幂法和反幂法求矩阵特征值课程设计报告书

幂法和反幂法求矩阵特征值课程设计报告书
幂法和反幂法求矩阵特征值课程设计报告书

幂法,反幂法求解矩阵最大最小特征值及其对应的特征向量

数值计算解矩阵的按模最大最小特征值及对应的特征向量 —一 .幂法 1. 幕法简介: 当矩阵A 满足一定条件时,在工程中可用幕法计算其主特征值 (按模最大) 及其特征向量。矩阵A 需要满足的条件为: ⑴I 1 I I 2|n |- 0, i 为A 的特征值 (2)存在n 个线性无关的特征向量,设为 X i ,X 2,…,X n 1.1计算过程: n 对任意向量x (0),有x (0)八:-M —不全为0,则有 i 4 X (k 岀)=Ax (k)= = A k 岀乂。) n n A k 1 aq a 扌1 5 i =1 i =1 ■k 1 2 可见,当 1 — 1 越小时,收敛越快;且当k 充分大时,有 ? "1 2算法实现 ⑶.计算x Ay,… max(x); ⑷若| ?一十:;,输出-,y,否则,转(5) (5)若N ,置k 「k 1^ -,转3,否则输出失败信息,停机. 3 matlab 程序代码 (冲1 %叫 x (k 1) [x (k) k 二 u x (k) > (k+1) 1,对应的特征向量即是 x (1).输入矩阵A ,初始向量X ,误差限 最大迭代次数N (k) 0; y (k) max(abs(x (k ))

k=1; z=0; y=x0./max(abs(x0)); x=A*y; % z相当于■ %规范化初始向量%迭代格式 b=max(x); % b相当于: if abs(z-b)eps && k> y]=lpower (A, xO, eps, X)

幂法及反幂法

随机产生一对称矩阵,对不同的原点位移和初值(至少取3个)分别使用幂法求计算矩阵的主特征值及主特征向量,用反幂法求计算矩阵的按模最小特征值及特征向量。 要求 1)比较不同的原点位移和初值说明收敛性 2)给出迭代结果,生成DOC 文件。 3)程序清单,生成M 文件。 解答: >> A=rand(5) %随机产生5*5矩阵 求随机矩阵 A = 0.7094 0.1626 0.5853 0.6991 0.1493 0.7547 0.1190 0.2238 0.8909 0.2575 0.2760 0.4984 0.7513 0.9593 0.8407 0.6797 0.9597 0.2551 0.5472 0.2543 0.6551 0.3404 0.5060 0.1386 0.8143 >> B=A+A' %A 矩阵和A 的转置相加,得到随机对称矩阵B B = 1.4187 0.9173 0.8613 1.3788 0.8044 0.9173 0.2380 0.7222 1.8506 0.5979 0.8613 0.7222 1.5025 1.2144 1.3467 1.3788 1.8506 1.2144 1.0944 0.3929 0.8044 0.5979 1.3467 0.3929 1.6286 B=??? ???? ???? ?? ???6286.13929.03467.15979.08044.03929.00944.12144.18506.13788.13467.12144.15025.17222.08613.05979.08506.17222.02380.09173.08044.03788.18613.09173.04187.1

实验6反幂法求矩阵按模最小特征值

西华数学与计算机学院上机实践报告 课程名称:计算方法A 年级:2010级 上机实践成绩: 指导教师:严常龙 姓名:李国强 上机实践名称:反幂法求矩阵按模最小特征值 学号:362011********* 上机实践日期:2013.12.18 上机实践编号:6 上机实践时间:14:00 一、目的 1.通过本实验加深对反幂法的构造过程的理解; 2.能对反幂法提出正确的算法描述编程实现,得到计算结果。 二、内容与设计思想 自选方阵,用反幂法求解其按模最小特征值。 可使用实例: ????? ??---=90688465441356133A 三、使用环境 操作系统:Win 8 软件平台:Visual C++ 6.0 四、核心代码及调试过程 #include #include #define MAX_N 20 //矩阵最大维数 #define MAXREPT 100 #define epsilon 0.00001 //求解精度 int main() { int n; int i,j,k; double xmax,oxmax; static double a[MAX_N][MAX_N]; static double l[MAX_N][MAX_N],u[MAX_N][MAX_N]; static double x[MAX_N],nx[MAX_N]; printf("\n 请输入矩阵阶数n:"); //输入矩阵维数 scanf("%d",&n); if(n>MAX_N)

