广西崇左市2015年中考数学试题(word版含解析)
2015年广西南宁中考数学试题及答案解析

2015年广西南宁中考数学试题及答案解析学校:___________姓名:___________班级:___________考号:___________一、单选题1.(2015年)3的绝对值是()A.3 B.-3 C.D.2.(2015年)如图所示是由四个大小相同的正方体组成的几何体,那么它的主视图是()A.B.C.D.3.(2015年)快速公交(简称:BRT)将在今年底开始动工,预计2016年下半年建成并投入试运营,首条BRT西起火车站,东至东站,全长约为11300米,其中数据11300用科学记数法表示为()A.B.C.D.4.(2015年)某校男子足球队的年龄分布如图条形图所示,则这些队员年龄的众数是()A.12 B.13 C.14 D.155.(2015年)如图,一块含角的直角三角板ABC的直角顶点A在直线DE上,且BC//DE,则等于( )A .B .45C .60D .906.(2015年)不等式的解集在数轴上表示为( )A .B .C .D .7.(2015年)如图,在△ABC 中,AB=AD=DC ,∠B=70°,则∠C 的度数为( )A .35°B .40°C .45°D .50°8.(2015年)下列运算正确的是( ) A .B .C .347a a a ⋅=D .9.(2015年)一个正多边形的内角和为540°,则这个正多边形的每一个外角等于( ) A .108°B .90°C .72°D .60° 10.(2015年)如图,已知经过原点的抛物线的对称轴是直线,下列结论中:,, 当.正确的个数是( )A .0个B .1个C .2个D .3个11.(2015年)如图,AB 是⊙O 的直径,AB=8,点M 在⊙O 上,,N 是弧MB 的中点,P 是直径AB 上的一动点,若MN=1,则周长的最小值为( )A.4 B.5 C.6 D.712.(2015年)对于两个不相等的实数a、b,我们规定符号Max{a,b}表示a、b中的较大值,如:Max{2, 4}=4,按照这个规定,方程的解为()A.B.C.D.二、填空题13.(2015年)因式分解:_____.14.(2015年)要使分式有意义,则字母的取值范围是_____.15.(2015年)一个不透明的口袋中有5个完全相同的小球,把它们分别标号为1,2,3,4,5,随机提取一个小球,则取出的小球标号是奇数的概率是_____.的度数是__________.16.(2015年)如图,在正方形ABCD的外侧,作等边DCE,则AEC17.(2015年)如图,点A在双曲线上,点B在双曲线上(点B在点A的右侧),且AB//轴,若四边形OABC是菱形,且AOC=60,则_____.18.(2015年)如图,在数轴上,点A表示1,现将点A沿轴做如下移动,第一次点A向左移动3个单位长度到达点,第二次将点向右移动6个单位长度到达点,第三次将点向左移动9个单位长度到达点,按照这种移动规律移动下去,第次移动到点,如果点与原点的距离不小于20,那么的最小值是_____.三、解答题19.(2015年)计算:20.(2015年)先化简,再求值:.21.(2015年)如图,在平面直角坐标系中,已知ABC的三个顶点的坐标分别为A(-1,1),B(-3,1),C(-1,4).(1)画出△ABC关于y轴对称的图形;(2)将△ABC绕着点B顺时针旋转90°后得到△A2BC2,请在图中画出△A2BC2,并求出线段BC旋转过程中所扫过的面积(结果保留)22.(2015年)今年5月份,某校九年级学生参加了市中考体育考试,为了了解该校九年级(1)班同学的中考体育情况,对全班学生的中考体育成绩进行了统计,并绘制以下不完整的频数分布表(图11-1)和扇形统计图(图11-2),根据图表中的信息解答下列问题:(1)求全班学生人数和m的值;(2)直接学出该班学生的中考体育成绩的中位数落在哪个分数段;(3)该班中考体育成绩满分共有3人,其中男生2人,女生1人,现需从这3人中随机选取2人到八年级进行经验交流,请用“列表法”或“画树状图法”求出恰好选到一男一女的概率.23.(2015年)如图,在□ABCD中,E、F分别是AB、DC边上的点,且AE=CF,(1)求证:≌.(2)若DEB=90,求证四边形DEBF是矩形.24.(2015年)如图1,为美化校园环境,某校计划在一块长为60米,宽为40米的长方形空地上修建一个长方形花圃,并将花圃四周余下的空地修建成同样宽的通道,设通道宽为a 米.(1)用含a 的式子表示花圃的面积.(2)如果通道所占面积是整个长方形空地面积的38,求出此时通道的宽.(3)已知某园林公司修建通道、花圃的造价y 1(元)、y 2(元)与修建面积x (m 2)之间的函数关系如图2所示,如果学校决定由该公司承建此项目,并要求修建的通道的宽度不少于2米且不超过10米,那么通道宽为多少时,修建的通道和花圃的总造价最低,最低总造价为多少元?25.(2015年)如图,AB 是⊙O的直径,C 、G 是⊙O上两点,且,过点C 的直线CDBG 于点D ,交BA 的延长线于点E ,连接BC ,交OD 于点F.(1)求证:CD 是⊙O的切线. (2)若,求E 的度数.(3)连接AD ,在(2)的条件下,若CD=,求AD 的长.26.(2015年)在平面直角坐标系中,已知A 、B 是抛物线2y ax =(0a >)上两个不同的点,其中A 在第二象限,B 在第一象限,(1)如图1所示,当直线AB 与x 轴平行,∠AOB =90°,且AB =2时,求此抛物线的解析式和A 、B 两点的横坐标的乘积.(2)如图2所示,在(1)所求得的抛物线上,当直线AB 与x 轴不平行,∠AOB 仍为90°时,A .B 两点的横坐标的乘积是否为常数?如果是,请给予证明;如果不是,请说明理由. (3)在(2)的条件下,若直线22y x =--分别交直线AB ,y 轴于点P 、C ,直线AB 交y 轴于点D ,且∠BPC =∠OCP ,求点P 的坐标.广西2015中考数学试题参考答案1.A 【解析】试题分析:若a >0,则|a|=a ;若a=0,则|a|=0;若a <0,则|a|=﹣a .3的绝对值是3.故选A.考点:绝对值. 2.B 【解析】根据题意的主视图为:,故选B 3.B 【解析】试题分析:用科学记数法表示较大的数形式为,n 的值为整数位数少1.∴.故选B.考点:用科学记数法表示较大的数. 4.C 【解析】试题解析:观察条形统计图知:为14岁的最多,有8人, 故众数为14岁, 故选C .考点:1.众数;2.条形统计图. 5.A 【解析】试题分析:由图可知∠C=,又∵BC//DE ,∴.故选A.考点:平行线的性质、含锐角的直角三角形.6.D 【解析】试题分析:移项得,;系数化为1得,;在数轴上表示为空心向左.故选D.考点:不等式的解法、用数轴表示不等式的解集. 7.A 【解析】∵AB =AD , ∴∠ADB =∠B =70°. ∵AD =DC ,∴12C DAC ADB ∠=∠=∠=35°.故选A. 8.C 【解析】试题分析:此题考查整式的运算性质.根据单项式的除法,,选项A 错误;根据积和乘方,分别乘方,以及幂的乘方,底数不变,指数相乘,得:233236(3)3()27x x x =⋅=,选项B 错误;根据同底数幂的乘法,底数不变,指数相加,得347a a a ⋅=,选项C 正确;根据二次根式的除法,被开方数相除,得,选项D 错误.故选C.考点:整式的运算性质、二次根式的除法. 9.C 【分析】首先设此多边形为n 边形,根据题意得:180(n-2)=540,即可求得n=5,再由多边形的外角和等于360°,即可求得答案. 【详解】解:设此多边形为n 边形, 根据题意得:180(n-2)=540, 解得:n=5,∴这个正多边形的每一个外角等于:3605︒=72°. 故选C . 【点睛】此题考查了多边形的内角和与外角和的知识.注意掌握多边形内角和定理:(n-2)•180°,外角和等于360°. 10.D 【解析】试题分析:本题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a 与b 的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.由对称轴在轴左侧,同号,所以, 正确;当时,函数在轴上方,即, 正确;由于对称轴是直线,且抛物线过原点,所以抛物线与轴另一个交点为,当, 正确.故选D.考点:二次函数的图象. 11.B 【分析】作N 关于AB 的对称点N ′,连接MN ′,NN ′,ON ′,ON ,由两点之间线段最短可知MN ′与AB 的交点P ′即为△PMN 周长的最小时的点,根据N 是弧MB 的中点可知∠A=∠NOB=∠MON=20°,故可得出∠MON′=60°,故△MON′为等边三角形,由此可得出结论.【详解】作N关于AB的对称点N′,连接MN′,NN′,ON′,ON.∵N关于AB的对称点N′,∴MN′与AB的交点P′即为△PMN周长的最小时的点,∵N是弧MB的中点,∴∠A=∠NOB=∠MON=20°,∴∠MON′=60°,∴△MON′为等边三角形,∴MN′=OM=4,∴△PMN周长的最小值为4+1=5.故选B.【点睛】本题考查了轴对称-最短路线问题;圆周角定理.凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.12.D【解析】试题分析:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解,解分式方程一定注意要验根.根据x与﹣x的大小关系,取x与﹣x中的最大值化简所求方程,求出解即可.当x<﹣x,即x<0时,所求方程变形得:﹣x=,去分母得:x2+2x+1=0,即x=﹣1;当x>﹣x,即x>0时,所求方程变形得:x=,即x2﹣2x=1,解得:x=1+或x=1﹣(舍去),经检验x=﹣1与x=1+都为分式方程的解.故选D.考点:解分式方程,新定义. 13..【解析】试题分析:观察发现两个式子有公因式,先提公因式..故答案为.考点:提公因式法分解因式. 14..【解析】试题分析:根据分式有意义,分母不能为0,据此求解.由题意,得,解得.故答案为.考点:分式有意义的条件. 15.35. 【详解】根据概率的意义,在这5个标号中是奇数的有3个,分别为:1,3,5.所以取出的小球标号是奇数的概率是35. 故答案为35. 考点:概率. 16.45︒ 【分析】先求出AED ∠的度数,即可求出AEC ∠. 【详解】解:由题意可得,,90,60AD DC DE ADC EDC DEC ︒︒==∠=∠=∠=,,150AD DE ADE ADC EDC ︒=∠=∠+∠=180150152AED DAE ︒︒︒-∴∠=∠==45AEC CED AED ︒∴∠=∠-∠=故答案为45【点睛】本题考查了等腰与等边三角形的性质,等腰三角形的两底角相等,等边三角行的三条边都相等,三个角都相等,灵活应用等腰及等边三角形的性质是解题的关键.17..【解析】试题分析:此题主要考查了待定系数法求反比例函数,关键是根据菱形的性质求出B点坐标,即可算出反比例函数解析式.首先根据点A在双曲线y=(x>0)上,设A点坐标为(a,),再利用含30°直角三角形的性质算出OA=2a,再利用菱形的性质进而得到B点坐标,即可求出k的值.因为点A在双曲线y=(x>0)上,设A点坐标为(a,),因为四边形OABC是菱形,且∠AOC=60°,所以OA=2a,可得B点坐标为(3a,),可得:k=,故答案为考点:菱形的性质;反比例函数图象上点的坐标特征.18.13.【解析】试题分析:序号为奇数的点在点A的左边,各点所表示的数依次减少3,序号为偶数的点在点A的右侧,各点所表示的数依次增加3,于是可得到A13表示的数为﹣17﹣3=﹣20,A12表示的数为16+3=19,则可判断点A n与原点的距离不小于20时,n的最小值是13.第一次点A向左移动3个单位长度至点A1,则A1表示的数,1﹣3=﹣2﹣2;第2次从点A1向右移动6个单位长度至点A2,则A2表示的数为﹣2+6=4;第3次从点A2向左移动9个单位长度至点A3,则A3表示的数为4﹣9=﹣5;第4次从点A3向右移动12个单位长度至点A4,则A4表示的数为﹣5+12=7;第5次从点A4向左移动15个单位长度至点A5,则A5表示的数为7﹣15=﹣8;…;则A7表示的数为﹣8﹣3=﹣11,A9表示的数为﹣11﹣3=﹣14,A11表示的数为﹣14﹣3=﹣17,A13表示的数为﹣17﹣3=﹣20,A6表示的数为7+3=10,A8表示的数为10+3=13,A10表示的数为13+3=16,A12表示的数为16+3=19,所以点A n与原点的距离不小于20,那么n的最小值是13.故答案为13.考点:规律型图形的变化,数轴.19.2.【解析】试题分析:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.原式第一项利用零指数幂法则计算,第二项利用乘方的意义化简,第三项利用特殊角的三角函数值计算,最后一项利用算术平方根定义计算即可得到结果.试题解析:原式=1+1﹣2×1+2=2.故答案为2.考点:整式的混合运算、化简求值.20.1.【解析】试题分析:本题考查了整式的混合运算﹣化简求值:先按运算顺序把整式化简,再把对应字母的值代入求整式的值.有乘方、乘除的混合运算中,要按照先乘方后乘除的顺序运算,其运算顺序和有理数的混合运算顺序相似.先利用乘法公式展开,再合并得到原式=2x,然后把x=代入计算即可.试题解析:原式=1﹣x2+x2+2x﹣1=2x,当x=时,原式=2×=1.故答案为1.考点:整式的混合运算,化简求值.21.(1)如图;(2)线段BC旋转过程中所扫过得面积134π.【分析】(1)关于y轴对称的两点横坐标互为相反数,纵坐标不变,根据对称法则得出各点的对应点,然后得出三角形;(2)根据旋转图形的性质得出各点的对应点,然后顺次连接,得到三角形.首先得出半径和旋转的角度,然后根据扇形的面积计算法则得出答案.【详解】(1)如图所示,画出△ABC关于y轴对称的△A1B1C1;(2)如图所示,画出△ABC绕着点B顺时针旋转90°后得到△A2BC2,线段BC旋转过程中所扫过得面积S=901313=3604ππ⨯.考点:(1)旋转图形的性质;(2)轴对称图形的性质;(3)扇形的面积计算.22.(1)50,18;(2)中位数落在51﹣56分数段;(3)23.【分析】(1)利用C分数段所占比例以及其频数求出总数即可,进而得出m的值;(2)利用中位数的定义得出中位数的位置;(3)利用列表或画树状图列举出所有的可能,再根据概率公式计算即可得解.【详解】解:(1)由题意可得:全班学生人数:15÷30%=50(人);m=50﹣2﹣5﹣15﹣10=18(人);(2)∵全班学生人数:50人,∴第25和第26个数据的平均数是中位数,∴中位数落在51﹣56分数段;(3)如图所示:将男生分别标记为A1,A2,女生标记为B1P(一男一女)==.63【点睛】本题考查列表法与树状图法,频数(率)分布表,扇形统计图,中位数.23.(1)利用SAS证明;(2)证明见解析.【解析】试题分析:此题考查了平行四边形的判定与性质、矩形的判定以及全等三角形的判定与性质.注意有一个角是直角的平行四边形是矩形,首先证得四边形ABCD是平行四边形是关键.(1)由在□ABCD中,AE=CF,可利用SAS判定△ADE≌△CBF.(2)由在▱ABCD中,且AE=CF,利用一组对边平行且相等的四边形是平行四边形,可证得四边形DEBF是平行四边形,又由∠DEB=90°,可证得四边形DEBF是矩形.试题解析:(1)∵四边形ABCD是平行四边形,∴AD=CB,∠A=∠C,在△ADE和△CBF中,,∴△ADE≌△CBF(SAS).(2)∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∵AE=CF,∴BE=DF,∴四边形ABCD是平行四边形,∵∠DEB=90°,∴四边形DEBF是矩形.故答案为(1)利用SAS 证明;(2)证明见解析.考点:平行四边形的性质;全等三角形的判定与性质;矩形的判定.24.(1)(40﹣2a)(60﹣2a);(2)以通道的宽为5米;(3)当通道宽为2米时,修建的通道和花圃的总造价最低为105920元.【分析】(1)用含a的式子先表示出花圃的长和宽后利用其矩形面积公式列出式子即可;(2)根据通道所占面积是整个长方形空地面积的38,列出方程进行计算即可;(3)根据图象,设出通道和花圃的解析式,用待定系数法求解,再根据修建的通道和花圃的总造价为105920元列出关于a的方程,通过解方程求得a的值.【详解】(1)由图可知,花圃的面积为(40﹣2a)(60﹣2a)=4a2﹣200a+2400.(2)当通道所占面积是整个长方形空地面积的38,即花圃所占面积是整个长方形空地面积的58,则4a2﹣200a+2400=60×40×58,解方程得:a1=5,a2=45(不符合题意,舍去)即此时通道宽为5米;(3)当a=10时,花圃面积为(60﹣2×10)×(40﹣2×10)=800(平方米)即此时花圃面积最少为800(平方米).根据图象可设y1=mx,y2=kx+b,将点(1200,48000),(800,48000),(1200,62000)代入,则有1200m=48000,解得:m=40∴y1=40x且有80048000{120062000k bk b+=+=,解得:35{20000 kb==,∴y2=35x+20000.∵花圃面积为:(40﹣2a)(60﹣2a)=4a2﹣200a+2400,∴通道面积为:2400﹣(4a2﹣200a+2400)=﹣4a2+200a∴35(4a2﹣200a+2400)+20000+40(﹣4a2+200a)=105920解得a1=2,a2=48(舍去).答:通道宽为2米时,修建的通道和花圃的总造价为105920元.【点睛】考核知识点:一次函数,一元二次方程应用.25.(1)证明见解析;(2)∠E=30°;(3)AD=.【解析】试题分析:(1)如图1,连接OC,AC,CG,由圆周角定理得到∠ABC=∠CBG,根据同圆的半径相等得到OC=OB,于是得到∠OCB=∠OBC,等量代换得到∠OCB=∠CBG,根据平行线的判定得到OC∥BG,即可得到结论;(2)由OC∥BD,得到△OCF∽△BDF,△EOC∽△EBD,得到,,根据直角三角形的性质即可得到结论;(3)如图2,过A作AH⊥DE于H,解直角三角形得到BD=3,DE=3,BE=6,在R t△DAH中,AD===.试题解析:(1)证明:如图1,连接OC,AC,CG,∵AC=CG,∴,∴∠ABC=∠CBG,∵OC=OB,∴∠OCB=∠OBC,∴∠OCB=∠CBG,∴OC∥BG,∵CD⊥BG,∴OC⊥CD,∴CD是⊙O的切线;(2)解:∵OC∥BD,∴△OCF∽△BDF,△EOC∽△EBD,∴,∴,∵OA=OB,∴AE=OA=OB,∴OC=OE,∵∠ECO=90°,∴∠E=30°;(3)解:如图2,过A作AH⊥DE于H,∵∠E=30°∴∠EBD=60°,∴∠CBD=EBD=30°,∵CD=,∴BD=3,DE=3,BE=6,∴AE=BE=2,∴AH=1,∴EH=,∴DH=2,在R t△DAH中,AD===.