第4章 直流电动机的运行
直流电动机工作原理

直流电动机工作原理1. 概述直流电动机是一种常见的电动机类型,广泛应用于各种电动设备中。
它的工作原理是利用直流电流在电磁场中的相互作用,使得电动机产生旋转运动。
直流电动机通常由定子、转子和电刷组成。
2. 定子定子是直流电动机的固定部分,通常由铁芯和绕组组成。
绕组由导线缠绕在铁芯上,形成多个线圈,每个线圈都经过一段定子绕组。
当电流通过绕组时,会在定子中产生一个磁场。
3. 转子转子是直流电动机的旋转部分,通常由铁芯、电枢和电刷组成。
电枢由导线缠绕在铁芯上,形成多个线圈,每个线圈都经过一段转子绕组。
当电通入电枢时,电枢会在转子上产生一个磁场。
4. 电刷电刷是直流电动机中非常重要的组件,它通常由碳材料制成。
电刷与定子和转子的绕组相连,用于供应电流到转子的绕组上。
电刷通过与转子绕组接触,将电流传递到转子上,同时也负责转子绕组中电流的引导。
5. 工作原理直流电动机的工作原理可以简单描述为以下几个步骤:•步骤 1: 电流通过定子绕组,产生一个磁场。
•步骤 2: 电流通过电刷传递到转子绕组上,形成转子的磁场。
•步骤 3: 转子的磁场和定子的磁场相互作用,使得转子受到一个力的作用。
•步骤 4: 受到的力使得转子旋转。
•步骤 5: 转子旋转带动机械负载运动。
6. 工作原理详解在直流电动机中,电流在定子和转子的绕组之间形成一个相互作用的环路。
当电通入定子的绕组时,会在定子中产生一个磁场。
这个磁场通过定子的铁芯传导到外部。
同时,电刷将电流传递到转子的绕组上,形成了一个磁场。
由于转子上的磁场受到定子磁场的影响,两者之间形成了相互作用的力。
这个力被称为洛伦兹力,是由电流在磁场中的相互作用引起的。
洛伦兹力使得转子受到一个力的作用,从而产生旋转运动。
转子旋转的动力来自外部施加在转子上的机械负载。
通过调整电流的大小和方向,可以控制直流电动机的转速和转向。
电刷的设计和布局也对电机性能有一定影响。
7. 应用领域直流电动机由于其简单、可靠且易于控制的特点,在工业和家庭中得到广泛应用。
第四章直流电机电枢绕组

一、节距计算
y1
Z 2p
y= =1yk
y2 y1 y
二、绕组展开图
Z为电枢槽数 P为电机的极对数
三、元件连接顺序及并联支路图
空载时气隙磁磁通密度的分布图形
返回
如果不计铁磁材料中的磁压降,则在气隙中各处所消耗的磁通势均
为励磁磁通势。
在极靴下,气隙小,气隙中沿电枢表面上各点磁密较大;在极靴范
围外,气隙增加很多,磁密显著减小,至两极间的几何中性线处磁密为
零。
为一平顶波
直流电机空载磁场的磁密分布
直流电机的空载磁化特性
0
考虑到电机的运行性能 和经济性,直流电机额定运 行的磁通额定值的大小取在 磁化曲线开始弯曲的地方图 中的a点(称为膝部)。
磁电流作用下建立的,这一点与他励发电机不同。并励发电机建立 电压的过程称为自励过程,满足建压的条件称为自励条件。
1、自励条件
曲线1为空载特性曲线,曲线2为励磁回路总电阻R f 特性曲线, 也称场阻线 U f I f R f 。
增大R f ,场阻线变为曲线3时,R f 称为临界 电阻Rcr 。如图所示。
N pN Ea 2a e 60a n Cen
Ce为电动势常数。上式表明直流电机的感应电动势与电机结构、 气隙磁通和电机转速有关。当电机制造好以后,与电机结构有关的常数
Ce不在变化,因此电枢电动势仅与气隙磁通和转速有关,改变转速 和磁通均可改变电枢电动势的大小。
三,直流电机的电磁转矩 定义:根据电磁力定律,当电枢绕组中有电枢电流
第4章特殊电机

