其次,激光束直径和焦距决定了激光束在焊接过程中的热功率密度分布。

激光束直径和焦距的选择应根据焊件的材料和尺寸,以及所要求的焊缝形态进行优化。

通过调整激光束直径和焦距,可以控制焊缝的宽度、深度和形状,以满足不同工件的需求。

再次,激光脉冲频率是指激光器单位时间内发出的脉冲数量,也称为脉冲频率。

脉冲频率对焊接质量有重要影响,过低的脉冲频率容易造成焊接缺陷,而过高的脉冲频率则会增加焊接热输入,导致过烧、过烫等问题。

因此,需要选择适当的脉冲频率,以确保焊接质量。

最后,焊接速度是指焊缝在激光束照射下焊接过程中的移动速度。

焊接速度的选择需要考虑焊接材料的熔化温度和熔池形态、焊缝要求等因素。

过快的焊接速度容易导致焊缝不完整,过慢的焊接速度则容易产生焊缝凹陷和焊瘤等问题。

因此,需要根据具体情况选择适当的焊接速度。

总之,激光器焊接工艺参数优化对焊接质量具有重要的影响。

合理的参数选择可以提高焊接质量,降低焊接缺陷的产生。

在确定参数时,需要综合考虑焊接材料、焊件尺寸和形态、焊缝要求等因素,通过试验和经验总结,找到最佳的参数组合。

激光焊工艺参数

激光焊工艺参数

激光焊工艺参数激光焊工艺参数是指在激光焊接过程中,需要设定的一些参数,以控制焊接质量和效果。

常见的激光焊工艺参数包括以下几个方面:1. 激光功率:激光功率决定了焊接的能量密度,对焊接速度和焊缝的质量有很大影响。

功率过低可能导致焊缝不完全,功率过高可能会产生过多的热量,导致焊缝变形或裂纹。

2. 激光光斑直径:激光光斑直径决定了焊缝的宽度和焊深。

光斑直径越小,焊缝越细,焊接速度相应增加,但焊缝深度可能会减小。

3. 扫描速度:扫描速度决定了激光在工件表面上移动的速度,对焊缝质量和焊接速度有直接影响。

扫描速度过快可能导致焊缝不充分,扫描速度过慢可能导致过多的热输入,导致焊缝变形或裂纹。

4. 焦距:焦距决定了激光束的聚焦效果。

焦距过长可能导致焊缝不充分,焦距过短可能导致过多的热输入,导致焊缝变形或裂纹。

5. 激光脉冲频率:激光脉冲频率决定了激光束每秒发射的脉冲数。

频率过低可能导致焊缝不充分,频率过高可能导致过多的热输入,导致焊缝变形或裂纹。

6. 激光波长:激光波长决定了激光的透过能力。

不同波长的激光透过材料的能力不同,对于不同材料的焊接选择合适的波长能提高焊接质量和效率。

7. 激光聚焦方式:激光聚焦方式决定了激光束在焊接区域的聚焦形态。

常见的激光聚焦方式有平面聚焦、球面聚焦和柱面聚焦等。

8. 辅助气体类型和流量:辅助气体可以起到冷却、保护和清理焊接区域的作用。

常见的辅助气体有惰性气体(如氩气)、活性气体(如氧气)和保护性气体(如氮气)等。

以上参数的具体设定需要根据具体的焊接材料、焊接形式和要求来确定,通过不断调整这些参数,可以控制焊接过程中的热输入、能量密度、焊缝形态和质量,以获得理想的焊接效果。