故答案为(1)证明见解析;(2)∠E=30°;(3)AD=.考点:圆的综合题. 26.(1)2y x ,1A B x x ⋅=-;(2)1A B x x ⋅=-为常数;(3)P (125-,145) 【解析】试题分析:(1)如图1,由AB 与x 轴平行,根据抛物线的对称性有AE=BE=1,由于∠AOB=90°,得到OE=AB=1,求出A (﹣1,1)、B (1,1),把x=1时,y=1代入y=ax 2得:a=1得到抛物线的解析式y=x 2,A 、B 两点的横坐标的乘积为x A •x B =﹣1;(2)如图2,过A 作AM ⊥x 轴于M ,BN ⊥x 轴于N 得到∠AMO=∠BNO=90°,证出△AMO ∽△BON ,得到OM •ON=AM •BN ,设A (x A ,y A ),B (x B ,y B ),由于A (x A ,y A ),B (x B ,y B )在y=x 2图象上,得到y A =,y B =,即可得到结论;(3)设A (m ,m 2),B (n ,n 2).作辅助线,证明△AEO ∽△OFB ,得到mn=﹣1.再联立直线m :y=kx+b 与抛物线y=x 2的解析式,由根与系数关系得到:mn=﹣b ,所以b=1;由此得到OD 、CD 的长度,从而得到PD 的长度;作辅助线,构造Rt △PDG ,由勾股定理求出点P 的坐标.试题解析:(1)如图1,∵AB 与x 轴平行,根据抛物线的对称性有AE=BE=1, ∵∠AOB=90°,∴OE=AB=1,∴A (﹣1,1)、B (1,1), 把x=1时,y=1代入y=ax 2得:a=1,∴抛物线的解析式y=x 2, B 两点的横坐标的乘积为x A •x B =﹣1.(2)x A•x B=﹣1为常数,如图2,过A作AM⊥x轴于M,BN⊥x轴于N,∴∠AMO=∠BNO=90°,∴∠MAO+∠AOM=∠AOM+∠BON=90°,∴∠MAO=∠BON,∴△AMO∽△BON,∴,∴OM•ON=AM•BN,设A(x A,y A),B(x B,y B),∵A(x A,y A),B(x B,y B)在y=x2图象上,∴,y A=,y B=,∴﹣x A•x B=y A•y B=•,∴x A•x B=﹣1为常数;(3)设A(m,m2),B(n,n2),如图3所示,过点A、B分别作x轴的垂线,垂足为E、F,则易证△AEO∽△OFB.∴,即,整理得:mn(mn+1)=0,∵mn≠0,∴mn+1=0,即mn=﹣1.设直线AB的解析式为y=kx+b,联立,得:x2﹣kx﹣b=0.∵m,n是方程的两个根,∴mn=﹣b.∴b=1.∵直线AB与y轴交于点D,则OD=1.易知C(0,﹣2),OC=2,∴CD=OC+OD=3.∵∠BPC=∠OCP,∴PD=CD=3.设P(a,﹣2a﹣2),过点P作PG⊥y轴于点G,则PG=﹣a,GD=OG﹣OD=﹣2a﹣3.在Rt△PDG中,由勾股定理得:PG2+GD2=PD2,即:(﹣a)2+(﹣2a﹣3)2=32,整理得:5a2+12a=0,解得a=0(舍去)或a=﹣,当a=﹣时,﹣2a﹣2=,∴P(﹣,).故答案为(1)B两点的横坐标的乘积为x A•x B=﹣1;(2)x A•x B=﹣1为常数;(3)P(﹣,).。
2015年广西中考数学真题卷含答案解析

2015年南宁市初中毕业升学考试数学试题(含答案全解全析)第Ⅰ卷(选择题,共36分)一、选择题(本大题共12小题,每小题3分,共36分)每小题都给出代号为A、B、C、D四个结论,其中只有一个是正确的.1.3的绝对值是( )A.3B.-3C.13D.-132.如图是由四个大小相同的正方体组成的几何体,那么它的主视图是( )3.南宁快速公交(简称:BRT)将在今年底开始动工,预计2016年下半年建成并投入试运营.首条BRT西起南宁火车站,东至南宁东站,全长约为11300米.其中数据11300用科学记数法表示为( )A.0.113×105B.1.13×104C.11.3×103D.113×1024.某校男子足球队的年龄分布如条形图所示,则这些队员年龄的众数是( )A.12B.13C.14D.155.如图,一块含30°角的直角三角板ABC的直角顶点A在直线DE上,且BC∥DE,则∠CAE等于( )A.30°B.45°C.60°D.90°6.不等式2x-3<1的解集在数轴上表示为( )7.如图,在△ABC中,AB=AD=DC,∠B=70°,则∠C的度数为( )A.35°B.40°C.45°D.50° 8.下列运算正确的是( )A.4ab÷2a=2abB.(3x 2)3=9x 6C.a 3·a 4=a 7D.√6÷√3=2 9.一个正多边形的内角和为540°,则这个正多边形的每个外角等于( ) A.60° B.72° C.90° D.108°10.如图,已知经过原点的抛物线y=ax 2+bx+c(a ≠0)的对称轴为直线x=-1.下列结论中:①ab>0;②a+b+c>0;③当-2<x<0时,y<0.正确的个数是( )A.0个B.1个C.2个D.3个11.如图,AB 是☉O 的直径,AB=8,点M 在☉O 上,∠MAB=20°,N 是MB⏜的中点,P 是直径AB 上一动点.若MN=1,则△PMN 周长的最小值为( )A.4B.5C.6D.712.对于两个不相等的实数a,b,我们规定符号max{a,b}表示a,b 中较大的数,如:max{2,4}=4.按照这个规定,方程max{x,-x}=2x+1x的解为( )A.1-√2B.2-√2C.1-√2或1+√2D.1+√2或-1第Ⅱ卷(非选择题,共84分)二、填空题(本大题共6小题,每小题3分,共18分)13.分解因式:ax+ay= .14.要使分式1x -1有意义,则字母x 的取值范围是 .15.一个不透明的口袋中有5个完全相同的小球,把它们分别标号为1,2,3,4,5.随机摸取一个小球,则取出的小球标号是奇数的概率是 .16.如图,在正方形ABCD 的外侧,作等边△ADE,则∠BED 的度数为 °.17.如图,点A 在双曲线y=2√3x(x>0)上,点B 在双曲线y=kx (x>0)上(点B 在点A 的右侧),且AB ∥x轴.若四边形OABC 是菱形,且∠AOC=60°,则k= .18.如图,在数轴上,点A表示1,现将点A沿数轴做如下移动:第1次点A向左移动3个单位长度到达点A1,第2次从点A1向右移动6个单位长度到达点A2,第3次从点A2向左移动9个单位长度到达点A3,……,按照这种移动规律进行下去,第n次移动到达点A n.如果点A n与原点的距离不小于20,那么n的最小值是.三、解答题(本大题共2小题,每小题满分6分,共12分)19.计算:20150+(-1)2-2tan45°+√4..20.先化简,再求值:(1+x)(1-x)+x(x+2)-1,其中x=12四、解答题(本大题共2小题,每小题满分8分,共16分)21.如图,在平面直角坐标系中,已知△ABC三个顶点的坐标分别为A(-1,1),B(-3,1),C(-1,4).(1)画出△ABC关于y轴对称的△A1B1C1;(2)将△ABC绕点B顺时针旋转90°后得到△A2BC2.请在图中画出△A2BC2,并求出线段BC在旋转过程中所扫过的面积.(结果保留π)22.今年5月份,某校九年级学生参加了南宁市中考体育考试.为了了解该校九年级(1)班学生的中考体育情况,对全班学生的中考体育成绩进行了统计,并绘制出以下不完整的频数分布表和扇形统计图.请根据图表中的信息解答下列问题:分组分数段(分)频数A36≤x<412B41≤x<465C46≤x<5115D51≤x<56mE56≤x<6110(1)求全班学生人数和m的值;(2)直接写出该班学生的中考体育成绩的中位数落在哪个分数段;(3)该班中考体育成绩满分(60分)共有3人,其中男生2人,女生1人,现需从这3人中随机选取2人到八年级进行经验交流.请用“列表法”或“画树状图法”,求出恰好选到一男一女的概率.五、解答题(本大题满分8分)23.如图,在▱ABCD中,E,F分别是AB,DC边上的点,且AE=CF.(1)求证:△ADE≌△CBF;(2)若∠DEB=90°,求证:四边形DEBF是矩形.六、解答题(本大题满分10分)24.如图①,为美化校园环境,某校计划在一块长为60米,宽为40米的长方形空地上,修建一个长方形花圃,并将花圃四周余下的空地修建成同样宽的甬道,设甬道的宽为a米.图①(1)用含a的式子表示花圃的面积;,求此时甬道的宽;(2)如果甬道所占面积是整个长方形空地面积的38(3)已知某园林公司修建甬道、花圃的造价y1(元)、y2(元)与修建面积x(m2)之间的函数关系如图②所示.如果学校决定由该公司承建此项目,并要求修建的甬道宽不少于2米且不超过10米,那么甬道宽为多少米时,修建的甬道和花圃的总造价最低?最低总造价为多少元?图②七、解答题(本大题满分10分)25.如图,AB是☉O的直径,C,G是☉O上两点,且AC⏜=CG⏜.过点C的直线CD⊥BG于点D,交BA 的延长线于点E,连结BC,交OD于点F.(1)求证:CD是☉O的切线;(2)若OFFD =23,求∠E的度数;(3)连结AD,在(2)的条件下,若CD=√3,求AD的长.八、解答题(本大题满分10分)26.在平面直角坐标系中,已知A,B是抛物线y=ax2(a>0)上两个不同的动点,其中A在第二象限,B在第一象限.(1)如图①所示,当直线AB与x轴平行,∠AOB=90°,且AB=2时,求此抛物线的解析式和A,B 两点的横坐标的乘积;(2)如图②所示,在(1)所求得的抛物线上,当直线AB与x轴不平行,∠AOB仍为90°时,A,B 两点的横坐标的乘积是否为常数?如果是,请给予证明;如果不是,请说明理由;(3)在(2)的条件下,若直线y=-2x-2分别交直线AB,y轴于点P,C,直线AB交y轴于点D,且∠BPC=∠OCP,求点P的坐标.图①图②答案全解全析:一、选择题1.A因为|3|=3,所以选项A正确.故选A.2.B由题意可知,主视图有两层,上面的一层有一个正方形,在左侧下面的一层有两个正方形.选项B符合.故选B.3.B11300=1.13×104.故选B.4.C14岁的人数最多,所以众数为14.故选C.5.A∵DE∥BC,∴∠CAE=∠C=30°.故选A.6.D∵2x-3<1,∴2x<4,∴x<2.在数轴上表示应为从2画起(空心),向左,选项D符合题意,故选D.7.A∵AB=AD,∴∠ADB=∠B=70°,∵AD=DC,∴∠C=∠DAC.∵∠ADB是△ADC的外∠ADB=35°.故选A.角,∴∠C=128.C4ab÷2a=2b,选项A错误;(3x2)3=27x6,选项B错误;√6÷√3=√2,选项D错误;a3·a4=a7,选项C正确.故选C.9.B由(n-2)·180°=540°,得n=5,所以每一个外角等于360°=72°.故选B.5<0,所以ab>0,所以①正确;当x=1时,y=a+b+c>0,所以②正10.D因为对称轴为直线x=-b2a确;由对称轴可知抛物线与x轴的交点坐标为(-2,0),(0,0),所以-2<x<0时,图象在x轴下方,即y<0,所以③正确.故选D.11.B△PMN的周长为PM、PN、MN的和,其中MN=1,所以只要PM、PN的和最小即可.如图,取N关于AB的对称点C,连结MC交AB于P,此时PM、PN的和最小,PM、PN的和就是MC的长⏜的中点,∴∠NOB=20°.∵直径度.连结OM、ON、OC.∵∠MAB=20°,∴∠MOB=40°.∵N为BMAB⊥CN,∴∠COB=20°.∴∠MOC=60°.∵OM=OC,∴△MOC为等边三角形.∵AB=8,∴MC=OM=4.∴△PMN的周长的最小值为1+4=5.故选B.12.D(1)当x>-x,即x>0时,max{x,-x}=x,2x+1=x,解这个方程可得x=1±√2.经检验,x=1±√2是原方程的解.∵x>0,∴x=1+√2.x(2)当x<-x,即x<0时,max{x,-x}=-x,2x+1=-x,解这个方程可得x=-1.经检验,x=-1是原方程的解.x综上所述,x=1+√2或x=-1.故选D.评析本题是新概念学习题,考查的是分类讨论思想与解一元二次方程.属中档题.二、填空题13.答案a(x+y)解析ax+ay=a(x+y).14.答案x≠1解析若分式1有意义,则分母x-1≠0,即x≠1.x-115.答案0.6解析一共有5个小球,标号是奇数的小球有3个,所以取出的小球标号是奇数的概率是3÷5=0.6.16.答案45解析由题意可知,∠BAE=150°,BA=AE,∴∠AEB=15°.∴∠BED=45°.17.答案 6√3解析 作AD ⊥x 轴交x 轴于点D,∵∠AOC=60°,∴AD=√3OD,∴可设A(x,√3x). ∵点A 在双曲线y=2√3x(x>0)上,∴x ·√3x=2√3. ∴x 2=2.∵x>0,∴x=√2.∴A(√2,√6).∴OA=2√2.∵四边形OABC 是菱形, ∴AB=OA=2√2.∵AB ∥x 轴,∴B(3√2,√6). ∵点B 在双曲线y=k x(x>0)上, ∴k=xy=3√2×√6=6√3.评析 本题考查了反比例函数与菱形的综合应用,需要借助反比例函数关系式求出菱形的边长,再利用菱形的性质求出反比例函数图象上的点的坐标.属中档题. 18.答案 13解析 根据题意,写出移动后各点所表示的数:A 1:-2 A 2:4 A 3:-5 A 4:7 A 5:-8 A 6:10 A 7:-11 A 8:13 A 9:-14 A 10:16 A 11:-17 A 12:19 A 13:-20如果点A n 与原点的距离不小于20,那么n 的最小值是13.三、解答题19.解析 原式=1+1-2×1+2(4分) =2.(6分)20.解析 原式=1-x 2+x 2+2x-1(2分) =2x.(4分)当x=12时,原式=2×12=1.(6分)四、解答题21.解析 (1)△A 1B 1C 1如图所示.(3分,正确作出一点给1分) (2)△A 2BC 2如图所示.(6分,正确作出一点给1分)在Rt △ABC 中,AB=2,AC=3, ∴BC=√22+32=√13.(7分) ∵∠CBC 2=90°,∴S 扇形BCC 2=90π(√13)2360=13π4.(8分)22.解析 (1)全班学生人数:15÷30%=50(人).(2分) m=50-2-5-15-10=18.(3分)(2)51≤x<56.(5分)(3)画树状图或列表如下:或男1男2 女 男1男2男1女男1 男2 男1男2女男2女男1女男2女(7分)由图或表可知,所有可能出现的结果共有6种,并且它们出现的可能性相等,“一男一女”的结果有4种,即:男1女,男2女,女男1,女男2. ∴P(一男一女)=23.(8分) 五、解答题23.证明 (1)∵四边形ABCD 是平行四边形, ∴AD=CB,∠A=∠C.(2分) ∵AE=CF,(3分)∴△ADE ≌△CBF.(4分)(2)证法一:∵△ADE ≌△CBF, ∴DE=BF.(5分)∵四边形ABCD 是平行四边形,∴AB=CD.∵AE=CF,∴AB -AE=CD-CF.∴EB=DF.(6分)∴四边形DEBF 是平行四边形.(7分)∵∠DEB=90°,∴▱DEBF 是矩形.(8分)证法二:∵四边形ABCD 是平行四边形,∴AB ∥CD,AB=CD.(5分)∵AE=CF,∴AB -AE=CD-CF.∴EB=DF.(6分)∴四边形DEBF 是平行四边形.(7分)∵∠DEB=90°,∴▱DEBF 是矩形.(8分)六、解答题24.解析 (1)花圃的面积为(60-2a)(40-2a)平方米或(4a 2-200a+2 400)平方米.(2分)(2)(60-2a)(40-2a)=60×40×(1-38),(4分)即a 2-50a+225=0,解得a 1=5,a 2=45(不合题意,舍去).∴此时甬道的宽为5米.(5分)(3)∵2≤a ≤10,花圃面积随着甬道宽的增大而减小,∴800≤x 花圃≤2 016.由图象可知,当x ≥800时,设y 2=k 2x+b,因为直线y 2=k 2x+b 经过点(800,48 000)与(1 200,62 000),所以{800k 2+b =48 000,1 200k 2+b =62 000.解得{k 2=35,b =20 000.∴y 2=35x+20 000.(6分)当x ≥0时,设y 1=k 1x,因为直线y 1=k 1x 经过点(1 200,48 000),所以1 200k 1=48 000. 解得k 1=40.∴y 1=40x.(7分)设修建甬道、花圃的总造价为y 元,依题意,得解法一:y=y 甬道+y 花圃=40(60×40-x 花圃)+35x 花圃+20 000=40(2 400-4a 2+200a-2 400)+35(4a 2-200a+2 400)+20 000(8分)=-20a 2+1 000a+104 000=-20(a-25)2+116 500.∵-20<0,∴当a<25时,y 随a 的增大而增大.(9分)而2≤a ≤10,∴当a=2时,y 最小=105 920.∴当甬道的宽为2米时,修建甬道、花圃的总造价最低,最低为105 920元.(10分) 解法二:y=y 甬道+y 花圃=40(60×40-x 花圃)+35x 花圃+20 000(8分)=-5x 花圃+116 000.∵-5<0,∴y 随x 花圃的增大而减小.(9分)而800≤x 花圃≤2 016,∴当x花圃=2016时,y最小=105920.∴当x花圃=2016时,4a2-200a+2400=2016.解得a1=2,a2=48(不合题意,舍去).∴当甬道的宽为2米时,修建甬道、花圃的总造价最低,最低为105920元.(10分)解法三:y=y甬道+y花圃=40x甬道+35(60×40-x甬道)+20000(8分)=5x甬道+104000.∵5>0,∴y随x甬道的增大而增大.(9分)而800≤x花圃≤2016,∴384≤x甬道≤1600.∴当x甬道=384时,y最小=105920.∴当x甬道=384时,60×40-(4a2-200a+2400)=384.解得a1=2,a2=48(不合题意,舍去).∴当甬道的宽为2米时,修建甬道、花圃的总造价最低,最低为105920元.(10分)评析本题考查的是一元二次方程与函数的实际应用,需要通过实际问题的情境和函数图象列出合理的表达式,属较难题.七、解答题25.解析(1)证法一:连结半径OC.⏜=CG⏜,∵AC∴∠ABC=∠CBG.(1分)∵OB=OC,∴∠OBC=∠OCB.∴∠OCB=∠CBG.∴OC∥BD.(2分)∵CD⊥BD,∴OC⊥CD.∴CD是☉O的切线.(3分)证法二:连结半径OC.⏜=CG⏜,∵AC∴∠ABC=∠CBG.(1分)∵OB=OC,∴∠OBC=∠OCB.∴∠OCB=∠CBG.(2分)∵CD⊥BD,∴∠DCB+∠CBG=90°.∴∠DCB+∠OCB=90°.∴OC⊥CD.∴CD是☉O的切线.(3分)(2)∵OC ∥BD,∴△OCF ∽△DBF,△EOC ∽△EBD.(4分,至少写出一对三角形相似给1分)∴OC BD =OF DF ,OC BD =OE BE. ∵OF DF =23,∴OE BE =23.