{ printf("the input n is larger than MAX_N,please redefine the MAX_N.\n"); return 1; } if(n<=0) { printf("please input a number between 1 and %d.\n",MAX_N); return 1; } //输入A矩阵 printf("请输入矩阵的值a[i][j] i,j=0...%d;\n",n-1); for(i=0;ixmax) xmax=fabs(nx[j]); for(j=0;j

幂法求矩阵主特征值

!程序说明:幂法求矩阵主特征值 !日期:2010年11月30日 PROGRAM Matrix_EigenValue PARAMETER(N=3) REAL ARR(N,N) CALL INPUT(ARR,N) CALL MATEV(ARR,N) END PROGRAM SUBROUTINE INPUT(ARR,N) REAL ARR(N,N) OPEN(1,FILE='MAT.TXT') READ(1,*)((ARR(I,J),J=1,N),I=1,N) END SUBROUTINE SUBROUTINE MATEV(ARR,N) PARAMETER(EPS=1E-7) REAL :: ARR(N,N),X(N),X1(N),MAX=0 INTEGER :: K=0,P=0 X=RESHAPE((/1,1,1/),(/3/)) WRITE(1,*) ' 迭代次数 U(规范化向量) & & MAX(V)(主特征值)' DO WHILE(P/=N) WRITE(1,'(I6,A,F12.6,A,F12.6)') K,' (',X,' )',MAX P=0 MAX=0 DO I=1,N X1(I)=0 DO J=1,N X1(I)=X1(I)+ARR(I,J)*X(J) !迭代过程 ENDDO ENDDO DO I=1,N IF(ABS(X1(I))>ABS(MAX)) MAX=X1(I) !选取主特征值 ENDDO DO I=1,N IF(ABS(X(I)-X1(I)/MAX)

ENDDO K=K+1 ENDDO END SUBROUTINE 输出结果: 1 1 0.5 1 1 0.25 0.5 0.25 2 迭代次数 U(规范化向量) MAX(V)(主特征值) 0 ( 1.000000 1.000000 1.000000 ) 0.000000 1 ( 0.909091 0.81818 2 1.000000 ) 2.750000 2 ( 0.837607 0.743590 1.000000 ) 2.659091 3 ( 0.799016 0.703035 1.000000 ) 2.604701 4 ( 0.77741 5 0.680338 1.000000 ) 2.575267 5 ( 0.765108 0.66740 6 1.000000 ) 2.558792 6 ( 0.758025 0.659963 1.000000 ) 2.549406 7 ( 0.753925 0.655655 1.000000 ) 2.544003 8 ( 0.751544 0.653153 1.000000 ) 2.540876 9 ( 0.750158 0.651697 1.000000 ) 2.539060 10 ( 0.749351 0.650848 1.000000 ) 2.538003 11 ( 0.748880 0.650354 1.000000 ) 2.537387 12 ( 0.748606 0.650065 1.000000 ) 2.537028 13 ( 0.748445 0.649897 1.000000 ) 2.536819 14 ( 0.748352 0.649799 1.000000 ) 2.536697 15 ( 0.748298 0.649741 1.000000 ) 2.536626 16 ( 0.748266 0.649708 1.000000 ) 2.536584 17 ( 0.748247 0.649688 1.000000 ) 2.536560 18 ( 0.748236 0.649677 1.000000 ) 2.536546 19 ( 0.748230 0.649670 1.000000 ) 2.536537 20 ( 0.748226 0.649667 1.000000 ) 2.536533 21 ( 0.748224 0.649664 1.000000 ) 2.536530 22 ( 0.748223 0.649663 1.000000 ) 2.536528 23 ( 0.748222 0.649662 1.000000 ) 2.536527 24 ( 0.748222 0.649662 1.000000 ) 2.536527 25 ( 0.748222 0.649662 1.000000 ) 2.536526 26 ( 0.748221 0.649661 1.000000 ) 2.536526