激光脉冲焊接的工艺参数

激光脉冲焊接的工艺参数

激光脉冲焊接的工艺参数一、激光功率激光功率是指激光器输出的光功率,通常用瓦特(W)表示。

激光功率的选择直接影响焊接速度和焊接深度。

较高的激光功率可以提高焊接速度和焊接深度,但同时也会增加能量输入,增加焊缝热影响区的尺寸,从而影响焊缝的形貌和成形质量。

二、脉冲频率脉冲频率指的是激光每秒发射的脉冲数量,以赫兹(Hz)表示。

脉冲频率的选择对焊接形貌和成形质量影响较大。

高脉冲频率可以提高焊接速度和焊接深度,同时减少热输入和焊缝热影响区的尺寸,从而减少热影响和热变形。

三、脉冲宽度脉冲宽度是指激光的脉冲持续时间,通常用毫秒(ms)或微秒(μs)表示。

脉冲宽度的选择对焊接形貌和成形质量也会产生显著影响。

较短的脉冲宽度可以提高焊缝质量,使焊缝表面光滑,减少焊缝熔渣和气孔等缺陷。

四、光斑直径光斑直径是指激光束在焊接件表面的直径,通常用毫米(mm)表示。

光斑直径的选择影响焊接深度和焊缝宽度。

较小的光斑直径可以提高焊接深度和焊缝质量,但同时也会降低焊接速度。

五、焦点位置焦点位置是指激光焦点与焊接件表面的距离,通常用毫米(mm)表示。

焦点位置的选择影响焊接深度和焊缝宽度。

较近的焦点位置可以提高焊接深度和焊缝质量,但需要注意焊接位置和长焦距情况下的激光能量密度损失。

六、激光扫描速度激光扫描速度是指激光束在焊接件表面的移动速度,通常用毫米/秒(mm/s)表示。

激光扫描速度的选择影响焊接速度和焊接质量。

较快的激光扫描速度可以提高焊接速度,但同时也会增加焊缝宽度并可能影响焊接质量。

七、气体保护气体保护是指在焊接过程中通过喷嘴向焊缝区域提供气体保护,常用的保护气体为惰性气体,如氩气。

气体保护的选择影响激光辐照区域的氧气与金属的反应,防止焊缝内部含气并促进焊接质量的提高。

综上所述,激光脉冲焊接的工艺参数包括激光功率、脉冲频率、脉冲宽度、光斑直径、焦点位置、激光扫描速度和气体保护等。

合理选择这些参数,可以实现高效、高质量的激光脉冲焊接。

激光焊接的工艺参数及特性分析讲解

激光焊接的工艺参数及特性分析讲解

激光焊接的工艺参数及特性分析讲解激光焊接是一种高能量密度激光束对焊接材料表面的作用,通过将激光束转化为热能,快速熔化并凝固焊缝来实现材料的连接。

激光焊接具有高耦合性、无接触和非传导性等特点,因此在许多领域得到广泛应用。

本文将对激光焊接的工艺参数及特性进行分析和讲解。

激光焊接的工艺参数主要包括激光功率、激光束面积、焦距、焊接速度和焊接气体等。

其中,激光功率是指单位时间内激光束所携带的能量,对焊接效果起到重要作用。

激光功率过低会导致焊缝不完全熔透,功率过高则容易产生毛刺。

激光束面积与焦距的选择会直接影响到焊接区域的集中度,过小会导致焊缝质量不稳定,过大则会降低焊接深度。

焊接速度决定了焊接过程中激光束的作用时间,过慢会导致过量热输入,过快则会影响焊缝的质量。

焊接气体的选择和流量控制对焊接质量也有着重要影响,一方面可以提供保护气氛,防止焊缝氧化或与空气中的杂质反应;另一方面可以有效盖住激光束与材料的相互作用。

激光焊接的特性分析主要包括焊接速度、热输入、焊缝形貌和焊接缺陷等。

焊接速度是决定焊接效果的重要因素之一,其取值应根据材料的熔化温度和焊缝的质量要求进行合理选择。

热输入则是指焊接过程中单位长度内传递给焊接区域的能量,直接影响着焊缝的熔透度和凝固组织。

热输入过小会导致焊缝凝固不完全,热输入过大则易产生裂纹和变形等缺陷。

焊缝形貌与焊接参数密切相关,激光焊接通常能够产生较窄而深的焊缝,焊缝形貌的良好与否直接关系到焊接质量。

焊接缺陷主要包括焊接裂纹、焊接变形和焊接缺陷等,这些缺陷的产生通常与焊接参数的选择不当和焊接材料的特性有关。

总之,激光焊接的工艺参数及特性对焊接质量起着至关重要的影响。

合理选择并控制这些参数可以提高焊接效率和质量,确保焊接结果符合设计要求。

因此,在实际应用中需要综合考虑各个参数之间的关系,通过优化调整,找到最佳的参数组合,从而实现高质量的激光焊接。

激光焊接 参数

激光焊接 参数

激光焊接参数
激光焊接的参数主要包括以下几种:
1. 激光功率:指激光焊接中产生的能量的最低值与最高值,低于这个界限熔深会降低,达到或超过这个界限熔深会提高。

2. 脉冲能量:指激光器产生的能量,决定着加热能量的大小,主要影响着金属的熔化程度。

3. 脉冲频率:指激光焊接机在一秒内能打出多少个脉冲的能力,用于调节脉冲焊接电流出现的次数,频率越高,每个激光的能量输出越小,焊接中需要根据金属材质的熔化情况调节速度。