(5分)设OC=OB=r,OE=x,则x x+r =23, 解得x=2r.∴OE=2r.(6分)在Rt △OEC 中,sin E=OC OE =r 2r =12,∴∠E=30°.(7分)(3)∵∠E=30°,CD ⊥BD,∴∠ABD=60°,∠ABC=∠CBD=30°.∴BC=2CD=2√3,BD=CD tan30°=3.解法一:∵OC BD =OF DF =23,∴OC=2,AB=4.(8分)连结AG.∵AB 是☉O 的直径,∴∠AGB=90°,∵∠ABD=60°,∴∠BAG=30°.∴BG=12AB=2,AG=2√3.(9分)∴DG=BD -BG=1.∴AD=√AG 2+DG 2=√(2√3)2+12=√13.(10分)解法二:连结AC.∵AB 是☉O 直径,∴∠ACB=90°.∴AB=BC cos ∠ABC =2√3cos30°=4.(8分)过点D 作DM ⊥AB 于点M.∴DM=BD ·sin 60°=3√32,BM=BD ·cos 60°=32. ∴AM=AB -BM=4-32=52.(9分)∴AD=2+AM 2√(3√32)2+(52)2=√13.(10分)八、解答题26.解析 (1)∵抛物线y=ax 2(a>0)关于y 轴对称,AB 与x 轴平行,∴A,B 关于y 轴对称.∵∠AOB=90°,AB=2,∴A(-1,1),B(1,1).(1分)∴1=a(-1)2,解得a=1.∴抛物线的解析式为y=x 2.(2分)∵A(-1,1),B(1,1),∴A,B 两点的横坐标的乘积为-1.(3分)(2)过A,B 分别作AG,BH 垂直x 轴于G,H.由(1)可设A(m,m 2),B(n,n 2),m<0,n>0.(4分)∵∠AOB=∠AGO=∠BHO=90°,∴∠AOG+∠BOH=∠AOG+∠OAG=90°.∴∠BOH=∠OAG.(5分)∴△AGO ∽△OHB.∴AG OG =OH BH.(6分) ∴m 2-m =n n 2,化简得mn=-1.∴A,B 两点的横坐标的乘积是常数-1.(7分)(3)解法一:过A,B 分别作AA 1,BB 1垂直y 轴于A 1,B 1.设A(m,m 2),B(n,n 2),D(0,b),m<0,n>0,b>0.∵AA 1∥BB 1,∴△AA 1D ∽△BB 1D.∴AA 1DA 1=BB 1B 1D ,即-m m 2-b =nb -n 2,化简得mn=-b. ∵mn=-1,∴b=1,D(0,1).(8分)∵∠BPC=∠OCP,C(0,-2),∴DP=DC=3.设P(c,-2c-2),过点P 作PQ ⊥y 轴于Q.∵PQ 2+DQ 2=PD 2,∴c 2+(-2c-2-1)2=32.(9分)解得c 1=0(舍去),c 2=-125,-2c-2=145.∴P (-125,145).(10分)解法二:设直线AB:y=kx+b(k ≠0),A(m,m 2),B(n,n 2),m<0,n>0,b>0.联立得{y =kx +b,y =x 2,得x 2-kx-b=0,依题意可知m,n 是方程x 2-kx-b=0的两根. ∴m 2-km-b=0,n 2-kn-b=0.∴nm 2-kmn-bn=0,mn 2-kmn-bm=0.两式相减,并化简得mn=-b.∵mn=-1,∴b=1,D(0,1).(8分)∵∠BPC=∠OCP,C(0,-2),∴DP=DC=3.设P(c,-2c-2),过点P 作PQ ⊥y 轴于Q.∵PQ 2+DQ 2=PD 2,∴c 2+(-2c-2-1)2=32.(9分)解得c 1=0(舍去),c 2=-125,-2c-2=14.∴P (-125,145).(10分)评析 本题考查的是函数图象与三角形的综合应用,需要借助抛物线表示出点的坐标,并借助相似三角形的性质、勾股定理列出方程.属较难题.。
2009—2019年广西省崇左市中考数学试卷含详细解答(历年真题)

2019年广西崇左市中考数学试卷一、选择题(本大题共12小题,毎小题3分,共36分,在毎小题给出的四个选项中只有一项是符合要求的)1.(3分)如果温度上升2℃记作+2℃,那么温度下降3℃记作()A.+2℃B.﹣2℃C.+3℃D.﹣3℃2.(3分)如图,将下面的平面图形绕直线l旋转一周,得到的立体图形是()A.B.C.D.3.(3分)下列事件为必然事件的是()A.打开电视机,正在播放新闻B.任意画一个三角形,其内角和是180°C.买一张电影票,座位号是奇数号D.掷一枚质地均匀的硬币,正面朝上4.(3分)2019年6月6日,南宁市地铁3号线举行通车仪式,预计地铁3号线开通后日均客流量为700000人次,其中数据700000用科学记数法表示为()A.70×104B.7×105C.7×106D.0.7×106 5.(3分)将一副三角板按如图所示的位置摆放在直尺上,则∠1的度数为()A.60°B.65°C.75°D.85°6.(3分)下列运算正确的是()A.(ab3)2=a2b6B.2a+3b=5abC.5a2﹣3a2=2D.(a+1)2=a2+17.(3分)如图,在△ABC中,AC=BC,∠A=40°,观察图中尺规作图的痕迹,可知∠BCG的度数为()A.40°B.45°C.50°D.60°8.(3分)“学雷锋”活动月中,“飞翼”班将组织学生开展志愿者服务活动,小晴和小霞从“图书馆,博物馆,科技馆”三个场馆中随机选择一个参加活动,两人恰好选择同一场馆的概率是()A.B.C.D.9.(3分)若点(﹣1,y1),(2,y2),(3,y3)在反比例函数y(k<0)的图象上,则y1,y2,y3的大小关系是()A.y1>y2>y3B.y3>y2>y1C.y1>y3>y2D.y2>y3>y1 10.(3分)扬帆中学有一块长30m,宽20m的矩形空地,计划在这块空地上划出四分之一的区域种花,小禹同学设计方案如图所示,求花带的宽度.设花带的宽度为xm,则可列方程为()A.(30﹣x)(20﹣x)20×30B.(30﹣2x)(20﹣x)20×30C.30x+2×20x20×30D.(30﹣2x)(20﹣x)20×3011.(3分)小菁同学在数学实践活动课中测量路灯的高度.如图,已知她的目高AB 为1.5米,她先站在A处看路灯顶端O的仰角为35°,再往前走3米站在C处,看路灯顶端O的仰角为65°,则路灯顶端O到地面的距离约为(已知sin35°≈0.6,cos35°≈0.8,tan35°≈0.7,sin65°≈0.9,cos65°≈0.4,tan65°≈2.1)()A.3.2米B.3.9米C.4.7米D.5.4米12.(3分)如图,AB为⊙O的直径,BC、CD是⊙O的切线,切点分别为点B、D,点E为线段OB上的一个动点,连接OD,CE,DE,已知AB=2,BC=2,当CE+DE的值最小时,则的值为()A.B.C.D.二、填空题(本大题共6小题,每嗯题3分,共18分)13.(3分)若二次根式有意义,则x的取值范围是.14.(3分)因式分解:3ax2﹣3ay2=.15.(3分)甲,乙两人进行飞镖比赛,每人各投6次,甲的成绩(单位:环)为:9,8,9,6,10,6.甲,乙两人平均成绩相等,乙成绩的方差为4,那么成绩较为稳定的是.(填“甲”或“乙”)16.(3分)如图,在菱形ABCD中,对角线AC,BD交于点O,过点A作AH⊥BC 于点H,已知BO=4,S菱形ABCD=24,则AH=.17.(3分)《九章算术》作为古代中国乃至东方的第一部自成体系的数学专著,与古希腊的《几何原本》并称现代数学的两大源泉.在《九章算术》中记载有一问题“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”小辉同学根据原文题意,画出圆材截面图如图所示,已知:锯口深为1寸,锯道AB =1尺(1尺=10寸),则该圆材的直径为寸.18.(3分)如图,AB与CD相交于点O,AB=CD,∠AOC=60°,∠ACD+∠ABD =210°,则线段AB,AC,BD之间的等量关系式为.三、解答题共(本大题共8小题,共66分,解答应写岀文字说明,证明过程或演算步骤)19.(6分)计算:(﹣1)2+()2﹣(﹣9)+(﹣6)÷2.20.(6分)解不等式组:<,并利用数轴确定不等式组的解集.21.(8分)如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(2,﹣1),B(1,﹣2),C(3,﹣3)(1)将△ABC向上平移4个单位长度得到△A1B1C1,请画出△A1B1C1;(2)请画出与△ABC关于y轴对称的△A2B2C2;(3)请写出A1、A2的坐标.22.(8分)红树林学校在七年级新生中举行了全员参加的“防溺水”安全知识竞赛,试卷题目共10题,每题10分.现分别从三个班中各随机取10名同学的成绩(单位:分),收集数据如下:1班:90,70,80,80,80,80,80,90,80,100;2班:70,80,80,80,60,90,90,90,100,90;3班:90,60,70,80,80,80,80,90,100,100.整理数据:(1)请直接写出表格中a,b,c,d的值;(2)比较这三组样本数据的平均数、中位数和众数,你认为哪个班的成绩比较好?请说明理由;(3)为了让学生重视安全知识的学习,学校将给竞赛成绩满分的同学颁发奖状,该校七年级新生共570人,试估计需要准备多少张奖状?23.(8分)如图,△ABC是⊙O的内接三角形,AB为⊙O直径,AB=6,AD平分∠BAC,交BC于点E,交⊙O于点D,连接BD.(1)求证:∠BAD=∠CBD;(2)若∠AEB=125°,求的长(结果保留π).24.(10分)某校喜迎中华人民共和国成立70周年,将举行以“歌唱祖国”为主题的歌咏比赛,需要在文具店购买国旗图案贴纸和小红旗发给学生做演出道具.已知毎袋贴纸有50张,毎袋小红旗有20面,贴纸和小红旗需整袋购买,每袋贴纸价格比每袋小红旗价格少5元,用150元购买贴纸所得袋数与用200元购买小红旗所得袋数相同.(1)求每袋国旗图案贴纸和每袋小红旗的价格各是多少元?(2)如果给每位演出学生分发国旗图案贴纸2张,小红旗1面.设购买国旗图案贴纸a袋(a为正整数),则购买小红旗多少袋能恰好配套?请用含a的代数式表示.(3)在文具店累计购物超过800元后,超出800元的部分可享受8折优惠.学校按(2)中的配套方案购买,共支付w元,求w关于a的函数关系式.现全校有1200名学生参加演出,需要购买国旗图案贴纸和小红旗各多少袋?所需总费用多少元?25.(10分)如图1,在正方形ABCD中,点E是AB边上的一个动点(点E与点A,B不重合),连接CE,过点B作BF⊥CE于点G,交AD于点F.(1)求证:△ABF≌△BCE;(2)如图2,当点E运动到AB中点时,连接DG,求证:DC=DG;(3)如图3,在(2)的条件下,过点C作CM⊥DG于点H,分别交AD,BF于点M,N,求的值.26.(10分)如果抛物线C1的顶点在拋物线C2上,抛物线C2的顶点也在拋物线C1上时,那么我们称抛物线C1与C2“互为关联”的抛物线.如图1,已知抛物线C1:y1x2+x与C2:y2=ax2+x+c是“互为关联”的拋物线,点A,B分别是抛物线C1,C2的顶点,抛物线C2经过点D(6,﹣1).(1)直接写出A,B的坐标和抛物线C2的解析式;(2)抛物线C2上是否存在点E,使得△ABE是直角三角形?如果存在,请求出点E的坐标;如果不存在,请说明理由;(3)如图2,点F(﹣6,3)在抛物线C1上,点M,N分别是抛物线C1,C2上的动点,且点M,N的横坐标相同,记△AFM面积为S1(当点M与点A,F重合时S1=0),△ABN的面积为S2(当点N与点A,B重合时,S2=0),令S=S1+S2,观察图象,当y1≤y2时,写出x的取值范围,并求出在此范围内S的最大值.2019年广西崇左市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,毎小题3分,共36分,在毎小题给出的四个选项中只有一项是符合要求的)1.(3分)如果温度上升2℃记作+2℃,那么温度下降3℃记作()A.+2℃B.﹣2℃C.+3℃D.﹣3℃【解答】解:上升2℃记作+2℃,下降3℃记作﹣3℃;故选:D.2.(3分)如图,将下面的平面图形绕直线l旋转一周,得到的立体图形是()A.B.C.D.【解答】解:面动成体,直角三角形绕直角边旋转一周可得圆锥,长方形绕一边旋转一周可得圆柱,那么所求的图形是下面是圆锥,上面是圆柱的组合图形.故选:D.3.(3分)下列事件为必然事件的是()A.打开电视机,正在播放新闻B.任意画一个三角形,其内角和是180°C.买一张电影票,座位号是奇数号D.掷一枚质地均匀的硬币,正面朝上【解答】解:∵A,C,D选项为不确定事件,即随机事件,故不符合题意.∴一定发生的事件只有B,任意画一个三角形,其内角和是180°,是必然事件,符合题意.故选:B.4.(3分)2019年6月6日,南宁市地铁3号线举行通车仪式,预计地铁3号线开通后日均客流量为700000人次,其中数据700000用科学记数法表示为()A.70×104B.7×105C.7×106D.0.7×106【解答】解:700000=7×105;故选:B.5.(3分)将一副三角板按如图所示的位置摆放在直尺上,则∠1的度数为()A.60°B.65°C.75°D.85°【解答】解:如图:∵∠BCA=60°,∠DCE=45°,∴∠2=180°﹣60°﹣45°=75°,∵HF∥BC,∴∠1=∠2=75°,故选:C.6.(3分)下列运算正确的是()A.(ab3)2=a2b6B.2a+3b=5abC.5a2﹣3a2=2D.(a+1)2=a2+1【解答】解:2a+3b不能合并同类项,B错误;5a2﹣3a2=2a2,C错误;(a+1)2=a2+2a+1,D错误;故选:A.7.(3分)如图,在△ABC中,AC=BC,∠A=40°,观察图中尺规作图的痕迹,可知∠BCG的度数为()A.40°B.45°C.50°D.60°【解答】解:由作法得CG⊥AB,∵AC=BC,∴CG平分∠ACB,∠A=∠B,∵∠ACB=180°﹣40°﹣40°=100°,∴∠BCG∠ACB=50°.故选:C.8.(3分)“学雷锋”活动月中,“飞翼”班将组织学生开展志愿者服务活动,小晴和小霞从“图书馆,博物馆,科技馆”三个场馆中随机选择一个参加活动,两人恰好选择同一场馆的概率是()A.B.C.D.【解答】解:画树状图为:(用A、B、C分别表示“图书馆,博物馆,科技馆”三个场馆)共有9种等可能的结果数,其中两人恰好选择同一场馆的结果数为3,所以两人恰好选择同一场馆的概率.故选:A.9.(3分)若点(﹣1,y1),(2,y2),(3,y3)在反比例函数y(k<0)的图象上,则y1,y2,y3的大小关系是()A.y1>y2>y3B.y3>y2>y1C.y1>y3>y2D.y2>y3>y1【解答】解:∵k<0,∴在每个象限内,y随x值的增大而增大,∴当x=﹣1时,y1>0,∵2<3,∴y2<y3<y1故选:C.10.(3分)扬帆中学有一块长30m,宽20m的矩形空地,计划在这块空地上划出四分之一的区域种花,小禹同学设计方案如图所示,求花带的宽度.设花带的宽度为xm,则可列方程为()A.(30﹣x)(20﹣x)20×30B.(30﹣2x)(20﹣x)20×30C.30x+2×20x20×30D.(30﹣2x)(20﹣x)20×30【解答】解:设花带的宽度为xm,则可列方程为(30﹣2x)(20﹣x)20×30,故选:D.11.(3分)小菁同学在数学实践活动课中测量路灯的高度.如图,已知她的目高AB 为1.5米,她先站在A处看路灯顶端O的仰角为35°,再往前走3米站在C处,看路灯顶端O的仰角为65°,则路灯顶端O到地面的距离约为(已知sin35°≈0.6,cos35°≈0.8,tan35°≈0.7,sin65°≈0.9,cos65°≈0.4,tan65°≈2.1)()A.3.2米B.3.9米C.4.7米D.5.4米【解答】解:过点O作OE⊥AC于点F,延长BD交OE于点F,设DF=x,∵tan65°,∴OF=x tan65°,∴BF=3+x,∵tan35°,∴OF=(3+x)tan35°,∴2.1x=0.7(3+x),∴x=1.5,∴OF=1.5×2.1=3.15,∴OE=3.15+1.5=4.65,故选:C.12.(3分)如图,AB为⊙O的直径,BC、CD是⊙O的切线,切点分别为点B、D,点E为线段OB上的一个动点,连接OD,CE,DE,已知AB=2,BC=2,当CE+DE的值最小时,则的值为()A.B.C.D.【解答】解:延长CB到F使得BF=BC,则C与F关于OB对称,连接DF与OB 相交于点E,此时CE+DE=DF值最小,连接OC,BD,两线相交于点G,过D作DH⊥OB于H,则OC⊥BD,OC,∵OB•BC=OC•BG,∴,∴BD=2BG,∵OD2﹣OH2=DH2=BD2﹣BH2,∴,∴BH,∴,∵DH∥BF,∴,∴,故选:A.二、填空题(本大题共6小题,每嗯题3分,共18分)13.(3分)若二次根式有意义,则x的取值范围是x≥﹣4.【解答】解:x+4≥0,∴x≥﹣4;故答案为x≥﹣4;14.(3分)因式分解:3ax2﹣3ay2=3a(x+y)(x﹣y).【解答】解:3ax2﹣3ay2=3a(x2﹣y2)=3a(x+y)(x﹣y).故答案为:3a(x+y)(x﹣y)15.(3分)甲,乙两人进行飞镖比赛,每人各投6次,甲的成绩(单位:环)为:9,8,9,6,10,6.甲,乙两人平均成绩相等,乙成绩的方差为4,那么成绩较为稳定的是甲.(填“甲”或“乙”)【解答】解:甲的平均数(9+8+9+6+10+6)=8,所以甲的方差[(9﹣8)2+(8﹣8)2+(9﹣8)2+(6﹣8)2+(10﹣8)2+(6﹣8)2],因为甲的方差比乙的方差小,所以甲的成绩比较稳定.故答案为甲.16.(3分)如图,在菱形ABCD中,对角线AC,BD交于点O,过点A作AH⊥BC 于点H,已知BO=4,S菱形ABCD=24,则AH=.【解答】解:∵四边形ABCD是菱形,∴BO=DO=4,AO=CO,AC⊥BD,∴BD=8,∵S菱形ABCD AC×BD=24,∴AC=6,∴OC AC=3,∴BC5,∵S菱形ABCD=BC×AH=24,∴AH;故答案为:.17.(3分)《九章算术》作为古代中国乃至东方的第一部自成体系的数学专著,与古希腊的《几何原本》并称现代数学的两大源泉.在《九章算术》中记载有一问题“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”小辉同学根据原文题意,画出圆材截面图如图所示,已知:锯口深为1寸,锯道AB =1尺(1尺=10寸),则该圆材的直径为26寸.【解答】解:设⊙O的半径为r.在Rt△ADO中,AD=5,OD=r﹣1,OA=r,则有r2=52+(r﹣1)2,解得r=13,∴⊙O的直径为26寸,故答案为:26.18.(3分)如图,AB与CD相交于点O,AB=CD,∠AOC=60°,∠ACD+∠ABD =210°,则线段AB,AC,BD之间的等量关系式为AB2=AC2+BD2.