速n旋转,电枢导体切割恒定磁通 ,而在其中产生感应电动势E。电动势E
的极性决定于测速发电机的转向,电动势E的大小与转速成正比,即
E =Ce n
可见直流测速发电机的输出电压与转速成正比。因此只要测出直流测速 发电机的输出电压,就可测得被测机械的转速。
三相同步电动机的定子和三 相异步电动机的定子结构是相同 的,在定子铁心槽内嵌有三相交 流绕组,转子也称磁极,有凸极 和隐极两种结构。同步电动机通 常用凸极式,在转子铁心上绕有 励磁绕组,通过电刷和滑环引入 直流电,如图4-33所示。
在同步电动机的三相定子绕 组内通入三相交流电,即产生旋 转磁场,当励磁绕组加上励磁电 流时,转子产生磁极,在定子旋 转磁场的带动下与旋转磁场同步 旋转。
二、直线异步电动机的工作原理 2
向直线异步电动机初级三相绕组中通入三相交流电后,也将产生 一个气隙磁场,沿直线方向呈正弦分布且将按U、V、W的相序直线 移动。由于该磁场是平移的,因此称为行波磁场,该行波磁场在移动 时将切割次级导体,在导体中产生感应电动势和电流,该电流与行波 磁场相互作用,产生电磁力使次级沿行波磁场移动的方向作直线运动, 且次级移动的速度小于行波磁场移动的速度。
二、 微型同步电动机 1
微型同步电动机按工作原理可分永磁式、 反应式、磁滞式三种。
1.永磁式微型同步电动机 永磁式微型同步电动机的转子由永久磁 钢构成磁极,形成转子磁场。当定子绕组加 上交流电源,产生旋转磁场后,即带动转子 同步旋转。为了能产生起动转矩,可在转子 边缘装笼型导条,如图4-35。 永磁式微型同步电动机常用在日用电器 中的电动定时程控器中。
直线电动机可以由直流、同步、异步、步进等旋转电动机演变而 成,由异步电动机演变而成的直线异步电动机使用最多。这里,我们 只就直线异步电动机的结构和工作原理做一些简单的介绍。
直流电机的工作原理

直流电机的工作原理
直流电机是一种将直流电能转化为机械能的装置。
它的工作原理基于洛伦兹力和电动行为的相互作用。
直流电机的核心部件是电枢,由大量线圈组成。
当直流电源施加在电枢上时,电流流经线圈,产生一圈圈的磁场。
在电枢旁边,有一个磁体称为永磁体或者磁场极,它产生恒定的磁场。
当电流通过电枢的线圈时,根据右手定则,线圈内的磁场与永磁体的磁场产生相互作用,产生力矩。
由于电流的方向是可逆的,所以直流电机的转向也是可逆的。
当电流改变方向时,电枢产生的磁场方向也会改变,进而改变了与永磁体的相互作用,实现了转向。
为了实现连续的旋转运动,直流电机需要一个机械装置来改变电枢线圈的方向。
这个装置通常由一个可调整的组件(如换向器和刷子)组成,它能够使电流从一个线圈转移到下一个线圈,从而保持电枢的旋转方向。
总之,直流电机工作的基本原理就是利用洛伦兹力和电动行为,通过电磁感应和相互作用实现电能到机械能的转换。
第4章 直流电动机的电力拖动

展,已将直流电机的励磁部分用永磁材料替代,产生了永磁无刷直流电机。
电机内部的电磁作用原理与直流电机相同。所以无刷直流电机的过载能力 高,高速性能好。由于这种直流电机的体积小,结构简单,效率高,无转
子损耗,所以目前已在中、小功率范围内得到广泛的应用。
25
4.4
直流电机的应用
4.4.1 直流电机应用概述
4
4.1
4.1.2
他励直流电动机的启动
直接启动
直接起动又称为全压起启动: 直接起动不需要专用起动启设备,操作简便,主要缺
点是起动启电流太大。额定功率在几百瓦以下的直流电动
机才能直接起启动 。
直接起动机特性曲线
5
4.1
他励直流电动机的启动
4.1.3 电枢回路串电阻起动 一般的直流电动机,在起动时在电枢回路中串入电阻来限 制起动电流。
10
4.2
他励直流电动机的制动
4.2.2 反接制动 1.电源反接制动
电源反接原理接线
+ 1 2 RZ
2 TL d o T em
电源反接机械特性
R a+ R Z n n0 a 1 Ra
-
Ia
TM Ea n TM
f -n
0
+
-
c
机械特性方程式:
Ra RZ Ra RZ U n Tem n0 Tem CE CE CT 2 CE CT 2
+ RZ T Ia
em
机械特性
U Ia
n n0 1
正向
U
-
+ RZ T em
n
n
Ea
+ TL Uf -
Ea
d
1.1直流电机的工作原理和结构