数值分析之幂法及反幂法C语言程序实例

数值分析之幂法及反幂法C 语言程序实例 1、算法设计方案: ①求1λ、501λ和s λ的值: s λ:s λ表示矩阵的按模最小特征值,为求得s λ直接对待求矩阵A 应用反幂法即可。 1λ、501λ:已知矩阵A 的特征值满足关系 1n λλ<< ,要求1λ、及501λ时,可 按如下方法求解: a . 对矩阵A 用幂法,求得按模最大的特征值1m λ。 b . 按平移量1m λ对矩阵A 进行原点平移得矩阵1m B A I λ=+,对矩阵B 用反幂法 求得B 的按模最小特征值2m λ。 c . 321m m m λλλ=- 则:113min(,)m m λλλ=,13max(,)n m m λλλ=即为所求。 ②求和A 的与数5011 140 k k λλμλ-=+最接近的特征值 ik λ(k=0,1,…39): 求矩阵A 的特征值中与k μ最接近的特征值的大小,采用原点平移的方法: 先求矩阵 B=A-k μI 对应的按模最小特征值k β,则k β+k μ即为矩阵A 与k μ最接近的特征值。 重复以上过程39次即可求得ik λ(k=0,1,…39)的值。 ③求A 的(谱范数)条件数2cond()A 和行列式det A : 在(1)中用反幂法求矩阵A 的按模最小特征值时,要用到Doolittle 分解方法,在Doolittle 分解完成后得到的两个矩阵分别为L 和U ,则A 的行列式可由U 阵求出,即:det(A)=det(U)。 求得det(A)不为0,因此A 为非奇异的实对称矩阵,则: max 2()s cond A λλ= ,max λ和s λ分别为模最大特征值与模最小特征值。

北航数值分析大作业第一题幂法与反幂法

《数值分析》计算实习题目 第一题: 1. 算法设计方案 (1)1λ,501λ和s λ的值。 1)首先通过幂法求出按模最大的特征值λt1,然后根据λt1进行原点平移求出另一特征值λt2,比较两值大小,数值小的为所求最小特征值λ1,数值大的为是所求最大特征值λ501。 2)使用反幂法求λs ,其中需要解线性方程组。因为A 为带状线性方程组,此处采用LU 分解法解带状方程组。 (2)与140k λλμλ-5011=+k 最接近的特征值λik 。 通过带有原点平移的反幂法求出与数k μ最接近的特征值 λik 。 (3)2cond(A)和det A 。 1)1=n λλ2cond(A),其中1λ和n λ分别是按模最大和最小特征值。 2)利用步骤(1)中分解矩阵A 得出的LU 矩阵,L 为单位下三角阵,U 为上三角阵,其中U 矩阵的主对角线元素之积即为det A 。 由于A 的元素零元素较多,为节省储存量,将A 的元素存为6×501的数组中,程序中采用get_an_element()函数来从小数组中取出A 中的元素。 2.全部源程序 #include #include void init_a();//初始化A double get_an_element(int,int);//取A 中的元素函数 double powermethod(double);//原点平移的幂法 double inversepowermethod(double);//原点平移的反幂法 int presolve(double);//三角LU 分解 int solve(double [],double []);//解方程组 int max(int,int); int min(int,int); double (*u)[502]=new double[502][502];//上三角U 数组 double (*l)[502]=new double[502][502];//单位下三角L 数组 double a[6][502];//矩阵A int main() { int i,k; double lambdat1,lambdat2,lambda1,lambda501,lambdas,mu[40],det;