【解答】解:过点A作AE∥CD,截取AE=CD,连接BE、DE,如图所示:则四边形ACDE是平行四边形,∴DE=AC,∠ACD=∠AED,∵∠AOC=60°,AB=CD,∴∠EAB=60°,CD=AE=AB,∴△ABE为等边三角形,∴BE=AB,∵∠ACD+∠ABD=210°,∴∠AED+∠ABD=210°,∴∠BDE=360°﹣(∠AED+∠ABD)﹣∠EAB=360°﹣210°﹣60°=90°,∴BE2=DE2+BD2,∴AB2=AC2+BD2;故答案为:AB2=AC2+BD2.三、解答题共(本大题共8小题,共66分,解答应写岀文字说明,证明过程或演算步骤)19.(6分)计算:(﹣1)2+()2﹣(﹣9)+(﹣6)÷2.【解答】解:(﹣1)2+()2﹣(﹣9)+(﹣6)÷2=1+6+9﹣3=13.20.(6分)解不等式组:<,并利用数轴确定不等式组的解集.【解答】解:<①解①得x<3,解得x≥﹣2,所以不等式组的解集为﹣2≤x<3.用数轴表示为:21.(8分)如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(2,﹣1),B(1,﹣2),C(3,﹣3)(1)将△ABC向上平移4个单位长度得到△A1B1C1,请画出△A1B1C1;(2)请画出与△ABC关于y轴对称的△A2B2C2;(3)请写出A1、A2的坐标.【解答】解:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求;(3)A1(2,3),A2(﹣2,﹣1).22.(8分)红树林学校在七年级新生中举行了全员参加的“防溺水”安全知识竞赛,试卷题目共10题,每题10分.现分别从三个班中各随机取10名同学的成绩(单位:分),收集数据如下:1班:90,70,80,80,80,80,80,90,80,100;2班:70,80,80,80,60,90,90,90,100,90;3班:90,60,70,80,80,80,80,90,100,100.整理数据:(1)请直接写出表格中a,b,c,d的值;(2)比较这三组样本数据的平均数、中位数和众数,你认为哪个班的成绩比较好?请说明理由;(3)为了让学生重视安全知识的学习,学校将给竞赛成绩满分的同学颁发奖状,该校七年级新生共570人,试估计需要准备多少张奖状?【解答】解:(1)由题意知a=4,b(90+60+70+80+80+80+80+90+100+100)=83,2班成绩重新排列为60,70,80,80,80,90,90,90,90,100,∴c85,d=90;(2)从平均数上看三个班都一样;从中位数看,1班和3班一样是80,2班最高是85;从众数上看,1班和3班都是80,2班是90;综上所述,2班成绩比较好;(3)57076(张),答:估计需要准备76张奖状.23.(8分)如图,△ABC是⊙O的内接三角形,AB为⊙O直径,AB=6,AD平分∠BAC,交BC于点E,交⊙O于点D,连接BD.(1)求证:∠BAD=∠CBD;(2)若∠AEB=125°,求的长(结果保留π).【解答】(1)证明:∵AD平分∠BAC,∴∠CAD=∠BAD,∵∠CAD=∠CBD,∴∠BAD=∠CBD;(2)解:连接OD,∵∠AEB=125°,∴∠AEC=55°,∵AB为⊙O直径,∴∠ACE=90°,∴∠CAE=35°,∴∠DAB=∠CAE=35°,∴∠BOD=2∠BAD=70°,∴的长π.24.(10分)某校喜迎中华人民共和国成立70周年,将举行以“歌唱祖国”为主题的歌咏比赛,需要在文具店购买国旗图案贴纸和小红旗发给学生做演出道具.已知毎袋贴纸有50张,毎袋小红旗有20面,贴纸和小红旗需整袋购买,每袋贴纸价格比每袋小红旗价格少5元,用150元购买贴纸所得袋数与用200元购买小红旗所得袋数相同.(1)求每袋国旗图案贴纸和每袋小红旗的价格各是多少元?(2)如果给每位演出学生分发国旗图案贴纸2张,小红旗1面.设购买国旗图案贴纸a袋(a为正整数),则购买小红旗多少袋能恰好配套?请用含a的代数式表示.(3)在文具店累计购物超过800元后,超出800元的部分可享受8折优惠.学校按(2)中的配套方案购买,共支付w元,求w关于a的函数关系式.现全校有1200名学生参加演出,需要购买国旗图案贴纸和小红旗各多少袋?所需总费用多少元?【解答】解:(1)设每袋国旗图案贴纸为x元,则有,解得x=15,经检验x=15时方程的解,∴每袋小红旗为15+5=20元;答:每袋国旗图案贴纸为15元,每袋小红旗为20元;(2)设购买b袋小红旗恰好与a袋贴纸配套,则有50a:20b=2:1,解得b a,答:购买小红旗a袋恰好配套;(3)如果没有折扣,则W=15a+20a=40a,依题意得40a≤800,解得a≤20,当a>20时,则W=800+0.8(40a﹣800)=32a+160,即W ,,>,国旗贴纸需要:1200×2=2400张,小红旗需要:1200×1=1200面,则a48袋,b60袋,总费用W=32×48+160=1696元.25.(10分)如图1,在正方形ABCD中,点E是AB边上的一个动点(点E与点A,B不重合),连接CE,过点B作BF⊥CE于点G,交AD于点F.(1)求证:△ABF≌△BCE;(2)如图2,当点E运动到AB中点时,连接DG,求证:DC=DG;(3)如图3,在(2)的条件下,过点C作CM⊥DG于点H,分别交AD,BF于点M,N,求的值.【解答】(1)证明:∵BF⊥CE,∴∠CGB=90°,∴∠GCB+∠CBG=90,∵四边形ABCD是正方形,∴∠CBE=90°=∠A,BC=AB,∴∠FBA+∠CBG=90,∴∠GCB=∠FBA,∴△ABF≌△BCE(ASA);(2)证明:如图2,过点D作DH⊥CE于H,设AB=CD=BC=2a,∵点E是AB的中点,∴EA=EB AB=a,∴CE a,在Rt△CEB中,根据面积相等,得BG•CE=CB•EB,∴BG a,∴CG a,∵∠DCE+∠BCE=90°,∠CBF+∠BCE=90°,∴∠DCE=∠CBF,∵CD=BC,∠CQD=∠CGB=90°,∴△CQD≌△BGC(AAS),∴CQ=BG a,∴GQ=CG﹣CQ a=CQ,∵DQ=DQ,∠CQD=∠GQD=90°,∴△DGQ≌△CDQ(SAS),∴CD=GD;(3)解:如图3,过点D作DQ⊥CE于Q,S△CDG•DQ•CH CH•DG,∴CH a,在Rt△CHD中,CD=2a,∴DH a,∵∠MDH+∠HDC=90°,∠HCD+∠HDC=90°,∴∠MDH=∠HCD,∴△CHD∽△DHM,∴,∴HM a,在Rt△CHG中,CG a,CH a,∴GH a,∵∠MGH+∠CGH=90°,∠HCG+∠CGH=90°,∴∠QGH=∠HCG,∴△QGH∽△GCH,∴,∴HN a,∴MN=HM﹣HN a,∴26.(10分)如果抛物线C1的顶点在拋物线C2上,抛物线C2的顶点也在拋物线C1上时,那么我们称抛物线C1与C2“互为关联”的抛物线.如图1,已知抛物线C1:y1x2+x与C2:y2=ax2+x+c是“互为关联”的拋物线,点A,B分别是抛物线C1,C2的顶点,抛物线C2经过点D(6,﹣1).(1)直接写出A,B的坐标和抛物线C2的解析式;(2)抛物线C2上是否存在点E,使得△ABE是直角三角形?如果存在,请求出点E的坐标;如果不存在,请说明理由;(3)如图2,点F(﹣6,3)在抛物线C1上,点M,N分别是抛物线C1,C2上的动点,且点M,N的横坐标相同,记△AFM面积为S1(当点M与点A,F重合时S1=0),△ABN的面积为S2(当点N与点A,B重合时,S2=0),令S=S1+S2,观察图象,当y1≤y2时,写出x的取值范围,并求出在此范围内S的最大值.【解答】解:由抛物线C1:y1x2+x可得A(﹣2,﹣1),将A(﹣2,﹣1),D(6,﹣1)代入y2=ax2+x+c得,解得,∴y2x+2,∴B(2,3);(2)易得直线AB的解析式:y=x+1,①若B为直角顶点,BE⊥AB,k BE•k AB=﹣1,∴k BE=﹣1,直线BE解析式为y=﹣x+5联立,解得x=2,y=3或x=6,y=﹣1,∴E(6,﹣1);若A为直角顶点,AE⊥AB,同理得AE解析式:y=﹣x﹣3,联立,解得x=﹣2,y=﹣1或x=10,y=﹣13,∴E(10,﹣13);③若E为直角顶点,设E(m,m2+m+2)由AE⊥BE得k BE•k AE=﹣1,即,解得m=2或﹣2(不符合题意舍去),∴点E的坐标∴E(6,﹣1)或E(10,﹣13);(3)∵y1≤y2,∴﹣2≤x≤2,设M(t,),N(t,),且﹣2≤t≤2,易求直线AF的解析式:y=﹣x﹣3,过M作x轴的平行线MQ交AF于Q,则Q(,),S1QM•|y F﹣y A|设AB交MN于点P,易知P(t,t+1),S2PN•|x A﹣x B|=2S=S1+S2=4t+8,当t=2时,S的最大值为16.2018年广西崇左市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分。
2015年广西南宁市中学考试数学精彩试题及解析汇报

2015年广西市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分)每小题都给出代号为(A)、(B)、(C)、(D)四个结论,其中只有一个是正确的.请考生用2B铅笔在答题卷上将选定的答案标号涂黑.2.(3分)(2015•)如图是由四个大小相同的正方体组成的几何体,那么它的主视图是()3.(3分)(2015•)快速公交(简称:BRT)将在今年底开始动工,预计2016年下半年建成并投入试运营,首条BRT西起火车站,东至东站,全长约为11300米,其中数据113004.(3分)(2015•)某校男子足球队的年龄分布如图条形图所示,则这些队员年龄的众数是()5.(3分)(2015•)如图,一块含30°角的直角三角板ABC的直角顶点A在直线DE上,且BC∥DE,则∠CAE等于()7.(3分)(2015•)如图,在△ABC中,AB=AD=DC,∠B=70°,则∠C的度数为()10.(3分)(2015•)如图,已知经过原点的抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=﹣1,下列结论中:•①ab>0, ②a+b+c>0, ③当﹣2<x<0时,y<0.正确的个数是()11.(3分)(2015•)如图,AB是⊙O的直径,AB=8,点M在⊙O上,∠MAB=20°,N是弧MB的中点,P是直径AB上的一动点.若MN=1,则△PMN周长的最小值为()12.(3分)(2015•)对于两个不相等的实数a、b,我们规定符号Max{a,b}表示a、b中的二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)(2015•)分解因式:ax+ay=.14.(3分)(2015•)要使分式有意义,则字母x的取值围是.15.(3分)(2015•)一个不透明的口袋中有5个完全相同的小球,把它们分别标号为1,2,3,4,5,随机提取一个小球,则取出的小球标号是奇数的概率是.16.(3分)(2015•)如图,在正方形ABCD的外侧,作等边△ADE,则∠BED的度数是.17.(3分)(2015•)如图,点A在双曲线y=(x>0)上,点B在双曲线y=(x>0)上(点B在点A的右侧),且AB∥x轴.若四边形OABC是菱形,且∠AOC=60°,则k=.18.(3分)(2015•)如图,在数轴上,点A表示1,现将点A沿x轴做如下移动,第一次点A向左移动3个单位长度到达点A1,第二次将点A1向右移动6个单位长度到达点A2,第三次将点A2向左移动9个单位长度到达点,按照这种移动规律移动下去,第n次移动到点A n,如果点A n与原点的距离不小于20,那么n的最小值是.三、(本大题共2小题,每小题满分12分,共12分)19.(6分)(2015•)计算:20150+(﹣1)2﹣2tan45°+.20.(6分)(2015•)先化简,再求值:(1+x)(1﹣x)+x(x+2)﹣1,其中x=.四、解答题21.(8分)(2015•)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣1,1),B(﹣3,1),C(﹣1,4).(1)画出△ABC关于y轴对称的△A1B1C1;(2)将△ABC绕着点B顺时针旋转90°后得到△A2BC2,请在图中画出△A2BC2,并求出线段BC旋转过程中所扫过的面积(结果保留π).22.(8分)(2015•)今年5月份,某校九年级学生参加了市中考体育考试,为了了解该校九年级(1)班同学的中考体育情况,对全班学生的中考体育成绩进行了统计,并绘制以下不完整的频数分布表(如表)和扇形统计图(如图),根据图表中的信息解答下列问题:(1)求全班学生人数和m的值.(2)直接学出该班学生的中考体育成绩的中位数落在哪个分数段.(3)该班中考体育成绩满分共有3人,其中男生2人,女生1人,现需从这3人中随机选“列表法”或“画树状图法”求出恰好选到一男一女的概率.分组分数段(分)频数A 36≤x<41 2B 41≤x<46 5C 46≤x<51 15D 51≤x<56 mE 56≤x<61 1023.(8分)(2015•)如图,在▱ABCD中,E、F分别是AB、DC边上的点,且AE=CF,(1)求证:△ADE≌△CBF.(2)若∠DEB=90°,求证:四边形DEBF是矩形.24.(10分)(2015•)如图1,为美化校园环境,某校计划在一块长为60米,宽为40米的长方形空地上修建一个长方形花圃,并将花圃四周余下的空地修建成同样宽的通道,设通道宽为a米.(1)用含a的式子表示花圃的面积.(2)如果通道所占面积是整个长方形空地面积的,求出此时通道的宽.(3)已知某园林公司修建通道、花圃的造价y1(元)、y2(元)与修建面积x(m2)之间的函数关系如图2所示,如果学校决定由该公司承建此项目,并要求修建的通道的宽度不少于2米且不超过10米,那么通道宽为多少时,修建的通道和花圃的总造价最低,最低总造价为多少元?25.(10分)(2015•)如图,AB是⊙O的直径,C、G是⊙O上两点,且AC=CG,过点C 的直线CD⊥BG于点D,交BA的延长线于点E,连接BC,交OD于点F.(1)求证:CD是⊙O的切线.(2)若,求∠E的度数.(3)连接AD,在(2)的条件下,若CD=,求AD的长.26.(10分)(2015•)在平面直角坐标系中,已知A、B是抛物线y=ax2(a>0)上两个不同的点,其中A在第二象限,B在第一象限,(1)如图1所示,当直线AB与x轴平行,∠AOB=90°,且AB=2时,求此抛物线的解析式和A、B两点的横坐标的乘积.(2)如图2所示,在(1)所求得的抛物线上,当直线AB与x轴不平行,∠AOB仍为90°时,A、B两点的横坐标的乘积是否为常数?如果是,请给予证明;如果不是,请说明理由.(3)在(2)的条件下,若直线y=﹣2x﹣2分别交直线AB,y轴于点P、C,直线AB交y 轴于点D,且∠BPC=∠OCP,求点P的坐标.2015年广西市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)每小题都给出代号为(A)、(B)、(C)、(D)四个结论,其中只有一个是正确的.请考生用2B铅笔在答题卷上将选定的答案标号涂黑.2.(3分)(2015•)如图是由四个大小相同的正方体组成的几何体,那么它的主视图是()3.(3分)(2015•)快速公交(简称:BRT)将在今年底开始动工,预计2016年下半年建成并投入试运营,首条BRT西起火车站,东至东站,全长约为11300米,其中数据113004.(3分)(2015•)某校男子足球队的年龄分布如图条形图所示,则这些队员年龄的众数是()5.(3分)(2015•)如图,一块含30°角的直角三角板ABC的直角顶点A在直线DE上,且BC∥DE,则∠CAE等于()7.(3分)(2015•)如图,在△ABC中,AB=AD=DC,∠B=70°,则∠C的度数为()10.(3分)(2015•)如图,已知经过原点的抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=﹣1,下列结论中:•①ab>0, ②a+b+c>0, ③当﹣2<x<0时,y<0.正确的个数是()11.(3分)(2015•)如图,AB是⊙O的直径,AB=8,点M在⊙O上,∠MAB=20°,N是弧MB的中点,P是直径AB上的一动点.若MN=1,则△PMN周长的最小值为()12.(3分)(2015•)对于两个不相等的实数a、b,我们规定符号Max{a,b}表示a、b中的二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)(2015•)分解因式:ax+ay=a(x+y).14.(3分)(2015•)要使分式有意义,则字母x的取值围是x≠1.15.(3分)(2015•)一个不透明的口袋中有5个完全相同的小球,把它们分别标号为1,2,3,4,5,随机提取一个小球,则取出的小球标号是奇数的概率是.16.(3分)(2015•)如图,在正方形ABCD的外侧,作等边△ADE,则∠BED的度数是45°.17.(3分)(2015•)如图,点A在双曲线y=(x>0)上,点B在双曲线y=(x>0)上(点B在点A的右侧),且AB∥x轴.若四边形OABC是菱形,且∠AOC=60°,则k=.18.(3分)(2015•)如图,在数轴上,点A表示1,现将点A沿x轴做如下移动,第一次点A向左移动3个单位长度到达点A1,第二次将点A1向右移动6个单位长度到达点A2,第三次将点A2向左移动9个单位长度到达点,按照这种移动规律移动下去,第n次移动到点A n,如果点A n与原点的距离不小于20,那么n的最小值是13.三、(本大题共2小题,每小题满分12分,共12分)19.(6分)(2015•)计算:20150+(﹣1)2﹣2tan45°+.20.(6分)(2015•)先化简,再求值:(1+x)(1﹣x)+x(x+2)﹣1,其中x=.解答:解:原式=1﹣x2+x2+2x﹣1=2x,当x=时,原式=2×=1.点评:本题考查了整式的混合运算﹣化简求值:先按运算顺序把整式化简,再把对应字母的值代入求整式的值.有乘方、乘除的混合运算中,要按照先乘方后乘除的顺序运算,其运算顺序和有理数的混合运算顺序相似.四、解答题21.(8分)(2015•)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣1,1),B(﹣3,1),C(﹣1,4).(1)画出△ABC关于y轴对称的△A1B1C1;(2)将△ABC绕着点B顺时针旋转90°后得到△A2BC2,请在图中画出△A2BC2,并求出线段BC旋转过程中所扫过的面积(结果保留π).考点:作图-旋转变换;作图-轴对称变换.专题:作图题.分析:(1)根据题意画出△ABC关于y轴对称的△A1B1C1即可;(2)根据题意画出△ABC绕着点B顺时针旋转90°后得到△A2BC2,线段BC旋转过程中扫过的面积为扇形BCC2的面积,求出即可.解答:解:(1)如图所示,画出△ABC关于y轴对称的△A1B1C1;(2)如图所示,画出△ABC绕着点B顺时针旋转90°后得到△A2BC2,线段BC旋转过程中所扫过得面积S==.