4. 焊接速度:影响熔深的因素就是焊接速度,它会影响单位时间内的热输入量。

焊接速度快会使熔深变浅,造成工件焊不透;焊接速度慢则有可能因为过度熔化而焊透、焊穿工件。

通常采用降低速度的方法来改变熔深,焊接薄板或性能较好的材料时,建议最好使用高速焊接。

5. 脉冲宽度:当宽度较小时,激光能量集中、密度高,焊缝宽度与材料表面受热区域减少,将会增加熔深,使焊接性能更稳定;当宽度较大时,激光能量面积较大,焊缝宽度与材料表面受热面积增大,能量分布将会分散,减小熔深。

6. 保护气体:激光焊接机使用惰性气体进行保护,大多数是采用氦气、氩气与氮气,氦气价格高但保护效果最好,氩气价格便宜且保护效果较好,氮气价格最便宜但不适用有些材料。

可根据焊接具体情况选择合适的保护气体。

此外,不同的激光焊接类型也有其特有的参数,如连续激光焊的参数主要有:激光功率、焊接速度、光斑直径、离焦量、保护气体的种类和流量等;双光束激光焊的参数有:光束排布方式、间距、两光束角度、聚焦位置、两光束的能量比等。

这些参数共同决定了激光焊接的质量和效果。

在实际应用中,需要根据不同的材料、工艺要求和设备性能来选择合适的参数并进行优化调整。

激光焊接工艺参数解析

激光焊接工艺参数解析

激光焊接工艺参数解析激光焊接因具有高能量密度、深穿透、高精度、适应性强等优点而受到航空航天、机械、电子、汽车、造船和核能工程等领域的普遍重视。

尤其在汽车生产中,无论是车身组装还是汽车零部件的生产,激光焊接都得到了广泛的应用。

据有关资料统计,欧美工业发达国家50%~70%的汽车零部件都是用激光加工完成的,其中主要以激光焊接和切割为主,激光焊接在汽车生产中已成为标准工艺。

影响激光焊接质量的工艺参数比较多,如功率密度、光束特性、离焦量、焊接速度、激光脉冲波形和辅助吹气等。

功率密度功率密度是激光焊接中最关键的参数之一。

采用较高的功率密度,在几秒或几微秒时间内,可迅速将金属加热至熔点,形成良好的熔融焊接。

激光光束的聚焦光斑直径与激光器输出光束的模式密切相关,模式越低,聚焦后的光点越小,焊缝越窄,热影响区越小。

Nd:YAG固体激光器的光束模式为TEMOO o激光脉冲波形激光脉冲波形在激光焊接中十分重要(尤其是对薄片焊接)。

当高强度激光束射至材料表面时,金属表面将会有60%~90%的激光能量因反射而损失掉,且反射率随表面温度不同而改变。

在一个激光脉冲作用期间内,金属反射率的变化很大,例如正弦波,适用于散热快的工件,飞溅小但熔深浅;方波适用于散热慢的工件,飞溅大但熔深大。

通过快速渐升、渐降功率的调整,可使焊件防止激光功率开关瞬间突开、突闭造成的焊缝起始气孔和收尾弧坑裂纹缺陷。

离焦量离焦量是指工件表面偏离焦平面的距离。

离焦位置直接影响拼焊时的小孔效应。

离焦方式有两种:正离焦和负离焦。

焦平面位于工件上方为正离焦,反之为负离焦。

当正负离焦量相等时,所对应平面的功率密度近似一样,但实际上所获得的熔池形状不同。

负离焦时,可获得更大的熔深,这与熔池的形成过程有关。

实验说明,激光加热50-200μs时材料开始熔化,形成液相金属并出现部分汽化,形成高压蒸气,并以极高的速度喷射,发出耀眼的白光。

与此同时,高浓度气体使液相金属运动至熔池边缘,在熔池中心形成凹陷。

激光脉冲焊接的工艺参数

激光脉冲焊接的工艺参数

激光脉冲焊接的工艺参数
激光脉冲焊接是一种高端的金属加工技术,它可以实现高效、高品质的焊接作业。

以下是激光脉冲焊接的工艺参数的参考内容:
1. 脉冲功率
脉冲功率是激光脉冲焊接的最重要的工艺参数之一。

它的大小直接决定了焊接的深度和速度。

通常情况下,脉冲功率越大,焊接深度越深,速度越快。

但是,过高的脉冲功率也会导致材料过度熔化,从而影响焊接质量。

2. 脉冲时间
脉冲时间是指激光工作时每个脉冲的时间长度。

脉冲时间的长短影响着焊接的深度和宽度。

一般情况下,脉冲时间越长,焊接效果越好,但如果过长,则容易导致过度熔化,影响焊接质量。

3. 频率