幂法求矩阵A按模最大的特征值及其特征向量

数值分析 幂法求矩阵A按模最大的特征值及其 特征向量

幂法的主要思想 设 n n ij R a A ?∈=)( ,其特征值为i λ ,对应特征向量为),,,1(n i x i =即 i i i x Ax λ= ),,1(n i =,且 x 1,······,x n 线性无关。求矩阵A 的主特征值及对应的特征向量。 幂法的基本思想: 任取一个非零初始向量 v 0 ∈R n 且v 0≠0, 由矩阵A 的乘幂构造一向量序列: 称{ v k }为迭代向量, A 特征值中 λ1为强占优,即▕ λ1▕>▏λ2 ▏>······>▏λn ▏, {x 1,x 2,······,x n }线性无关,即{x 1,x 2,······,x n }为R n 中的一 个基,于是对任意的初始向量v 0 ∈R n 且 v 0≠0有展开式。 (v 0 用{x i } 的线性组合表示) (且设01≠α) 则 当k =2,3,… 时,v k = A v k-1 = A k v ? ?? 1Av v =0 212v A Av v ==01 1 v A Av v k k k ++==) ,,1,0(n k =∑==n i i i x v 1 α)(221101n n x x x A v A v ααα+++==n n x A x A x A ααα+++=2211n n n x x x λαλαλα+++=222111) (111 +≡x k αλk ε

其中 由假设▕ λ1▕>▏λ2 ▏>······>▏λn ▏,得 ,从而 即,0lim =∞→k k ε且收敛速度由比值||12λλ=r 确定。 所以有 说明,当k 充分大时,有1 11 x v k k αλ≈,或 k k v 1λ 越来越接近特征 向量 规范化幂法的算法 ①输入矩阵 A 、初始向量v (0),误差 eps ,实用中一般取 v (0)=(1,1,···,1)T ; ②k ←1; ③计算 v (k) ←Au (k-1); ④m k ←max{ v (k) },m k-1 ←{ v (k-1) }; ⑤u (k) ←v (k)/ m k ; ⑥如果▕ m k - m k-1▕<eps ,则显示特征值λ1←和对应的特征 向量x (1),终止; ⑦k=k+1,转③。 n k n n k k x x )()(1 2122λλαλλαε++=),,2(1||1 n i i =<λλ ),,,2(0)(lim 1n i k i k ==∞→λλ111 lim x v k k k αλ=∞ →。 11x α

matlab求矩阵特征值特征向量 乘幂法

摘 要 根据现代控制理论课程的特点, 提出并利用MATLAB 设计了现代控制理论课程的实验, 给出了设计的每个实验的主要内容及使用到的MATLAB 函数, 并对其中的一个实验作了详细说明。通过这些实验, 将有助于学生理解理论知识, 学习利用MATLAB 解决现代控制理论问题。 关键词:现代控制理论、MATLAB 、仿真。 1设计目的、内容及要求 1.1设计目的 本课程设计以自动控制理论、现代控制理论、MATLAB 及应用等知识为基础,求连续系统对应的离散化的系统,并用计算系数阵按模最大的特征根法判别离散系统的稳定性,目的是使学生在现有的控制理论的基础上,学会用MATLAB 语言编写控制系统设计与分析的程序,通过上机实习加深对课堂所学知识的理解,掌握一种能方便地对系统进行离散化的实现和分析系统的稳定性的设计的工具。 1.2设计内容及要求 1 在理论上对连续系统离散化推导出算法和计算公式 2 画出计算机实现算法的框图 3 编写程序并调试和运行 4 以下面的系统为例,进行计算 ??????????----=041020122A ,?? ?? ? ?????=100B ,[]111-=c 5 分析运算结果