点评:此题考查了作图﹣旋转变换,对称轴变换,以及扇形面积,作出正确的图形是解本题的关键.22.(8分)(2015•)今年5月份,某校九年级学生参加了市中考体育考试,为了了解该校九年级(1)班同学的中考体育情况,对全班学生的中考体育成绩进行了统计,并绘制以下不完整的频数分布表(如表)和扇形统计图(如图),根据图表中的信息解答下列问题:(1)求全班学生人数和m的值.(2)直接学出该班学生的中考体育成绩的中位数落在哪个分数段.(3)该班中考体育成绩满分共有3人,其中男生2人,女生1人,现需从这3人中随机选“列表法”或“画树状图法”求出恰好选到一男一女的概率.分组分数段(分)频数A 36≤x<41 2B 41≤x<46 5C 46≤x<51 15D 51≤x<56 mE 56≤x<61 10考点:列表法与树状图法;频数(率)分布表;扇形统计图;中位数.分析:(1)利用C分数段所占比例以及其频数求出总数即可,进而得出m的值;(2)利用中位数的定义得出中位数的位置;(3)利用列表或画树状图列举出所有的可能,再根据概率公式计算即可得解.解答:解:(1)由题意可得:全班学生人数:15÷30%=50(人);m=50﹣2﹣5﹣15﹣10=18(人);(2)∵全班学生人数:50人,∴第25和第26个数据的平均数是中位数,∴中位数落在51﹣56分数段;(3)如图所示:将男生分别标记为A1,A2,女生标记为B1A1A2B123.(8分)(2015•)如图,在▱ABCD中,E、F分别是AB、DC边上的点,且AE=CF,(1)求证:△ADE≌△CBF.(2)若∠DEB=90°,求证:四边形DEBF是矩形.24.(10分)(2015•)如图1,为美化校园环境,某校计划在一块长为60米,宽为40米的长方形空地上修建一个长方形花圃,并将花圃四周余下的空地修建成同样宽的通道,设通道宽为a米.(1)用含a的式子表示花圃的面积.(2)如果通道所占面积是整个长方形空地面积的,求出此时通道的宽.(3)已知某园林公司修建通道、花圃的造价y1(元)、y2(元)与修建面积x(m2)之间的函数关系如图2所示,如果学校决定由该公司承建此项目,并要求修建的通道的宽度不少于2米且不超过10米,那么通道宽为多少时,修建的通道和花圃的总造价最低,最低总造价为多少元?考点:一次函数的应用;一元二次方程的应用.分析:(1)用含a的式子先表示出花圃的长和宽后利用其矩形面积公式列出式子即可;(2)根据通道所占面积是整个长方形空地面积的,列出方程进行计算即可;(3)根据图象,设出通道和花圃的解析式,用待定系数法求解,再根据实际问题写出自变量的取值围即可.解答:解:(1)由图可知,花圃的面积为(40﹣2a)(60﹣2a);(2)由已知可列式:60×40﹣(40﹣2a)(60﹣2a)=×60×40,解以上式子可得:a1=5,a2=45(舍去),答:所以通道的宽为5米;(3)设修建的道路和花圃的总造价为y,由已知得y1=40x,y2=,则y=y1+y2=;x花圃=(40﹣2a)(60﹣2a)=4a2﹣200a+2400;x通道=60×40﹣(40﹣2a)(60﹣2a)=﹣4a2+200a,当2≤a≤10,800≤x花圃≤2016,384≤x通道≤1600,∴384≤x≤2016,所以当x取384时,y有最小值,最小值为2040,即总造价最低为23040元,当x=383时,即通道的面积为384时,有﹣4a2+200a=384,解得a1=2,a2=48(舍去),所以当通道宽为2米时,修建的通道和花圃的总造价最低为23040元.点评:本题考查了一次函数的应用以及一元二次方程的应用,解题的关键是表示出花圃的长和宽.25.(10分)(2015•)如图,AB是⊙O的直径,C、G是⊙O上两点,且AC=CG,过点C 的直线CD⊥BG于点D,交BA的延长线于点E,连接BC,交OD于点F.(1)求证:CD是⊙O的切线.(2)若,求∠E的度数.(3)连接AD,在(2)的条件下,若CD=,求AD的长.考点:圆的综合题.分析:(1)如图1,连接OC,AC,CG,由圆周角定理得到∠ABC=∠CBG,根据同圆的半径相等得到OC=OB,于是得到∠OCB=∠OBC,等量代换得到∠OCB=∠CBG,根据平行线的判定得到OC∥BG,即可得到结论;26.(10分)(2015•)在平面直角坐标系中,已知A、B是抛物线y=ax2(a>0)上两个不同的点,其中A在第二象限,B在第一象限,(1)如图1所示,当直线AB与x轴平行,∠AOB=90°,且AB=2时,求此抛物线的解析式和A、B两点的横坐标的乘积.(2)如图2所示,在(1)所求得的抛物线上,当直线AB与x轴不平行,∠AOB仍为90°时,A、B两点的横坐标的乘积是否为常数?如果是,请给予证明;如果不是,请说明理由.(3)在(2)的条件下,若直线y=﹣2x﹣2分别交直线AB,y轴于点P、C,直线AB交y 轴于点D,且∠BPC=∠OCP,求点P的坐标.∴,即,整理得:mn(mn+1)=0,∵mn≠0,∴mn+1=0,即mn=﹣1.设直线AB的解析式为y=kx+b,联立,得:x2﹣kx﹣b=0.∵m,n是方程的两个根,∴mn=﹣b.∴b=1.∵直线AB与y轴交于点D,则OD=1.易知C(0,﹣2),OC=2,∴CD=OC+OD=3.∵∠BPC=∠OCP,∴PD=CD=3.设P(a,﹣2a﹣2),过点P作PG⊥y轴于点G,则PG=﹣a,GD=OG﹣OD=﹣2a﹣3.在Rt△PDG中,由勾股定理得:PG2+GD2=PD2,即:(﹣a)2+(﹣2a﹣3)2=32,整理得:5a2+12a=0,解得a=0(舍去)或a=﹣,当a=﹣时,﹣2a﹣2=,∴P(﹣,).点评:本题考查了二次函数与一次函数的图象与性质、等腰直角三角形的性质,勾股定理、相似三角形的判定和性质、一元二次方程等知识点,有一定的难度.第(3)问中,注意根与系数关系的应用.。
2015年崇左市初中毕业升学统一考试

2015年崇左市初中毕业升学统一考试物理一、选择题1.以下估测中,最接近实际的是A.普通教室的高度约为4kmB.物理课本宽度约为16.9dmC.中学生课桌高度约为80cmD.中学生的身高约为1.6mm2.下列现象中,由光的折射引起的是A.海市蜃楼B.水中“月亮”C.小孔成像D.墙上手影3.如图电路中,开关S闭合后,电源被短路的是4.2015年6月1日,“东方之星”客船在湖北监利县遭遇强台风翻沉。
潜水员潜入12m 深水里搜救落水乘客,此时潜水员受到水的压强是(已知ρ水=1.0×103kg/m3)A.0B.12PaC.83.33PaD.1.2×105Pa5.下列事例中,不能说明分子永不停息做无规则运动的是A.炒菜时加点盐,菜就有了咸味B.在显微镜下,看到细菌在活动C.排放工业废水,污染整个水库D.房间里放一箱苹果,满屋飘香6.高效节能的LED灯,其核心元件发光二极管的主要材料是A.陶瓷B.超导体C.半导体D.橡胶7.下列实例中,力对物体没有做功的是A.叉车向上举起货物B.小林沿着斜面向上拉动物体C.小欣背着书包上楼D.小明用力推石头但石头不动8.下列做法中,不符合安全用电要求的是A.维修电器时应切断电源B.发现有人触电应先救人后断电C.家庭电路安装空气开关D.控制电器的开关安装在火线上9.如图为探究电磁感应现象的实验装置,则A.保持导体AB在磁场中静止,电流表指针会发生偏转B.只要导体AB在磁场中运动,电流表指针就发生偏转C.电流表指针发生偏转,表明机械能转化为电能D.根据电磁感应现象揭示的原理,可制成电动机10.在图中所示的简单机械中,忽略机械自重和摩擦,当提起相同重物时,最省力的是A B C D11.(双项选择)在运动场上常看到以下场景,其中能用惯性知识解释的是A.跳高运动员越过横杆落到垫子上B.投掷出的铅球离开手后向前运动C.运动员跑到终点后不能立即停下D.起跑时运动员用脚向后使劲蹬地12.(双项选择)如图是探究电流热效应的实验装置。
2016年广西崇左市中考数学试题及参考答案(word解析版)

2016年广西崇左市中考数学试题及参考答案与解析一、选择题(本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.9的绝对值是( )A .9B .﹣9C .3D .±3 2.sin30°=( ) AB .12 CD3.今年我们三个市参加中考的考生共约11万人,用科学记数法表示11万这个数是( ) A .1.1×103 B .1.1×104 C .1.1×105 D .1.1×1064.如图,一个正方体切去一个三棱锥后所得几何体的俯视图是( )A .B .C .D .5.下列命题是真命题的是( ) A .必然事件发生的概率等于0.5B .5名同学二模的数学成绩是92,95,95,98,110,则他们的平均分是98分,众数是95C .射击运动员甲、乙分别射击10次且击中环数的方差分别是5和18,则乙较甲稳定D .要了解金牌获得者的兴奋剂使用情况,可采用抽样调查的方法 6.如图,CD 是⊙O 的直径,已知∠1=30°,则∠2=( )A .30°B .45°C .60°D .70°7.关于x 的一元二次方程:x 2﹣4x ﹣m 2=0有两个实数根x 1、x 2,则21211m x x ⎛⎫+=⎪⎝⎭( ) A .44m B .44m - C .4 D .﹣48.抛物线212y x =,y=x 2,y=﹣x 2的共同性质是: ①都是开口向上;②都以点(0,0)为顶点;③都以y 轴为对称轴;④都关于x 轴对称. 其中正确的个数有( )A .1个B .2个C .3个D .4个9.关于直线l :y=kx+k (k ≠0),下列说法不正确的是( ) A .点(0,k )在l 上 B .l 经过定点(﹣1,0) C .当k >0时,y 随x 的增大而增大 D .l 经过第一、二、三象限10.把一副三角板按如图放置,其中∠ABC=∠DEB=90°,∠A=45°,∠D=30°,斜边AC=BD=10,若将三角板DEB 绕点B 逆时针旋转45°得到△D′E′B ,则点A 在△D′E′B 的( )A .内部B .外部C .边上D .以上都有可能11.如图,把八个等圆按相邻两两外切摆放,其圆心连线构成一个正八边形,设正八边形内侧八个扇形(无阴影部分)面积之和为S 1,正八边形外侧八个扇形(阴影部分)面积之和为S 2,则12S S =( )A .34 B .35 C .23D .1 12.若一次函数y=mx+6的图象与反比例函数ny x=在第一象限的图象有公共点,则有( ) A .mn ≥﹣9 B .﹣9≤mn ≤0 C .mn ≥﹣4 D .﹣4≤mn ≤0 二、填空题(本大题共6小题,每小题3分,共18分) 13.计算:0﹣10= . 14.计算:a 2•a 4= .15x 的最大值是 .16.如图,△ABC 中,∠C=90°,∠A=60°,AB=ABC 沿直线CB 向右作无滑动滚动一次,则点C 经过的路径长是 .17.同时投掷两个骰子,它们点数之和不大于4的概率是 .18.如图,已知正方形ABCD 边长为1,∠EAF=45°,AE=AF ,则有下列结论:①∠1=∠2=22.5°;②点C 到EF 1;③△ECF 的周长为2;④BE+DF >EF . 其中正确的结论是 .(写出所有正确结论的序号)三、解答题(本大题共8小题,满分66分,解答应写出文字说明、证明过程或演算步骤)19.(6分)计算:()()323π----. 20.(6分)化简:24222aa a a a a +⎛⎫-÷⎪--⎝⎭. 21.(6分)如图,在平面直角坐标系网格中,将△ABC 进行位似变换得到△A 1B 1C 1. (1)△A 1B 1C 1与△ABC 的位似比是 ; (2)画出△A 1B 1C 1关于y 轴对称的△A 2B 2C 2;(3)设点P (a ,b )为△ABC 内一点,则依上述两次变换后,点P 在△A 2B 2C 2内的对应点P 2的坐标是 .22.(8分)为了了解学校图书馆上个月借阅情况,管理老师从学生对艺术、经济、科普及生活四类图书借阅情况进行了统计,并绘制了下列不完整的统计图,请根据图中信息解答下列问题: (1)上个月借阅图书的学生有多少人?扇形统计图中“艺术”部分的圆心角度数是多少? (2)把条形统计图补充完整;(3)从借阅情况分析,如果要添置这四类图书300册,请你估算“科普”类图书应添置多少册合适?23.(9分)如图,AB 是⊙O 的直径,点C 、D 在圆上,且四边形AOCD 是平行四边形,过点D 作⊙O 的切线,分别交OA 延长线与OC 延长线于点E 、F ,连接BF . (1)求证:BF 是⊙O 的切线; (2)已知圆的半径为1,求EF 的长.24.(9分)蔬菜经营户老王,近两天经营的是青菜和西兰花.(1)昨天的青菜和西兰花的进价和售价如表,老王用600元批发青菜和西兰花共200市斤,当天售完后老王一共能赚多少元钱?(2)今天因进价不变,老王仍用600元批发青菜和西兰花共200市斤.但在运输中青菜损坏了10%,而西兰花没有损坏仍按昨天的售价销售,要想当天售完后所赚的钱不少于昨天所赚的钱,请你帮老王计算,应怎样给青菜定售价?(精确到0.1元)25.(10分)如图(1),菱形ABCD 对角线AC 、BD 的交点O 是四边形EFGH 对角线FH 的中点,四个顶点A 、B 、C 、D 分别在四边形EFGH 的边EF 、FG 、GH 、HE 上. (1)求证:四边形EFGH 是平行四边形;(2)如图(2)若四边形EFGH 是矩形,当AC 与FH 重合时,已知2ACBD,且菱形ABCD 的面积是20,求矩形EFGH 的长与宽.26.(12分)如图,抛物线L :y=ax 2+bx+c 与x 轴交于A 、B (3,0)两点(A 在B 的左侧),与y轴交于点C (0,3),已知对称轴x=1. (1)求抛物线L 的解析式;(2)将抛物线L 向下平移h 个单位长度,使平移后所得抛物线的顶点落在△OBC 内(包括△OBC 的边界),求h 的取值范围;(3)设点P 是抛物线L 上任一点,点Q 在直线l :x=﹣3上,△PBQ 能否成为以点P 为直角顶点的等腰直角三角形?若能,求出符合条件的点P 的坐标;若不能,请说明理由.参考答案与解析一、选择题(本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.9的绝对值是( )A .9B .﹣9C .3D .±3 【知识考点】绝对值.【思路分析】根据正数的绝对值等于它本身即可求解. 【解答过程】解:9的绝对值是9. 故选:A .【总结归纳】本题主要考查绝对值的定义,规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0. 2.sin30°=( )A .2 B .12 C .2 D .3【知识考点】特殊角的三角函数值.【思路分析】根据特殊角的三角函数值进行解答即可. 【解答过程】解:sin30°=12. 故选:B .【总结归纳】本题考查了特殊角的三角函数值,熟记特殊角的三角函数值即可解答该题. 3.今年我们三个市参加中考的考生共约11万人,用科学记数法表示11万这个数是( ) A .1.1×103 B .1.1×104 C .1.1×105 D .1.1×106 【知识考点】科学记数法—表示较大的数.【思路分析】科学记数法的表示形式为a ×10n的形式.其中1≤|a|<10,n 为整数,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【解答过程】解:11万=1.1×105.故选:C.【总结归纳】此题考查科学记数法的表示方法,表示时关键要正确确定a的值以及n的值.4.如图,一个正方体切去一个三棱锥后所得几何体的俯视图是()A.B.C.D.【知识考点】简单组合体的三视图.【思路分析】俯视图是从上向下看得到的视图,结合选项即可作出判断.【解答过程】解:所给图形的俯视图是D选项所给的图形.故选D.【总结归纳】本题考查了简单组合体的三视图,属于基础题,关键掌握俯视图是从上向下看得到的视图.5.下列命题是真命题的是()A.必然事件发生的概率等于0.5B.5名同学二模的数学成绩是92,95,95,98,110,则他们的平均分是98分,众数是95 C.射击运动员甲、乙分别射击10次且击中环数的方差分别是5和18,则乙较甲稳定D.要了解金牌获得者的兴奋剂使用情况,可采用抽样调查的方法【知识考点】命题与定理.【思路分析】命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.【解答过程】解:A、必然事件发生的概率等于1,错误;B、5名同学二模的数学成绩是92,95,95,98,110,则他们的平均分是98分,众数是95,正确;C、射击运动员甲、乙分别射击10次且击中环数的方差分别是5和18,则甲稳定,错误;D、要了解金牌获得者的兴奋剂使用情况,可采用全面调查的方法,错误;故选B【总结归纳】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.6.如图,CD是⊙O的直径,已知∠1=30°,则∠2=()A .30°B .45°C .60°D .70° 【知识考点】圆周角定理.【思路分析】连接AD ,构建直角三角形ACD .根据直径所对的圆周角是90°知三角形ACD 是直角三角形,然后在Rt △ABC 中求得∠BAD=60°;然后由圆周角定理(同弧所对的圆周角相等)求∠2的度数即可.【解答过程】解:如图,连接AD .∵CD 是⊙O 的直径,∴∠CAD=90°(直径所对的圆周角是90°); 在Rt △ABC 中,∠CAD=90°,∠1=30°, ∴∠DAB=60°;又∵∠DAB=∠2(同弧所对的圆周角相等), ∴∠2=60°, 故选C .【总结归纳】本题考查了圆周角定理.解答此题的关键是借助辅助线AD ,将隐含是题干中的已知条件△ACD 是直角三角形展现出来,然后根据直角三角形的两个锐角互余求得∠DAB=60°. 7.关于x 的一元二次方程:x 2﹣4x ﹣m 2=0有两个实数根x 1、x 2,则21211m x x ⎛⎫+=⎪⎝⎭( ) A .44m B .44m - C .4 D .﹣4【知识考点】根与系数的关系.【思路分析】根据所给一元二次方程,写出韦达定理,代入所求式子化简.【解答过程】解:∵x 2﹣4x ﹣m 2=0有两个实数根x 1、x 2,∴,∴则m 2()===﹣4.故答案选D .【总结归纳】本题主要考查一元二次方程根与系数的关系,属基础题,熟练掌握韦达定理是解题关键. 8.抛物线212y x,y=x 2,y=﹣x 2的共同性质是: ①都是开口向上;②都以点(0,0)为顶点;③都以y 轴为对称轴;④都关于x 轴对称. 其中正确的个数有( )A .1个B .2个C .3个D .4个 【知识考点】二次函数的性质.【思路分析】利用二次函数的性质,利用开口方向,对称轴,顶点坐标逐一探讨得出答案即可. 【解答过程】解:抛物线y=,y=x 2的开口向上,y=﹣x 2的开口向下,①错误;抛物线y=,y=x 2,y=﹣x 2的顶点为(0,0),对称轴为y 轴,②③正确;④错误;故选:B .