频率是指激光脉冲焊接每秒钟输出的脉冲次数。

它决定了焊接的速度和效率,一般情况下,频率越高,焊接速度越快,效率越高。

4. 送丝速度
送丝速度是指焊丝在焊接过程中的进给速度。

它的大小直接影响着焊接质量和效率,通常情况下,送丝速度越快,焊接速度越快,但需要注意的是,送丝速度过快也会导致焊丝抖动和材料过度熔化。

5. 感应气体
感应气体是指在焊接过程中使用的保护气体。

它可以有效地防止氧化和污染,从而提高焊接质量。

常用的保护气体有氩气和氮气,选择哪种保护气体取决于具体的焊接材料和工艺。

以上是激光脉冲焊接的工艺参数的参考内容,这些参数的选择取决于焊接材料、焊接要求和设备参数等因素。

在实际应用中,需要根据具体情况进行调整和优化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

影响激光焊接质量的工艺参数
激光焊接的过程中,有时候会出现焊接不好的情况,大家知道影响这些焊接工艺的参数都有哪些吗?关于影响焊接质量的焊接工艺参数主要有激光输出功率、焊接速度、激光波形、脉冲宽度、离焦量和保护气体。

输出功率、焊接速度对熔深的影响。

激光波形主要有脉冲激光器常用的脉冲波形和连续焊接时的缝焊波形。

脉冲波形对焊接质量的影响(针对脉冲激光器)◆对于焊接铜、铝、金、银高反射材料时,为了突破高反射率的屏障,可以利用带有前置尖峰的激光波形。

但这种波形在高重复率缝焊时不宜采用,容易产生飞溅,形成不规则的孔洞。

◆对于铁、镍等黑色金属,表面反射率低,宜采用矩形波或缓衰减波形。

连续焊接时的缝焊波形:焊波形就是激光功率随焊接时间变化的曲线。

在材料要求焊接密封时此波形尤为重要。

在焊接开始时激光功率缓慢上升,结束时缓慢下降,在连续激光器焊接时,结尾处出现的凹坑,宜采用此波形,减小凹坑程度,以达到焊接效果。

脉冲宽度(针对脉冲激光器):光的脉冲宽度针对YAG固体激光器来说是焊接的重要参数之一,它决定材料是否熔化,为了保证激光焊接中材料表面不出现强烈气化,一般假定在脉冲终止时材料表面温度达到沸点。

脉宽越长,焊点直径越大,相同的工作距离时,熔深越深。

离焦量:光焊接时通常需要一定的离焦量,因为激光焦点处光斑中心的功率密度过高,容易蒸发成孔。

离开激光焦点的各平面上,功率密度分布相对均匀。

离焦方式有两种:正离焦和负离焦。

焦平面位于工件上方为正离焦,反之负离焦。

焊接薄材料时宜采用正离焦,需要较大熔深时宜采用正离焦。

离焦方式:一定的激光功率和焊接速度下,当焦点处于最佳焊接位置范围内时,可以获得最大熔深和好的焊缝形状。

保护气体:护气体的种类、气体流量及吹气方式也是影响焊接质量的重要焊接工艺参数之一。

常用的保护气体有氮气N2、氩气Ar、氦气He以及氩气和氦气的混合气体。

通常情况下,焊接碳钢时宜采用Ar,不锈钢宜采用N2,钛合金宜采用He,铝合金宜采用Ar和He的混合气体。

气体流量的大小需根据实际焊接情况而定。

在采用大功率连续激光器焊接时,通常采用的气流量较脉冲激光器焊接时的气流量大。

吹气方式分为侧吹和同轴吹两种。

小功率焊接时可采用同轴吹气,大功率连续焊接时建议采用侧吹方式。

保护气体的作用:
◆在激光焊接过程中,容易产生等离子体。

等离子体对激光有吸收、折射和反射的作用。

通常可采用保护气体驱除或削弱。

◆提高焊缝的冷却速度。

◆降低焊缝表面氧化程度。

◆改善焊缝表面形貌。

综合以上的分析,要在高速连续的激光焊接过程中,并在合适的范围内,保证焊接质量,如焊缝成形的可靠性和稳定性,确保焊接质量。

一方面需采用光束质量和激光输出功率稳定性好的激光器和采用高质量、高稳定性的光学元件组成其导光聚焦系统,并经常维护,防止污染,保持清洁,并适当对工件进行预处理;
另一方面要确保工件的加工精度和装配精度,并且针对不同的加工材料分别设定不同的激光加工参数,选择合适的激光功率、焊接速度、激光波形、离焦量和保护气体,根据不同焊接效果优化加工参数,提高激光焊接质量的可靠性和稳定性。

相关文档
最新文档