6 幂法迭代精度为ep=0.001,离散系统展开项数为20 7 程序应具有一定的通用性,对不同参数能有兼容性。 2算法选择及推导 2.1连续系统离散化算法 书P67离散化意义 已知被控对象的状态方程为: ()()()()()()t t u t y t t u t =+=+ x Ax B Cx D 对方程求解,得: 0()()0()()()o t t t t t t e t e u d τττ --=+?A A x x B 设0t kT =,(1)t k T =+,代入上式,得: H 公式 若省略T 则为{ ? +-++Φ=+T k kT d kT Bu T k kt x T T k x )1()(])1[()()(])1([(τ τφ不改变与离散后时刻,即得连续离散化方程则:相当于)+=(上限相当于下限设令D C kT Du kT Cx kT y kT t kT u T H kT x T G T k x Bdt t Bdt e T H t T k T t kT d dt T k t Bd e T H e T T G T T AT T k kT T k A AT )()()()()()()(])1([(: )()(0 ,1,,)1()()()(0 )1(])1[(+==+=+Φ=====-=-+=?==Φ=???+-+τττττ τ

幂法和反幂法的matlab实现

幂法和反幂法的matlab实现

幂法求矩阵主特征值及对应特征向量 摘要 矩阵特征值的数值算法,在科学和工程技术中很多问题在数学上都归结为矩阵的特征值问题,所以说研究利用数学软件解决求特征值的问题是非常必要的。实际问题中,有时需要的并不是所有的特征根,而是最大最小的实特征根。称模最大的特征根为主特征值。 幂法是一种计算矩阵主特征值(矩阵按模最大的特征值)及对应特征向量的迭代方法,它最大的优点是方法简单,特别适用于大型稀疏矩阵,但有时收敛速度很慢。 用java来编写算法。这个程序主要分成了四个大部分:第一部分为将矩阵转化为线性方程组;第二部分为求特征向量的极大值;第三部分为求幂法函数块;第四部分为页面设计及事件处理。其基本流程为幂法函数块通过调用将矩阵转化为线性方程组的方法,再经过一系列的验证和迭代得到结果。

关键字:主特征值;特征向量;线性方程组;幂法函数块 POWER METHOD FOR FINDING THE EIGENVALUES AND CORRESPONDING EIGENVECTORS OF THE MATRIX ABSTRACT Numerical algorithm for the eigenvalue of matrix, in science and engineering technology, a

lot of problems in mathematics are attributed matrix characteristic value problem, so that studies using mathematical software to solve the eigenvalue problem is very necessary. In practical problems, sometimes need not all eigenvalues, but the maximum and minimum eigenvalue of real. The characteristic value of the largest eigenvalue of the modulus maximum. Power method is a calculation of main features of the matrix values (matrix according to the characteristics of the largest value) and the corresponding eigenvector of iterative method. It is the biggest advantage is simple method, especially for large sparse matrix, but sometimes the convergence speed is very slow. Using java to write algorithms. This program is divided into three parts: the first part is the matrix is transformed into linear equations; the second part for the sake of feature vector of the maximum; the third part is

数学建模 用幂法 和法 根法求特征值特征向量

数学建模作业 计算机学院信计1102班姜圣涛 (1)幂法求矩阵最大特征值及特征向量: 程序为: #include #include using namespace std; #define n 3 //三阶矩阵 #define N 20 #define err 0.0001 //幂法求特征值特征向量 void main(){ cout<<"**********幂法求矩阵最大特征值及特征向量***********"<>A[i][j]; //输入矩阵 cout<<"请输入初始向量:\n"; for(i=0;i>X[i]; //输入初始向量 k=1; u=0;

while(1){ max=X[0]; for(i=0;i

数值分析幂法c语言实现

1.实验目的: 1熟练掌握C 语言程序设计,编程求解问题。 2.运用幂法求解住特征值和特征向量。 2.实验内容: 例题: 用幂法求 A= ??????????0.225.05.025.00.10.15.00.10.1 的特征值和特征向量。 完整代码以及截图如下: #include "stdio.h" #include "math.h" #define M 3 void main() { float fan(),max(),e1,e2,r1,r2; void au(),ex(),print_x(),std(); static float a[M][M]={{1.0,1.0,0.5},{1.0,1.0,0.25},{0.5,0.25,2.0}}; static float u0[M],u1[M],maxn0,maxn1; int i;