【总结归纳】本题考查了二次函数的图形与性质;熟记抛物线的开口方向、对称轴、顶点坐标是解决问题的关键.9.关于直线l :y=kx+k (k ≠0),下列说法不正确的是( ) A .点(0,k )在l 上 B .l 经过定点(﹣1,0) C .当k >0时,y 随x 的增大而增大 D .l 经过第一、二、三象限 【知识考点】一次函数的性质.【思路分析】直接根据一次函数的性质选择不正确选项即可.【解答过程】解:A 、当x=0时,y=k ,即点(0,k )在l 上,故此选项正确; B 、当x=﹣1时,y=﹣k+k=0,此选项正确; C 、当k >0时,y 随x 的增大而增大,此选项正确; D 、不能确定l 经过第一、二、三象限,此选项错误; 故选D .【总结归纳】本题主要考查了一次函数的性质,解题的关键是掌握一次函数的性质,一次函数y=kx+b (k 、b 为常数,k ≠0)是一条直线,当k >0,图象经过第一、三象限,y 随x 的增大而增大;当k <0,图象经过第二、四象限,y 随x 的增大而减小;图象与y 轴的交点坐标为(0,b ).此题难度不大.10.把一副三角板按如图放置,其中∠ABC=∠DEB=90°,∠A=45°,∠D=30°,斜边AC=BD=10,若将三角板DEB 绕点B 逆时针旋转45°得到△D′E′B ,则点A 在△D′E′B 的( )A .内部B .外部C .边上D .以上都有可能 【知识考点】旋转的性质.【思路分析】先根据勾股定理求出两直角三角形的各边长,再由旋转的性质得:∠EBE′=45°,∠E′=∠DEB=90°,求出E′D′与直线AB 的交点到B 的距离也是5,与AB 的值相等,所以点A 在△D′E′B的边上.【解答过程】解:∵AC=BD=10,又∵∠ABC=∠DEB=90°,∠A=45°,∠D=30°, ∴BE=5,AB=BC=5,由三角板DEB 绕点B 逆时针旋转45°得到△D′E′B ,设△D′E′B 与直线AB 交于G ,可知:∠EBE′=45°,∠E′=∠DEB=90°,∴△GE′B 是等腰直角三角形,且BE′=BE=5, ∴BG==5,∴BG=AB ,∴点A 在△D′E′B 的边上, 故选C .【总结归纳】本题考查了旋转的性质和勾股定理,利用30°和45°的直角三角形的性质求出各边的长;注意:在直角三角形中,30度角所对的直角边等于斜边的一半,45°角所对的两直角边相等,熟练掌握此内容是解决问题的关键.11.如图,把八个等圆按相邻两两外切摆放,其圆心连线构成一个正八边形,设正八边形内侧八个扇形(无阴影部分)面积之和为S 1,正八边形外侧八个扇形(阴影部分)面积之和为S 2,则12S S ( )A .34 B .35 C .23D .1 【知识考点】扇形面积的计算;正多边形和圆.【思路分析】先根据正多边形的内角和公式可求正八边形的内角和,根据周角的定义可求正八边形外侧八个扇形(阴影部分)的内角和,再根据半径相等的扇形面积与圆周角成正比即可求解. 【解答过程】解:∵正八边形的内角和为(8﹣2)×180°=6×180°=1080°,正八边形外侧八个扇形(阴影部分)的内角和为360°×8﹣1080°=2880°﹣1080°=1800°,∴==.故选:B.【总结归纳】考查了扇形面积的计算,求不规则的图形的面积,可以转化为几个规则图形的面积的和或差来求.12.若一次函数y=mx+6的图象与反比例函数nyx在第一象限的图象有公共点,则有()A.mn≥﹣9 B.﹣9≤mn≤0 C.mn≥﹣4 D.﹣4≤mn≤0【知识考点】反比例函数与一次函数的交点问题;根的判别式.【思路分析】依照题意画出图形,将一次函数解析式代入反比例函数解析式中,得出关于x的一元二次方程,由两者有交点,结合根的判别式即可得出结论.【解答过程】解:依照题意画出图形,如下图所示.将y=mx+6代入y=中,得:mx+6=,整理得:mx2+6x﹣n=0,∵二者有交点,∴△=62+4mn≥0,∴mn≥﹣9.故选A.【总结归纳】本题考查了反比例函数与一次函数的交点问题以及根的判别式,解题的关键由根的判别式得出关于mn的不等式.本题属于基础题,难度不大,解决该题型题目时,画出图形,利用数形结合解决问题是关键.二、填空题(本大题共6小题,每小题3分,共18分)13.计算:0﹣10=.【知识考点】有理数的减法.【思路分析】根据有理数的减法,可得答案.【解答过程】解:0﹣10=0+(﹣10)=﹣10,故答案为:﹣10.【总结归纳】本题考查了有理数的减法,减去一个数等于加上这个数的相反数.14.计算:a2•a4=.【知识考点】同底数幂的乘法.【思路分析】根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,进行运算即可.【解答过程】解:a2•a4=a2+4=a6.故答案为:a6.【总结归纳】本题考查的是二次根式有意义的条件,熟知二次根式具有非负性是解答此题的关键.15x的最大值是.【知识考点】二次根式有意义的条件.【思路分析】根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.【解答过程】解:∵代数式有意义,∴1﹣2x≥0,解得x≤,∴x的最大值是.故答案为:.【总结归纳】本题考查的是二次根式有意义的条件,熟知二次根式具有非负性是解答此题的关键.16.如图,△ABC中,∠C=90°,∠A=60°,AB=ABC沿直线CB向右作无滑动滚动一次,则点C经过的路径长是.【知识考点】轨迹.【思路分析】根据锐角三角函数,可得BC的长,根据线段旋转,可得圆弧,根据弧长公式,可得答案.【解答过程】解:由锐角三角函数,得BC=AB•sin∠A=3,由旋转的性质,得是以B为圆心,BC长为半径,旋转了150°,由弧长公式,得==,故答案为:.【总结归纳】本题考查了轨迹,利用线段旋转得出圆弧是解题关键.17.同时投掷两个骰子,它们点数之和不大于4的概率是.【知识考点】列表法与树状图法.【思路分析】根据题意,设第一颗骰子的点数为x,第二颗骰子的点数为y,用(x,y)表示抛掷两个骰子的点数情况,由分步计数原理可得(x,y)的情况数目,由列举法可得其中x+y≤4的情况数目,进而由等可能事件的概率公式计算可得答案.【解答过程】解:设第一颗骰子的点数为x,第二颗骰子的点数为y,用(x,y)表示抛掷两个骰子的点数情况,x、y都有6种情况,则(x,y)共有6×6=36种情况,而其中点数之和不大于4即x+y≤4的情况有(1,1),(1,2),(1,3),(2,1),(2,2),(3,1),共6种情况,则其概率为=.故答案为.【总结归纳】本题考查等可能事件的概率计算,注意用列举法分析点数之和不大于4的情况时,做到不重不漏是解题的关键.18.如图,已知正方形ABCD边长为1,∠EAF=45°,AE=AF,则有下列结论:①∠1=∠2=22.5°;②点C到EF1;③△ECF的周长为2;④BE+DF>EF.其中正确的结论是.(写出所有正确结论的序号)【知识考点】四边形综合题.【思路分析】先证明Rt△ABE≌Rt△ADF得到∠1=∠2,易得∠1=∠2=∠22.5°,于是可对①进行判断;连结EF、AC,它们相交于点H,如图,利用Rt△ABE≌Rt△ADF得到BE=DF,则CE=CF,接着判断AC垂直平分EF,AH平分∠EAF,于是利用角平分线的性质定理得到EB=EH,FD=FH,则可对③④进行判断;设BE=x,则EF=2x,CE=1﹣x,利用等腰直角三角形的性质得到2x=(1﹣x),解得x=﹣1,则可对④进行判断.【解答过程】解:∵四边形ABCD为正方形,∴AB=AD,∠BAD=∠B=∠D=90°,在Rt△ABE和Rt△ADF中,∴Rt△ABE≌Rt△ADF,∴∠1=∠2,∵∠EAF=45°,∴∠1=∠2=∠22.5°,所以①正确;连结EF 、AC ,它们相交于点H ,如图,∵Rt △ABE ≌Rt △ADF , ∴BE=DF , 而BC=DC , ∴CE=CF , 而AE=AF ,∴AC 垂直平分EF ,AH 平分∠EAF , ∴EB=EH ,FD=FH ,∴BE+DF=EH+HF=EF ,所以④错误;∴△ECF 的周长=CE+CF+EF=CED+BE+CF+DF=CB+CD=1+1=2,所以③正确; 设BE=x ,则EF=2x ,CE=1﹣x , ∵△CEF 为等腰直角三角形, ∴EF=CE ,即2x=(1﹣x ),解得x=﹣1,∴EF=2(﹣1),∴CH=EF=﹣1,所以②正确.故答案为①②③.【总结归纳】本题考查了四边形的综合题:熟练掌握正方形的性质和角平分线的性质定理.解决本题的关键是证明AC 垂直平分EF .三、解答题(本大题共8小题,满分66分,解答应写出文字说明、证明过程或演算步骤)19.(6分)计算:()()323π----. 【知识考点】实数的运算;零指数幂.【思路分析】分别进行二次根式的化简、乘方、零指数幂等运算,然后合并. 【解答过程】解:原式=15﹣8﹣1 =6.【总结归纳】本题考查了实数的运算,涉及了二次根式的化简、乘方、零指数幂等知识,属于基础题.20.(6分)化简:24222aa a a a a +⎛⎫-÷⎪--⎝⎭. 【知识考点】分式的混合运算.【思路分析】先把括号内通分,再把除法运算化为乘法运算,然后把分子分解因式后约分即可.【解答过程】解:原式=•=•=1.【总结归纳】本考查了分式的混合运算:分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序;先乘方,再乘除,然后加减,有括号的先算括号里面的.最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.21.(6分)如图,在平面直角坐标系网格中,将△ABC进行位似变换得到△A1B1C1.(1)△A1B1C1与△ABC的位似比是;(2)画出△A1B1C1关于y轴对称的△A2B2C2;(3)设点P(a,b)为△ABC内一点,则依上述两次变换后,点P在△A2B2C2内的对应点P2的坐标是.【知识考点】作图-位似变换;作图-轴对称变换.【思路分析】(1)根据位似图形可得位似比即可;(2)根据轴对称图形的画法画出图形即可;(3)根据三次变换规律得出坐标即可.【解答过程】解:(1))△ABC与△A1B1C1的位似比等于===;(2)如图所示(3)点P(a,b)为△ABC内一点,依次经过上述两次变换后,点P的对应点的坐标为(﹣2a,2b).故答案为:,(﹣2a,2b).【总结归纳】此题考查作图问题,关键是根据轴对称图形的画法和位似图形的性质分析.22.(8分)为了了解学校图书馆上个月借阅情况,管理老师从学生对艺术、经济、科普及生活四类图书借阅情况进行了统计,并绘制了下列不完整的统计图,请根据图中信息解答下列问题:(1)上个月借阅图书的学生有多少人?扇形统计图中“艺术”部分的圆心角度数是多少?(2)把条形统计图补充完整;(3)从借阅情况分析,如果要添置这四类图书300册,请你估算“科普”类图书应添置多少册合适?【知识考点】条形统计图;用样本估计总体;扇形统计图.【思路分析】(1)用借“生活”类的书的人数除以它所占的百分比即可得到调查的总人数;然后用360°乘以借阅“艺术“的人数所占的百分比得到“艺术”部分的圆心角度;(2)先计算出借阅“科普“的学生数,然后补全条形统计图;(3)利用样本估计总体,用样本中“科普”类所占的百分比乘以300即可.【解答过程】解:(1)上个月借阅图书的学生总人数为60÷25%=240(人);扇形统计图中“艺术”部分的圆心角度数=360°×=150°;(2)借阅“科普“的学生数=240﹣100﹣60﹣40=40(人),条形统计图为:(3)300×=50,估计“科普”类图书应添置50册合适.【总结归纳】本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.(2)特点:从条形图可以很容易看出数据的大小,便于比较.也考查了样本估计总体.23.(9分)如图,AB是⊙O的直径,点C、D在圆上,且四边形AOCD是平行四边形,过点D作⊙O的切线,分别交OA延长线与OC延长线于点E、F,连接BF.(1)求证:BF是⊙O的切线;(2)已知圆的半径为1,求EF的长.【知识考点】切线的判定与性质;平行四边形的性质.【思路分析】(1)先证明四边形AOCD是菱形,从而得到∠AOD=∠COD=60°,再根据切线的性质得∠FDO=90°,接着证明△FDO≌△FBO得到∠ODF=∠OBF=90°,然后根据切线的判定定理即可得到结论;(2)在Rt△OBF中,利用60度的正切的定义求解.【解答过程】(1)证明:连结OD,如图,∵四边形AOCD是平行四边形,而OA=OC,∴四边形AOCD是菱形,∴△OAD和△OCD都是等边三角形,∴∠AOD=∠COD=60°,∴∠FOB=60°,∵EF为切线,∴OD⊥EF,∴∠FDO=90°,在△FDO和△FBO中,∴△FDO≌△FBO,∴∠ODF=∠OBF=90°,∴OB⊥BF,∴BF是⊙O的切线;(2)解:在Rt△OBF中,∵∠FOB=60°,而tan∠FOB=,∴BF=1×tan60°=.∵∠E=30°,∴EF=2BF=2.【总结归纳】本题考查了切线的判断与性质:圆的切线垂直于经过切点的半径;经过半径的外端且垂直于这条半径的直线是圆的切线.有切线时,常常“遇到切点连圆心得半径”.24.(9分)蔬菜经营户老王,近两天经营的是青菜和西兰花.(1)昨天的青菜和西兰花的进价和售价如表,老王用600元批发青菜和西兰花共200市斤,当天售完后老王一共能赚多少元钱?(2)今天因进价不变,老王仍用600元批发青菜和西兰花共200市斤.但在运输中青菜损坏了10%,而西兰花没有损坏仍按昨天的售价销售,要想当天售完后所赚的钱不少于昨天所赚的钱,请你帮老王计算,应怎样给青菜定售价?(精确到0.1元)【知识考点】一元一次不等式的应用;二元一次方程组的应用.【思路分析】(1)设批发青菜x市斤,西兰花y市斤,根据题意列出方程组,解方程组青菜青菜和西兰花的重量,即可得出老王一共能赚的钱;(2)设给青菜定售价为a元;根据题意列出不等式,解不等式即可.【解答过程】解:(1)设批发青菜x市斤,西兰花y市斤;根据题意得:,解得:,即批发青菜100市斤,西兰花100市斤,∴100(4﹣2.8)+100(4.5﹣3.2)=120+130=250(元);答:当天售完后老王一共能赚250元钱;(2)设给青菜定售价为a元/市斤;根据题意得:100(1﹣10%)×(x﹣2.8)+100(4.5﹣3.2)≥250,解得:x≥4≈4.1;答:给青菜定售价为不低于4.1元/市斤.【总结归纳】本题考查了一元一次不等式的应用、二元一次方程组的应用;根据题意列出一元一次不等式、二元一次方程组是解决问题的关键.25.(10分)如图(1),菱形ABCD对角线AC、BD的交点O是四边形EFGH对角线FH的中点,四个顶点A、B、C、D分别在四边形EFGH的边EF、FG、GH、HE上.(1)求证:四边形EFGH是平行四边形;(2)如图(2)若四边形EFGH 是矩形,当AC 与FH 重合时,已知2ACBD,且菱形ABCD 的面积是20,求矩形EFGH 的长与宽.【知识考点】相似三角形的判定与性质;平行四边形的判定;菱形的性质;矩形的性质. 【思路分析】(1)根据菱形的性质可得出OA=OC ,OD=OB ,再由中点的性质可得出OF=OH ,结合对顶角相等即可利用全等三角形的判定定理(SAS )证出△AOF ≌△COH ,从而得出AF ∥CH ,同理可得出DH ∥BF ,依据平行四边形的判定定理即可证出结论;(2)设矩形EFGH 的长为a 、宽为b .根据勾股定理及边之间的关系可找出AC=,BD=,利用菱形的性质、矩形的性质可得出∠AOB=∠AGH=90°,从而可证出△BAO ∽△CAG ,根据相似三角形的性质可得出,套入数据即可得出a=2b ①,再根据菱形的面积公式得出a 2+b 2=80②,联立①②解方程组即可得出结论.【解答过程】(1)证明:∵点O 是菱形ABCD 对角线AC 、BD 的交点, ∴OA=OC ,OD=OB , ∵点O 是线段FH 的中点, ∴OF=OH .在△AOF 和△COH 中,有,∴△AOF ≌△COH (SAS ), ∴∠AFO=∠CHO , ∴AF ∥CH . 同理可得:DH ∥BF .∴四边形EFGH 是平行四边形.(2)设矩形EFGH 的长为a 、宽为b ,则AC=.∵=2,∴BD=AC=,OB=BD=,OA=AC=.∵四边形ABCD 为菱形, ∴AC ⊥BD ,∴∠AOB=90°.∵四边形EFGH是矩形,∴∠AGH=90°,∴∠AOB=∠AGH=90°,又∵∠BAO=∠CAG,∴△BAO∽△CAG,∴,即,解得:a=2b①.∵S菱形ABCD=AC•BD=••=20,∴a2+b2=80②.联立①②得:,解得:,或(舍去).∴矩形EFGH的长为8,宽为4.【总结归纳】本题考查了平行四边形的判定、全等三角形的判定及性质、菱形的性质、矩形的性质以及相似三角形的判定及性质,解题的关键:(1)找出AF∥CH、DH∥BF;(2)找出关于m的一元二次方程.本题属于中档题,难度不大,但解题过程叫繁琐,解决该题型题目时,根据相似三角形的性质找出对应边的比例关系是关键.26.(12分)如图,抛物线L:y=ax2+bx+c与x轴交于A、B(3,0)两点(A在B的左侧),与y 轴交于点C(0,3),已知对称轴x=1.(1)求抛物线L的解析式;(2)将抛物线L向下平移h个单位长度,使平移后所得抛物线的顶点落在△OBC内(包括△OBC 的边界),求h的取值范围;(3)设点P是抛物线L上任一点,点Q在直线l:x=﹣3上,△PBQ能否成为以点P为直角顶点的等腰直角三角形?若能,求出符合条件的点P的坐标;若不能,请说明理由.【知识考点】二次函数综合题.【思路分析】(1)利用待定系数法求出抛物线的解析式即可;(2)先求出直线BC解析式为y=﹣x+3,再求出抛物线顶点坐标,得出当x=1时,y=2;结合抛物线顶点坐即可得出结果;(3)设P(m,﹣m2+2m+3),Q(﹣3,n),由勾股定理得出PB2=(m﹣3)2+(﹣m2+2m+3)2,PQ2=(m+3)2+(﹣m2+2m+3﹣n)2,BQ2=n2+36,过P点作PM垂直于y轴,交y轴与M点,过B 点作BN垂直于MP的延长线于N点,由AAS证明△PQM≌△BPN,得出MQ=NP,PM=BN,则MQ=﹣m2+2m+3﹣n,PN=3﹣m,得出方程﹣m2+2m+3﹣n=3﹣m,解方程即可.【解答过程】解:(1)∵抛物线的对称轴x=1,B(3,0),∴A(﹣1,0)∵抛物线y=ax2+bx+c过点C(0,3)∴当x=0时,c=3.又∵抛物线y=ax2+bx+c过点A(﹣1,0),B(3,0)∴,∴∴抛物线的解析式为:y=﹣x2+2x+3;(2)∵C(0,3),B(3,0),∴直线BC解析式为y=﹣x+3,∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点坐标为(1,4)∵对于直线BC:y=﹣x+1,当x=1时,y=2;将抛物线L向下平移h个单位长度,∴当h=2时,抛物线顶点落在BC上;当h=4时,抛物线顶点落在OB上,∴将抛物线L向下平移h个单位长度,使平移后所得抛物线的顶点落在△OBC内(包括△OBC的边界),则2≤h≤4;(3)设P(m,﹣m2+2m+3),Q(﹣3,n),①当P点在x轴上方时,过P点作PM垂直于y轴,交y轴与M点,过B点作BN垂直于MP的延长线于N点,如图所示:。