printf("*********************************\n"); printf("****** 幂法*********\n"); printf("******求特征值与特征向量*********\n"); printf("*********************************\n\n"); printf("input precision e1,e2:"); scanf("%f,%f",&e1,&e2); printf("\ninput u(%d):",M); for (i=0;ie1 || r2>e2) { printf("%4d",i++); print_x(u0); printf("\n"); ex(u0,u1); } else break; } while (1); } void au(a,u0,u1) float a[][M],u0[],u1[]; { int i,j; for (i=0;i

幂法反幂法求解矩阵大小特征值及其对应的特征向量

幂法反幂法求解矩阵大小特征值及其对应的特征向量

————————————————————————————————作者:————————————————————————————————日期:

数值计算解矩阵的按模最大最小特征值及对应的特征向量 一.幂法 1. 幂法简介: 当矩阵A 满足一定条件时,在工程中可用幂法计算其主特征值(按模最大)及其特征向量。矩阵A 需要满足的条件为: (1) 的特征值为A i n λλλλ,0||...||||21 ≥≥≥> (2) 存在n 个线性无关的特征向量,设为n x x x ,...,,21 1.1计算过程: i n i i i u x x αα,1 ) 0()0(∑==,有对任意向量不全为0,则有 1 11111221 12111 1 1 11 1 011)()(...u u a u a u λu λαu αA x A Ax x k n n k n k k n i i k i i n i i i k )(k (k))(k αλλλλλα++++=+=+++≈? ? ????+++======∑∑ 可见,当||1 2 λλ越小时,收敛越快;且当k 充分大时,有1)11 11)11111λαλαλ=??????==+++(k )(k k (k k )(k x x u x u x ,对应的特征向量即是)(k x 1+。 2 算法实现 . ,, 3,,1 , ).5() 5(,,,,||).4();max(,).3() (max(;0,1).2(,).1()() () (停机否则输出失败信息转置若转否则输出若计算最大迭代次数,误差限,初始向量输入矩阵βλβεβλβλε←+←<<-←←= ←←k k N k y x Ay x x abs x y k N x A k k k 3 matlab 程序代码

数值分析幂法与反幂法-matlab程序

数值分析幂法与反幂法 matlab程序 随机产生一对称矩阵,对不同的原点位移和初值(至少取3个)分别使用幂法求计算矩阵的主特征值及主特征向量,用反幂法求计算矩阵的按模最小特征值及特征向量。 要求 1)比较不同的原点位移和初值说明收敛性 2)给出迭代结果,生成DOC文件。 3)程序清单,生成M文件。 解答: >> A=rand(5) %随机产生5*5矩阵求随机矩阵 A = 0.7094 0.1626 0.5853 0.6991 0.1493 0.7547 0.1190 0.2238 0.8909 0.2575 0.2760 0.4984 0.7513 0.9593 0.8407 0.6797 0.9597 0.2551 0.5472 0.2543 0.6551 0.3404 0.5060 0.1386 0.8143 >> B=A+A' %A矩阵和A的转置相加,得到随机对称矩阵B B = 1.4187 0.9173 0.8613 1.3788 0.8044 0.9173 0.2380 0.7222 1.8506 0.5979 0.8613 0.7222 1.5025 1.2144 1.3467 1.3788 1.8506 1.2144 1.0944 0.3929 0.8044 0.5979 1.3467 0.3929 1.6286