2015年崇左市中考数学试卷及答案解析.doc

2015年崇左市高级中等学校招生考试·数学一、选择题1.A【解析】根据用正负数表示两种具有相反意义的量的方法,可得:向右运动记作+4m,,则向左运动4m,记为-4m.备考指导:此题主要考查了用正负数表示两种具有相反意义的量,解答此题的关键是要明确:具有相反意义的量都是互相依存的两个量,它包含两个要素,一是它们的意义相反,二是它们都是数量.2.C 【解析】点评:常用的判断两角关系的方法根据:平行线性质、对顶角、互余互补及其性质,三角形外角性质等.3. D 【解析】数字都是同类项,故A 不符合题意;D 选项中两单项式所含字母相同,但相同字母系数不同,故不是同类项,故D 符合题意.备考指导:解答本题的关键是掌握同类项定义中的两个“相同”: 所含字母相同,相同字母的指数相同.4. C 【解析】点评:①有理数减法要转化为加法来计算,遵循先定和的符号再确定和的绝对值的运算顺序;②只有同类二次根式才能合并;③常用的幂的运算①同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,即=⋅n m a a n m a +(m 、n 为整数);②同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即=÷n m a a n m a -(a≠0,m 、n 为整数,m>n );③幂的乘方法则:幂的乘方,底数不变,指数相乘,即=nm a )(mn a (m 、n 为整数);④积的乘方法则:把积的每一个因式分别乘方,再把所有的幂相乘。
即=nab )(n n b a (n 为整数). 5.D 【解析】我对梦,们对中,的对国.点评:正方体展开图对面确定方法“一四一”型展开图①: 同层中有连续的四个正方形,所以优先利用“同层隔一面”寻找对面,“2”和“4”隔一面“3”是对面,“3”和“5”隔一面“4”是对面,剩下的“1”和“6”是对面;ד二三一”型展开图②:图中含有同层连续三个正方形,利用“同层隔一面”找到“3 ”和“5”是对面,剩下的利用“异层隔两面”找到“1”和“4”隔着“2”、“3”是对面,剩下的“2”和“6”是对面;二二二”型展开图③:图中不存在同层连续三个或四个正方形的情况,利用“异层隔两面”的方法找到“1”和“4”隔着“2”、“3”是对面,“2”和“5”隔着“3”、“4”是对面,剩下的“3”和“6”是对面;三三”型展开图④: 图中含有同层连续的三个正方形,利用“同层隔一面”的方法,找到“1”和“3”是对面,“4”和“6”是对面,剩下的“2”和“5”是对面.6.C 【解析】这个三角形的第三边5-2<a <5+2,即3<a <7,只有C 符合题意.点评:已知三角形的两条边长,求第三边,根据“三角形两边之和大于第三边”和“三角形两边之差小于第三边”,可得“三角形的第三边大于两边之差且小于两边之和”,从而先求出第三边的范围,然后作出选择.7.D 【解析】点评:从对角线的角度来判断特殊平行四边形,首先要保证是平行四边形,即要保证对角线互相平分,在此基础上再添加对角线相等或垂直.8.B 【解析】方差越小,说明成绩越稳定,乙的方差最小,所以乙最稳定.点评:方差反映的是一组数据的波动程度,方差越大波动越大,方差越小,波动越小,反之也成立.9.C 【解析】解不等式得x ≤-2,在数轴上表示时,起点是-2,方向向左,用实点.点评:在数轴上表示不等式的解集时,要注意“界点”和“方向”,大于向右画,小于向左画,含等于号的画成实心点,不含等于号的要画成空心圆圈.10.A 【解析】AC =22B C -AB =5.sinA=1312AB BC =,故A 正确;cosA=135AB AC =,故B 错误;tanA=512AC BC =,故C 错误;tanB=125BC AC =,故D 错误. 对角线互相相等的矩形是正方形点评:在Rt △ABC 中,∠C=90º,则sinA=斜边的对边A ∠,cosA=斜边的邻边A ∠,tan A=的邻边的对边A A ∠∠.求直角三角形中某锐角的三角函数值,常常利用勾股定理求出有关边长来解决.11.A 【解析】把(2,-6)代入y=x k 得,-6=2k ,所以k=-12. 点评:①由于在反比例函数xk y =中,只有一个待定系数,因此只需要一对对应值或图像上的一个点的坐标,即可求出k 的值,从而确定其解析式.②反比例函数图象上点的纵横坐标的积都等于k 。
2015年广西南宁市中考真题数学试题(解析版)

2015年广西南宁市中考数学真题一、选择题(本大题共12小题,每小题3分,共36分)每小题都给出代号为(A)、(B)、(C)、(D)四个结论,其中只有一个是正确的.请考生用2B铅笔在答题卷上将选定的答案标号涂黑.1.(3分)3的绝对值是()A.3 B.﹣3 C.D.2.(3分)如图是由四个大小相同的正方体组成的几何体,那么它的主视图是()A.B.C.D.3.(3分)南宁快速公交(简称:BRT)将在今年底开始动工,预计2016年下半年建成并投入试运营,首条BRT西起南宁火车站,东至南宁东站,全长约为11300米,其中数据11300用科学记数法表示为()A.0.113×105B.1.13×104C.11.3×103D.113×102 4.(3分)某校男子足球队的年龄分布如图条形图所示,则这些队员年龄的众数是()A.12 B.13 C.14 D.155.(3分)如图,一块含30°角的直角三角板ABC的直角顶点A在直线DE上,且BC∥DE,则∠CAE等于()A.30°B.45°C.60°D.90°6.(3分)不等式2x﹣3<1的解集在数轴上表示为()A.B.C.D.7.(3分)如图,在△ABC中,AB=AD=DC,∠B=70°,则∠C的度数为()A.35°B.40°C.45°D.50°8.(3分)下列运算正确的是()A.4ab÷2a=2ab B.(3x2)3=9x6C.a3•a4=a7D.9.(3分)一个正多边形的内角和为540°,则这个正多边形的每一个外角等于()A.60°B.72°C.90°D.108°10.(3分)如图,已知经过原点的抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=﹣1,下列结论中:•①ab>0, ②a+b+c>0, ③当﹣2<x<0时,y<0.正确的个数是()A.0个B.1个C.2个D.3个11.(3分)如图,MN是⊙O的直径,点A是半圆上的三等分点,点B是劣弧AN的中点,点P是直径MN上一动点.若MN=2,则P A+PB的最小值是()A.2B.C.1 D.212.(3分)对于两个不相等的实数a、b,我们规定符号Max{a,b}表示a、b中的较大值,如:Max{2,4}=4,按照这个规定,方程Max{x,﹣x}=的解为()A.1﹣B.2﹣C.1+或1﹣D.1+或﹣1二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)分解因式:ax+ay=.14.(3分)要使分式有意义,则字母x的取值范围是.15.(3分)一个不透明的口袋中有5个完全相同的小球,把它们分别标号为1,2,3,4,5,随机提取一个小球,则取出的小球标号是奇数的概率是.16.(3分)如图,在正方形ABCD的外侧,作等边△ADE,则∠BED的度数是.17.(3分)如图,点A在双曲线y=(x>0)上,点B在双曲线y=(x>0)上(点B在点A的右侧),且AB∥x轴.若四边形OABC是菱形,且∠AOC=60°,则k=.18.(3分)如图,在数轴上,点A表示1,现将点A沿x轴做如下移动,第一次点A向左移动3个单位长度到达点A1,第二次将点A1向右移动6个单位长度到达点A2,第三次将点A2向左移动9个单位长度到达点A3,按照这种移动规律移动下去,第n次移动到点A n,如果点A n与原点的距离不小于20,那么n的最小值是.三、(本大题共2小题,每小题满分12分,共12分)19.(6分)计算:20150+(﹣1)2﹣2tan45°+.20.(6分)先化简,再求值:(1+x)(1﹣x)+x(x+2)﹣1,其中x=.四、解答题21.(8分)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣1,1),B(﹣3,1),C(﹣1,4).(1)画出△ABC关于y轴对称的△A1B1C1;(2)将△ABC绕着点B顺时针旋转90°后得到△A2BC2,请在图中画出△A2BC2,并求出线段BC旋转过程中所扫过的面积(结果保留π).22.(8分)今年5月份,某校九年级学生参加了南宁市中考体育考试,为了了解该校九年级(1)班同学的中考体育情况,对全班学生的中考体育成绩进行了统计,并绘制以下不完整的频数分布表(如表)和扇形统计图(如图),根据图表中的信息解答下列问题:(1)求全班学生人数和m的值.(2)直接学出该班学生的中考体育成绩的中位数落在哪个分数段.(3)该班中考体育成绩满分共有3人,其中男生2人,女生1人,现需从这3人中随机选取2人到八年级进行经验交流,请用“列表法”或“画树状图法”求出恰好选到一男一女的概率.分组分数段(分)频数A36≤x<41 2B41≤x<46 5C46≤x<51 15D51≤x<56 mE56≤x<61 1023.(8分)如图,在▱ABCD中,E、F分别是AB、DC边上的点,且AE=CF,(1)求证:△ADE≌△CBF.(2)若∠DEB=90°,求证:四边形DEBF是矩形.24.(10分)如图1,为美化校园环境,某校计划在一块长为60米,宽为40米的长方形空地上修建一个长方形花圃,并将花圃四周余下的空地修建成同样宽的通道,设通道宽为a 米.(1)用含a的式子表示花圃的面积.(2)如果通道所占面积是整个长方形空地面积的,求出此时通道的宽.(3)已知某园林公司修建通道、花圃的造价y1(元)、y2(元)与修建面积x(m2)之间的函数关系如图2所示,如果学校决定由该公司承建此项目,并要求修建的通道的宽度不少于2米且不超过10米,那么通道宽为多少时,修建的通道和花圃的总造价最低,最低总造价为多少元?25.(10分)如图,AB是⊙O的直径,C、G是⊙O上两点,且AC=CG,过点C的直线CD⊥BG于点D,交BA的延长线于点E,连接BC,交OD于点F.(1)求证:CD是⊙O的切线.(2)若,求∠E的度数.(3)连接AD,在(2)的条件下,若CD=,求AD的长.26.(10分)在平面直角坐标系中,已知A、B是抛物线y=ax2(a>0)上两个不同的点,其中A在第二象限,B在第一象限,(1)如图1所示,当直线AB与x轴平行,∠AOB=90°,且AB=2时,求此抛物线的解析式和A、B两点的横坐标的乘积.(2)如图2所示,在(1)所求得的抛物线上,当直线AB与x轴不平行,∠AOB仍为90°时,A、B两点的横坐标的乘积是否为常数?如果是,请给予证明;如果不是,请说明理由.(3)在(2)的条件下,若直线y=﹣2x﹣2分别交直线AB,y轴于点P、C,直线AB交y 轴于点D,且∠BPC=∠OCP,求点P的坐标.——★参*考*答*案★——一、选择题(本大题共12小题,每小题3分,共36分)每小题都给出代号为(A)、(B)、(C)、(D)四个结论,其中只有一个是正确的.请考生用2B铅笔在答题卷上将选定的答案标号涂黑.1.A『解析』|3|=3.故选A.2.B『解析』根据题意的主视图为:,故选B3.B『解析』将11300用科学记数法表示为:1.13×104.故选B.4.C『解析』观察条形统计图知:为14岁的最多,有8人,故众数为14岁,故选C.5.A『解析』∵∠C=30°,BC∥DE,∴∠CAE=∠C=30°.故选A.6.D『解析』2x<4,解得x<2,用数轴表示为:.故选D.7.A『解析』∵△ABD中,AB=AD,∠B=70°,∴∠B=∠ADB=70°,∴∠ADC=180°﹣∠ADB=110°,∵AD=CD,∴∠C=(180°﹣∠ADC)÷2=(180°﹣110°)÷2=35°,故选:A.8.C『解析』A.原式=2b,错误;B.原式=27x6,错误;C.原式=a7,正确;D.原式=,错误,故选C9.B『解析』设此多边形为n边形,根据题意得:180(n﹣2)=540,解得:n=5,∴这个正多边形的每一个外角等于:=72°.故选B.10.D『解析』①∵抛物线的开口向上,∴a>0,∵对称轴在y轴的左侧,∴b>0∴•ab>0;故①正确;②∵观察图象知;当x=1时y=a+b+c>0,∴②正确;③∵抛物线的对称轴为x=﹣1,与x轴交于(0,0),∴另一个交点为(﹣2,0),∴当﹣2<x<0时,y<0;故③正确;故选D.11.D『解析』作点A关于MN的对称点A′,连接A′B,交MN于点P,连接OA′,OA,OB,P A,AA′.∵点A与A′关于MN对称,点A是半圆上的一个三等分点,∴∠A′ON=∠AON=60°,P A=P A′,∵点B是弧AN的中点,∴∠BON=30°,∴∠A′OB=∠A′ON+∠BON=90°,又∵OA=OA′=,∴A′B=2.∴P A+PB=P A′+PB=A′B=2.故选D.12.D『解析』当x<﹣x,即x<0时,所求方程变形得:﹣x=,去分母得:x2+2x+1=0,即x=﹣1;当x>﹣x,即x>0时,所求方程变形得:x=,即x2﹣2x=1,解得:x=1+或x=1﹣(舍去),经检验x=﹣1与x=1+都为分式方程的解.故选D.二、填空题(本大题共6小题,每小题3分,共18分)13.a(x+y)『解析』ax+ay=a(x+y).故答案为:a(x+y).14.x≠1『解析』依题意得x﹣1≠0,即x≠1时,分式有意义.故答案是:x≠1.15.『解析』∵1,2,3,4,5中的奇数有3个:1、3、5,∴取出的小球标号是奇数的概率是:3÷5=.故答案为:.16.45°『解析』∵四边形ABCD是正方形,∴AB=AD,∠BAD=90°.∵等边三角形ADE,∴AD=AE,∠DAE=∠AED=60°.∠BAE=∠BAD+∠DAE=90°+60°=150°,AB=AE,∠AEB=∠ABE=(180°﹣∠BAE)÷2=15°,∠BED=∠DAE﹣∠AEB=60°﹣15°=45°,故答案为:45°.17.『解析』因为点A在双曲线y=(x>0)上,设A点坐标为(a,),因为四边形OABC是菱形,且∠AOC=60°,所以OA=2a,可得B点坐标为(3a,),可得:k=,故答案为:18.13『解析』第一次点A向左移动3个单位长度至点A1,则A1表示的数,1﹣3=﹣2;第2次从点A1向右移动6个单位长度至点A2,则A2表示的数为﹣2+6=4;第3次从点A2向左移动9个单位长度至点A3,则A3表示的数为4﹣9=﹣5;第4次从点A3向右移动12个单位长度至点A4,则A4表示的数为﹣5+12=7;第5次从点A4向左移动15个单位长度至点A5,则A5表示的数为7﹣15=﹣8;…;则A7表示的数为﹣8﹣3=﹣11,A9表示的数为﹣11﹣3=﹣14,A11表示的数为﹣14﹣3=﹣17,A13表示的数为﹣17﹣3=﹣20,A6表示的数为7+3=10,A8表示的数为10+3=13,A10表示的数为13+3=16,A12表示的数为16+3=19,所以点A n与原点的距离不小于20,那么n的最小值是13.故答案为:13.三、(本大题共2小题,每小题满分12分,共12分)19.解:原式=1+1﹣2×1+2=2.20.解:原式=1﹣x2+x2+2x﹣1=2x,当x=时,原式=2×=1.四、解答题21.解:(1)如图所示,画出△ABC关于y轴对称的△A1B1C1;(2)如图所示,画出△ABC绕着点B顺时针旋转90°后得到△A2BC2,线段BC旋转过程中所扫过得面积S==.22.解:(1)由题意可得:全班学生人数:15÷30%=50(人);m=50﹣2﹣5﹣15﹣10=18(人);(2)∵全班学生人数:50人,∴第25和第26个数据的平均数是中位数,∴中位数落在51﹣56分数段;(3)将男生分别标记为A1,A2,女生标记为B1A1A2B1A1(A1,A2)(A1,B1)A2(A2,A1)(A2,B1)B1(B1,A1)(B1,A2)P(一男一女)==.23.证明:(1)∵四边形ABCD是平行四边形,∴AD=CB,∠A=∠C,在△ADE和△CBF中,,∴△ADE≌△CBF(SAS).(2)∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∵AE=CF,∴BE=DF,∴四边形DEBF是平行四边形,∵∠DEB=90°,∴四边形DEBF是矩形.24.解:(1)由图可知,花圃的面积为(40﹣2a)(60﹣2a);(2)由已知可列式:60×40﹣(40﹣2a)(60﹣2a)=×60×40,解以上式子可得:a1=5,a2=45(舍去),答:所以通道的宽为5米;(3)设修建的道路和花圃的总造价为y,通道宽为a;x花圃=(40﹣2a)(60﹣2a)=4a2﹣200a+2400;x通道=60×40﹣(40﹣2a)(60﹣2a)=﹣4a2+200a,由已知得y1=40(﹣4a2+200a),(2≤a≤10)y2=则y=y1+y2=当a=2时,y有最小值,最小值为105920;所以当通道宽为2米时,修建的通道和花圃的总造价最低为105920元.25.(1)证明:如图1,连接OC,AC,CG,∵AC=CG,∴,∴∠ABC=∠CBG,∵OC=OB,∴∠OCB=∠OBC,∴∠OCB=∠CBG,∴OC∥BG,∵CD⊥BG,∴OC⊥CD,∴CD是⊙O的切线;(2)解:∵OC∥BD,∴△OCF∽△BDF,△EOC∽△EBD,∴,∴,∵OA=OB,∴AE=OA=OB,∴OC=OE,∵∠ECO=90°,∴∠E=30°;(3)解:如图2,过A作AH⊥DE于H,∵∠E=30°∴∠EBD=60°,∴∠CBD=EBD=30°,∵CD=,∴BD=3,DE=3,BE=6,∴AE=BE=2,∴AH=1,∴EH=,∴DH=2,在Rt△DAH中,AD===.26.解:(1)如图1,∵AB与x轴平行,根据抛物线的对称性有AE=BE=1,∵∠AOB=90°,∴OE=AB=1,∴A(﹣1,1)、B(1,1),把x=1时,y=1代入y=ax2得:a=1,∴抛物线的解析式y=x2,A、B两点的横坐标的乘积为x A•x B=﹣1(2)x A•x B=﹣1为常数,如图2,过A作AM⊥x轴于M,BN⊥x轴于N,∴∠AMO=∠BNO=90°,∴∠MAO+∠AOM=∠AOM+∠BON=90°,∴∠MAO=∠BON,∴△AMO∽△BON,∴,∴OM•ON=AM•BN,设A(x A,y A),B(x B,y B),∵A(x A,y A),B(x B,y B)在y=x2图象上,∴,y A=,y B=,∴﹣x A•x B=y A•y B=•,∴x A•x B=﹣1为常数;(3)设A(m,m2),B(n,n2),如图3所示,过点A、B分别作x轴的垂线,垂足为E、F,则易证△AEO∽△OFB.∴,即,整理得:mn(mn+1)=0,∵mn≠0,∴mn+1=0,即mn=﹣1.设直线AB的解析式为y=kx+b,联立,得:x2﹣kx﹣b=0.∵m,n是方程的两个根,∴mn=﹣b.∴b=1.∵直线AB与y轴交于点D,则OD=1.易知C(0,﹣2),OC=2,∴CD=OC+OD=3.∵∠BPC=∠OCP,∴PD=CD=3.设P(a,﹣2a﹣2),过点P作PG⊥y轴于点G,则PG=﹣a,GD=OG﹣OD=﹣2a﹣3.在Rt△PDG中,由勾股定理得:PG2+GD2=PD2,即:(﹣a)2+(﹣2a﹣3)2=32,整理得:5a2+12a=0,解得a=0(舍去)或a=﹣,当a=﹣时,﹣2a﹣2=,∴P(﹣,).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