B=?? ????? ???? ?? ???6286.13929.03467.15979.08044 .03929.00944 .12144.18506 .13788.13467.12144.15025.17222.08613.05979.08506.17222.02380.09173.08044.03788.18613 .09173 .04187.1 编写幂法、反幂法程序: function [m,u,index,k]=pow(A,u,ep,it_max) % 求矩阵最大特征值的幂法,其中 % A 为矩阵; % ep 为精度要求,缺省为1e-5; % it_max 为最大迭代次数,缺省为100; % m 为绝对值最大的特征值; % u 为对应最大特征值的特征向量; % index ,当index=1时,迭代成功,当index=0时,迭代失败 if nargin<4 it_max=100; end if nargin<3 ep=1e-5; end n=length(A); index=0; k=0; m1=0; m0=0.01; % 修改移位参数,原点移位法加速收敛,为0时,即为幂法 I=eye(n) T=A-m0*I while k<=it_max v=T*u; [vmax,i]=max(abs(v)); m=v(i); u=v/m; if abs(m-m1)

带原点平移的反幂法解特征值

书P65 5、已知矩阵???? ??????----=43033101 3A 的一个特征值为5≈λ,试用反幂法求λ和相应的特征向量,要求.104 11 11-----≤-k k k βββ 解:根据原点平移的反幂法,先分解矩阵: LU I A =???? ? ??-----=-1303810185 L = 1.0000 0 0 -0.1250 1.0000 0 0 0.3810 1.0000 U = -8.0000 1.0000 0 0 -7.8750 -3.0000 0 0 0.1429 (1)取初始向量T u )0,0,1(0= 解方程组001)5(u y u I A ==- 解得=1u (-0.1111 0.1111 -0.3333)T

T u u y) 9045 .0 , 3015 .0 , 3015 .0 ( 2 1 1 1 - - = = (2)再解方程组 1 2 ) 5 (y u I A= - 解得= 2 u(0.3685 2.6465 -7.0350)T T u u y) 93484 .0 , 35168 .0 , 04896 .0( 2 2 2 2 - = = (3)再解方程组 2 3 ) 5 (y u I A= - 解得= 3 u(0.3452 2.8110 -7.4980)T T u u y) 93549 .0 , 35072 .0 , 04307 .0( 2 3 3 3 - = = (4)再解方程组 3 4 ) 5 (y u I A= - 解得= 4 u(0.3460 2.8112 -7.4980)T T u u y) 93548 .0 , 3507 .0 , 04317 .0( 2 4 4 4 - = = 所以 015150 .8 ) 4980 .7 , 8112 .2, 3460 .0( ) 93549 .0 , 35072 .0, 04307 .0( 4 3 4 = - ? - = = T T u y β 特征值12476 .5 5 1 4 = + ≈-β λ 特征向量 T u u y x) 93549 .0 , 35072 .0 , 04307 .0( 2 3 3 3 - = = ≈

幂法求矩阵最大特征值

幂法求矩阵最大特征值 摘要 在物理、力学和工程技术中的很多问题在数学上都归结为求矩阵特征值的问题,而在某些工程、物理问题中,通常只需要求出矩阵的最大的特征值(即主特征值)和相应的特征向量,对于解这种特征值问题,运用幂法则可以有效的解决这个问题。 幂法是一种计算实矩阵A的最大特征值的一种迭代法,它最大的优点是方法简单。对于稀疏矩阵较合适,但有时收敛速度很慢。 用java来编写算法。这个程序主要分成了三个大部分:第一部分为将矩阵转化为线性方程组;第二部分为求特征向量的极大值;第三部分为求幂法函数块。其基本流程为幂法函数块通过调用将矩阵转化为线性方程组的方法,再经过一系列的验证和迭代得到结果。 关键词:幂法;矩阵最大特征值;j ava;迭代

POWER METHOD TO CALCULATE THE MAXIMUM EIGENV ALUE MATRIX ABSTRACT In physics, mechanics and engineering technology of a lot of problems in math boil down to matrix eigenvalue problem, and in some engineering, physical problems, usually only the largest eigenvalue of the matrix (i.e., the main characteristics of the value) and the corresponding eigenvectors, the eigenvalue problem for solution, using the power law can effectively solve the problem. Power method is A kind of computing the largest eigenvalue of real matrix A of an iterative method, its biggest advantage is simple.For sparse matrix is right, but sometimes very slow convergence speed. Using Java to write algorithms.This program is mainly divided into three most: the first part for matrix can be converted to linear equations;The second part is the eigenvector of the maximum;The third part is the exponentiation method of function block.Its basic process as a power law function block by calling the method of matrix can be converted to linear equations, then after a series of validation and iteration to get the results. Key words: Power method; Matrix eigenvalue; Java; The iteration

数值分析试验幂法与反幂法matlab

一、问题的描述及算法设计 (一)问题的描述 我所要做的课题是:对称矩阵的条件数的求解设计 1、求矩阵A 的二条件数 问题 A=?? ?? ? ?????----210121012 2、设计内容: 1)采用幂法求出A 的 错误!未找到引用源。. 2)采用反幂法求出A 的错误!未找到引用源。. 3)计算A 的条件数 ⅡA Ⅱ2* ⅡA -1Ⅱ2=cond2(A )=错误!未找到引用源。/错误!未找到引用源。.(精度要求为10-6) 3、设计要求 1)求出ⅡA Ⅱ2。 2)并进行一定的理论分析。 (二)算法设计 1、幂法算法 (1)取初始向量u )0((例如取u )0(=(1,1,…1)T ),置精度要求ε,置k=1. (2)计算 v )(k =Au )1(-k ,m k =max(v )(k ), u )(k = v )(k / m k (3)若| m k = m 1-k |<ε,则停止计算(m k 作为绝对值最大特征值1λ,u )(k 作为相应的特征向量)否则置k=k+1,转(2) 2、反幂法算法 (1)取初始向量u )0((例如取u )0(=(1,1,…1)T ),置精度要求ε,置k=1. (2)对A 作LU 分解,即A=LU (3)解线性方程组 Ly )(k =u )1(-k ,Uv )(k =y )(k (4)计算 m k =max(v )(k ), u )(k = v )(k / m k (5)若|m k =m 1-k |<ε,则停止计算(1/m k 作为绝对值最小特征值n λ,u )(k 作

为相应的特征向量);否则置k=k+1,转(3).

二、算法的流程图(一)幂法算法的流程图

数值方法课程设计幂法反幂法计算矩阵特征值和特征向量附Matlab程序

数值方法课程设计幂法反幂法计算矩阵特征值和特征向量附Matlab程序

矩阵的特征值与特征向量的计算 摘要 物理,力学,工程技术中的很多问题在数学上都归结于求矩阵特征值的问题,例如振动问题(桥梁的振动,机械的振动,电磁振动等)、物理学中某些临界值的确定问题以及理论物理中的一些问题。矩阵特征值的计算在矩阵计算中是一个很重要的部分,本文使用幂法和反幂法分别求矩阵的按模最大,按模最小特征向量及对应的特征值。 幂法是一种计算矩阵主特征值的一种迭代法,它最大的优点是方法简单,对于稀疏矩阵比较合适,但有时收敛速度很慢。其基本思想是任取一个非零的初始向量。由所求矩阵构造一向量序列。再经过所构造的向量序列求出特征值和特征向量。 反幂法用来计算矩阵按模最小特征向量及其特征值,及计算对应于一个给定近似特征值的特征向量。本文中主要使用反幂法计算一个矩阵的按模最小特征向量及其对应的特征值。计算矩阵按模最小特征向量的基本思想是将其转化为求逆矩阵的按模最大特征向量。然后经过这个按模最大的特征向量反推出原矩阵的按模最小特征向量。

关键词:矩阵;特征值;特征向量;冥法;反冥法 THE CALCULATIONS OF EIGENVALUE AND EIGENVECTOR OF MATRIX ABSTRACT Physics, mechanics, engineering technology in a lot of problems in mathematics are attributed to matrix eigenvalue problem, such as vibration (vibration of the bridge, mechanical vibration, electromagnetic vibration, etc.) in physics, some critical values determine problems and

相关文档
最新文档