广西崇左市2015年中考数学试卷一、单项选择题(本大题共12小题;每小题3分,共36分;在每小题提供的四个选项中,只有一个是正确的)1.(3分)(2015•崇左)一个物体作左右方向的运动,规定向右运动4m记作+4m,那么向+4m,,则向左运动4m,记为-4m.备考指导:此题主要考查了用正负数表示两种具有相反意义的量,解答此题的关键是要明确:具有相反意义的量都是互相依存的两个量,它包含两个要素,一是它们的意义相反,二是它们都是数量.点评:常用的判断两角关系的方法根据:平行线性质、对顶角、互余互补及其性质,三角形外角性质等.)a3. D【解析】数字都是同类项,故A不符合题意;D选项中两单项式所含字母相同,但相同字母系数不同,故不是同类项,故D符合题意.备考指导:解答本题的关键是掌握同类项定义中的两个“相同”:所含字母相同,相同字母的指数相同.3+点评:①有理数减法要转化为加法来计算,遵循先定和的符号再确定和的绝对值的运算顺序;②只有同类二次根式才能合并;③常用的幂的运算①同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,即=⋅n m a a n m a +(m 、n 为整数);②同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即=÷n m a a n m a -(a≠0,m 、n 为整数,m>n );③幂的乘方法则:幂的乘方,底数不变,指数相乘,即=nm a )(mn a (m 、n 为整数);④积的乘方法则:把积的每一个因式分别乘方,再把所有的幂相乘。
即=n ab )(n n b a (n 为整数).5.(3分)(2015•崇左)如图是一个正方体展开图,把展开图折叠成正方体后,“我”字一面的相对面上的字是( )点评:正方体展开图对面确定方法“一四一”型展开图①: 同层中有连续的四个正方形,所以优先利用“同层隔一面”寻找对面, “2”和“4”隔一面“3”是对面,“3”和“5”隔一面“4”是对面,剩下的“1”和“6”是对面;“二三一”型展开图②:图中含有同层连续三个正方形,利用“同层隔一面”找到“3”和“5”是对面,剩下的利用“异层隔两面”找到“1”和“4”隔着“2”、“3”是对面,剩下的“2”和“6”是对面;二二二”型展开图③:图中不存在同层连续三个或四个正方形的情况,利用“异层隔两面”的方法找到“1”和“4”隔着“2”、“3”是对面,“2”和“5”隔着“3”、“4”是对面,剩下的“3”和“6”是对面;三三”型展开图④: 图中含有同层连续的三个正方形,利用“同层隔一面”的方法,找到“1”和“3”是对面,“4”和“6”是对面,剩下的“2”和“5”是对面.) 点评:已知三角形的两条边长,求第三边,根据“三角形两边之和大于第三边”和“三角形两边之差小于第三边”,可得“三角形的第三边大于两边之差且小于两边之和”,从而先求出第三边的范围,然后作出选择.7.D 【解析】点评:从对角线的角度来判断特殊平行四边形,首先要保证是平行四边形,即要保证对角线互相平分,在此基础上再添加对角线相等或垂直.8.(3分)(2015•崇左)甲、乙、丙、丁四位同学在三次数学测验中,他们成绩的平均分是=85,=85,=85,=85,方差是S 甲2=3.8,S 乙2=2.3,S 丙2=6.2,S 丁2=5.2,点评:方差反映的是一组数据的波动程度,方差越大波动越大,方差越小,波动越小,反之也成立..点评:在数轴上表示不等式的解集时,要注意“界点”和“方向”,大于向右画,小于向左画,含等于号的画成实心点,不含等于号的要画成空心圆圈10.(3分)(2015•崇左)如图,在Rt △ABC 中,∠C=90°,AB=13,BC=12,则下列三角函数表示正确的是( )cosA= 135,故B 错误;tanA=512AC BC =,故C 错误;tanB=125BC AC =,故D 错误. 点评:在Rt △ABC 中,∠C=90º,则sinA=斜边的对边A ∠,cosA=斜边的邻边A ∠,tan A=的邻边的对边A A ∠∠.求直角三角形中某锐角的三角函数值,常常利用勾股定理求出有关边长来解决.11.(3分)(2015•崇左)若反比例函数y=的图象经过点(2,﹣6),则k 的值为( )11.A 【解析】把(2,-6)代入y=x 得,-6=2,所以k=-12. 点评:①由于在反比例函数xk y =中,只有一个待定系数,因此只需要一对对应值或图像上的一个点的坐标,即可求出k 的值,从而确定其解析式.②反比例函数图象上点的纵横坐标的积都等于k 。
12.(3分)(2015•崇左)下列图形是将正三角形按一定规律排列,则第4个图形中所有正三角形的个数有( )第二个图形中三角形个数1+4+3×4,第三个图形中三角形个数1+4+3×4+9×4,…………第n个图形中三角形个数1+4+3×4+9×4+……+3n-1×4,∴第四个图形中三角形个数为1+4+3×4+9×4+……+34-1×4=1+4+12+36+108=161.点评:规律探索性问题是指在一定条件下,探索发现有关数学对象所具有的规律性或不变性的问题,它往往给出了一组变化了的数、式子、图形或条件,要求通过阅读、观察、分析、猜想来探索规律.它体现了“特殊到一般”的数学思想方法,考察了学生的分析、解决问题能力,观察、联想、归纳能力,以及探究能力和创新能力.二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)(2015•崇左)比较大小:0﹣2(填“>”“<”或“=”).13. >【解析】负数都小于0,故0>-2.点评:有理数大小比较的一般方法:①正数都大于0,负数都小于0,正数大于一切负数,两个负数绝对值大的反而小;②在数轴上表示的数,右边的总比左边的大.14.(3分)(2015•崇左)据统计,参加“崇左市2015年初中毕业升学考试”的人数用科学记数法表示为1.47×104人,则原来的人数是人.14. 14700【解析】把1.47的小数点向右移动4位,即1.47×104=14700.点评:把科学记数法表示的数a×10n还原为原数,若n>0,则把a的小数点右移n位,若n<0,则把a的小数点左移n位.15.(3分)(2015•崇左)若直线a∥b,a⊥c,则直线b c.15.垂直【解析】如图,因为a∥b,a⊥c,所以∠2=∠1=90°,所以b⊥c.点评::①垂直于同一条直线的两条直线平行。
平行于同一条直线的两条直线平行.②两直线位置关系的考查,结论一般是平行或垂直.16.(3分)(2015•崇左)小明同学参加“献爱心”活动,买了2元一注的爱心福利彩票5注,则“小明中奖”的事件为 事件(填“必然”或“不可能”或“随机”).16.随机【解析】小明可能中奖,也可能不中奖,故中奖是随机事件.点评:一定发生的是必然事件,一定不发生的事件是不可能事件,可能发生也可能不发生的是随机事件17.(3分)(2015•崇左)如图,线段AB 是⊙O 的直径,点C 在圆上,∠AOC=80°,点P 是线段AB 延长线上的一动点,连接PC ,则∠APC 的度数是 度(写出一个即可).17.如30°只要小于40度即可.【解析】∠OBC=21∠AOC=40°,∠OBC >∠APC ,故∠APC <40°.备考指导:(1)在同圆或等圆中圆周角的度数等于同弧或等弧所对的圆心角的一半.(2)三角形的外角大于不相邻的一个内角.18.(3分)(2015•崇左)4个数a ,b ,c ,d 排列成,我们称之为二阶行列式.规定它的运算法则为:=ad ﹣bc .若=12,则x= .18.1【解析】33-+x x 33+-x x =12,即(x+3)2-(x-3)2=12,12x=12,x=1.点评:对于新定义的题,首先要看懂运算的法则,把新定义问题转化为常规的数学问题来解决.本题新定义的实质是将四个整式交叉相乘再求差,运用完全平方公式,去括号、合并同类项法则等进行化简,最后转化为解方程确定结果.三、解答题(本答题共8小题,满分66分)19.(6分)(2015•崇左)计算:(﹣1)0﹣4cos45°+|﹣5|+.19.【思路分析】将特殊角的三角函数值代入计算2cos45°,根据负数的绝对值等于它的相反数化简5-,根据二次根式的化简方法进行8的化简,由0指数据意义进行(-1)0的计算,最后合并.解:(-1)0-42cos45°+5-+8=1-4×22+5+22=6. 【解题步骤】实数混合运算的顺序:先算乘方和开方,再算乘除,最后算加减.如果遇到括号,则先进行括号里的运算.当然,计算时,还要根据具体的算式,确定恰当的运算顺序求得正确的计算结果.20.(6分)(2015•崇左)化简:(﹣1)÷.20. 【思路分析】先确定分式的运算顺序:先算小括号内的,再进行除法运算.再根据分式的运算法则分步进行计算.其中用通分的方法计算出小括号中的式,将除法转化为乘法后计算除法算式,最后约分进行约分化简.解:21)12(22-÷-+a a a a =12222-⨯-+a a a a a =)1)(1(22-+⨯+a a a a a =)1)(1(2)1(-+⨯+a a a a a =12-a 点评:(1)分式的混合运算,先乘方,再乘除,然后加减,有括号的先算括号里面的.(2)分式的化简过程中,分式的分子或分母能分解因式的要先分解因式,分式的除法都要转化为分式的乘法,再进行约分把分式化为最简分式或整式.21.(6分)(2015•崇左)如图,点D 在AB 上,点E 在AC 上,AB=AC ,AD=AE .求证:BE=CD .21.【思路分析】根据两边及其夹角对应相等可以判断△ADE ≌△AEB ,再由全等三角形对应边相等可说明结论.证明:在△ADE 和△AEB 中,⎪⎩⎪⎨⎧=∠=∠=AE AD A A AC AB ,∴△ADE ≌△AEB ,∴BE=CD.点评:证明两条线段相等,一般分两种情况:若两线段在同一三角形内,可考虑通过等角对等边来说明,若两线段不在同一三角形内,可以考虑通过这两条线段所在的两个三角形全等来说明.22.(8分)(2015•崇左)如图,△A 1B 1C 1是△ABC 向右平移4个单位长度后得到的,且三个顶点的坐标分别为A 1(1,1),B 1(4,2),C 1(3,4).(1)请画出△ABC ,并写出点A ,B ,C 的坐标;(2)求出△AOA 1的面积.22.【思路分析】(1)△A 1B 1C 1是由△ABC 向右平移4个单位得到的,故将△A 1B 1C 1向左平移4个单位既是△ABC.(2)由平移性质知,A 1A 平行于x 轴,且等于平移距离4,△A 1OA 边A 1OA 上的高可点A 1的坐标确定.解:(1)如图:(2)A 1A=4,OD=1,∴S △A1OA =21A 1A ×CD=21×4×1=2. 点评:①坐标系内点的坐标平移规律:横坐标增减右左移,纵坐标增减上下移.图形平移实质是点的平移.②坐标系内计算三角形面积,底和高都应该是平行于(或重合)坐标轴的线段.23.(8分)(2015•崇左)为落实国务院房地产调控政策,使“居者有其屋”,某市加快了廉租房的建设力度.2013年市政府共投资3亿元人民币建设了廉租房12万平方米,2015年投资6.75亿元人民币建设廉租房,若在这两年内每年投资的增长率相同.(1)求每年市政府投资的增长率;(2)若这两年内的建设成本不变,问2015年建设了多少万平方米廉租房?23. 【信息梳理】解:(1)设投资平均增长率为x ,根据题意得3(1+x )2=6.75解得x 1=0.5,x 2=-2.5(不符合题意舍去)答:政府投资平均增长率为50%;(2)12(1+0.5)2 = 18(万平方米)答:2015年建设了18万平方米廉租房.备考指导:连续增长问题,如果起始量为a ,平均增长率为x ,变化后的量为b ,则增长一次后的量为a +ax =a (1+x );再增长一次后的量为:a (1+x )+a (1+x )x =a (1+x )2,故经过两次增长率相同的连续增长有公式:b =a (1+x )2.连续递减问题公式,b =a (1-x )2.24.(10分)(2015•崇左)自从2012年12月4日中央公布“八项规定”以来,我市某中学积极开展“厉行勤俭节约,反对铺张浪费”的活动.为此,校学生会在全校范围内随机抽取了若干名学生就某日晚饭浪费饭菜情况进行调查,调查内容分为四种:A .饭和菜全部吃完;B .有剩饭但菜吃完;C .饭吃完但菜有剩;D .饭和菜都有剩.学生会根据统计结果绘制了如下(2)求表中m ,n 的值,并补全条形统计图;(3)该中学有学生2200名,请估计这餐晚饭有剩饭的学生人数,按平均每人剩10克米饭计算,这餐晚饭将浪费多少千克米饭?24. 【思路分析】(1)根据C 组或D 组的频数和频率的商,可以确定抽查的学生人数;(2)根据频率=总数频数,可以确定m,n 的值;(3)用2200乘以B 、D 两组的频率和即是有剩饭的人数,再乘以平均每人剩饭量即浪费的总数量. 解:(1)5÷0.1=50(人),即被抽查的学生有50人;(2)m=6.05030=,n=50×0.2=10;(3)2200×1050510⨯+克=6600克=6千克. 点评:①统计图表问题,一般涉及公式频率=频数÷样本容量,一般根据某组的频数和频率首先计算样本容量,在此基础上再计算其他各部分的容量、频率或频数. ②根据样本的频率可用以估计总体的频率.25.(10分)(2015•崇左)一块材料的形状是锐角三角形ABC ,边BC=12mm ,高AD=80mm ,把它加工成正方形零件如图1,使正方形的一边在BC 上,其余两个顶点分别在AB ,AC 上.(1)求证:△AEF ∽△ABC ;(2)求这个正方形零件的边长;(3)如果把它加工成矩形零件如图2,问这个矩形的最大面积是多少?25. 【思路分析】(1)根据正方形的对边平行得到BC ∥EF ,利用“平行于三角形的一边的直线截其他两边或其他两边的延长线,得到的三角形与原三角形相似”判定即可.(2) 设EG=EF=x ,用x 表示AK ,根据△AEF ∽△ABC 列比例式BCAK BC EF =可计算正方形边长.(3) 设EG=KD=x ,根据△AEF ∽△ABC 用x 表示EF ,根据矩形面积公式可以写出矩形面积关于x 的二次函数,根据二次函数求出矩形的最大值.解:(1):(1)∵四边形EFGH 为正形,∴BC ∥EF ,∴△AEF ∽△ABC ;(2)设边长为xmm ,∵矩形为正方形,∴EF ∥BC ,EG ∥AD ,(2)设EG=EF=x ,则ND=x,AN=80-x,∵△AEF ∽△ABC , ∴BCAK BC EF =, 即80x -80120x =, 解得x=48.答:若这个矩形是正方形,那么边长是48mm .(3) 设EG=KD=x ,则AK=80-x.∵△AEF ∽△ABC ,∴BCAK BC EF =, 即80x -80120EF =, ∴EF=80-x 23,∴矩形面积S=x(120-x 23)=-x 232+120x=-)(40-23x 2+2400, 故当x=40时,此时矩形的面积最大,最大面积为2400mm 2.点评:(1)相似三角形对应高的比等于相似比;(2)根据相似三角形性质列比例式求解未知数是列方程一种重要根据;(3)最值问题一般都是通过把未知量用二次函数表达,转化为二次函数最值来解答.26.(12分)(2015•崇左)如图,在平面直角坐标系中,点M 的坐标是(5,4),⊙M 与y 轴相切于点C ,与x 轴相交于A ,B 两点.(1)则点A ,B ,C 的坐标分别是A ( , ),B( , ),C ( , );(2)设经过A ,B 两点的抛物线解析式为y=(x ﹣5)2+k ,它的顶点为F ,求证:直线FA 与⊙M 相切;(3)在抛物线的对称轴上,是否存在点P ,且点P 在x 轴的上方,使△PBC 是等腰三角形?如果存在,请求出点P 的坐标;如果不存在,请说明理由.26.【思路分析】(1)连接MC ,则MC 垂直于y 轴,MA=MC=5,MD=4,由勾股定理可计算AD 和DB ;(2)把A 、或B 或C 的坐标代入y=k x +-2541)(,确定二次函数表达式y=49-5412)(-x ,连接MA ,根据勾股定理计算AF ,由勾股定理逆定理判断MA ⊥AF ,从而说明FA 是切线;(3)设P (x,4),当C 为顶点时,在Rt △CMP 1中用x 表示CP 1,根据P 1C 2=BC 2列方程求解;当B 为顶点时,在Rt △BDP 2中用x 表示CP 2,根据P 2B 2=BC 2列方程求解;当P 是顶点时,易知P 和M 重合.解:(1)连接MC ,则MC 垂直于y 轴,MA=MC=5,MD=4,在Rt △AMD 中,AD=22MD -AM =3,同理在Rt △BMD 中,BD=3,∴A (2,0),B (8,0),C (0,4);(2)把A (2,0)y=k x +-2541)(, 解得k=-49,∴y=49-5412)(-x , ∴F (5,-49). 连接MA ,则MF=4+49=425,AF=22FD AD +=415, ∴16625MF AD FA 222==+, ∴MA ⊥AF ,∴FA 与⊙M 相切;(3)设P (x,4),BC 2=80.当C 为顶点时,在Rt △CMP 1中, CP 12=25+(x-4)2,∴25+(x-4)2=80,x=455±,点P 在x 轴上方,故x=4+55,所以(4+55,4);当B 为顶点时,在Rt △BDP 2中,CP 2=9+(x-4)2, ∴9+(x-4)2=80,x=471±,点P 在x 轴上方,故x=4+71,所以(4+71,4);当P 是顶点时,P 和M 重合,P 3(5,4).用x 表示CP 2,根据P 2B=BC 列方程求解;当P 是顶点时,综上当P (4+55,4)、(4+71,4)或(5,4)时△PBC 是等腰三角形.用x 表示CP 1,根据P 1C=BC 列方程求解;当B 为顶点时,在Rt △BDP 2中用x 表示CP 2,根据P 2B=BC 列方程求解;当P 是顶点时,易知P 和M 重合.点评:①求点的坐标,就是计算和坐标有关的线段,即计算该点作和坐标轴垂线段,注意线段长度和坐标转化时符号的变化;②运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形、矩形解决有关问题.证明切线的的方法:连半径,证垂直,即要证明一条直线是圆的切线,可证明这条直线经过半径外端且垂直与这条半径.。