2
§1-1 直流电机的工作原理和结构
一、直流电机的工作原理
直流电机是直流发电机和直流 电动机的总称。直流电机具有可 逆性,既可作直流发电机使用, 也可作直流电动机使用。
14
§1-1 直流电机的工作原理和结构
(2)电枢绕组
电枢绕组的作用是产生 感应电势和通过电流产生 电磁转矩,实现机电能量 转换。它是直流电机的主 要电路部分。
电枢绕组通常都用圆形或矩形截面的导线绕制而成,再按一定 规律嵌放在电枢槽内,上下层之间以及电枢绕组与铁心之间都要 妥善地绝缘。为了防止离心力将绕组甩出槽外,槽口处需用槽楔 将绕组压紧,伸出槽外的绕组端接部分用玻璃丝带绑紧。绕组端 头则按一定规律嵌放在换向器钢片的升高片槽内,并用锡焊或氩 弧焊焊牢。
12
(3)换向极
§1-1 直流电机的工作原理和结构
换向极又称附加极,安装在相邻两主磁极的几何 中心线上。 Why?在1.7讲
换向极的作用是改善直流电机换向。在小容量电 机(1kw以下)中,有时换向极只有主磁极的一半, 或不安装换向极。 (4)电刷装置
电刷与换向器相配合,在电动机中起到逆变(将 直流变为交流)作用;而在发电机中则起到整流 (将交流变为直流和结构
(3)换向器 换向器的作用是
在电刷间得到直流电 动势,并保证每个磁 极下电枢导体电流方 向不变,以产生恒定 方向的电磁转矩。
16
§1-1 直流电机的工作原理和结构
3、气隙
气隙是定子和转子(电枢)之间自然形成的间 隙。它是电机主磁路的一部分,是电机能量转换的 媒介。气隙的大小对电机运行的影响很大。小容 量电机约为1-3mm,大容量电机可为几毫米。
直流电机知识

作动力用:直流电动机将直流电能转化为机械能直流测速发电机将机械信号转换为电信信号传递-直流伺服电动机将控制电信号转换为机械信号1-1 直流电机工作原理一、原理图(物理模型图)磁极对N、S不动, 线圈(绕组)abcd 旋转, 换向片1、2旋转, 电刷及出线A、B不动二、直流发电机原理(机械能--->直流电能)( Principles of DC Generator)1.原动机拖动电枢以转速n(r/min)旋转;2.电机内部有磁场存在;或定子(不动部件)上的励磁绕组通过直流电流(称为励磁电流I f)时产生恒定磁场(励磁磁场,主磁场) (magnetic field, field pole)3.电枢线圈的导体中将产生感应电势 e = B l v ,但导体电势为交流电,而经过换向器与电刷的作用可以引出直流电势E AB,以便输出直流电能。
(看原理图1,看原理图2)(commutator and brush)1.问题1-1:直流电机电枢单个导体中感应电势的性质?2.问题1-2:直流电机通过电刷引出的感应电势的性质?3.看直流发电机原理动画4.问题1-3:直流发电机如何得到幅值较为恒定的直流电势?5.为了得到稳定的直流电势,直流电机的电枢圆周上一般有多个线圈分布在不同的位置,并通过多个换向片联接成电枢绕组。
以前曾使用环形绕组.6.问题1-4:环形绕组的缺点是什么?三. 直流电动机的原理 ( Principies of DC Motor)1.将直流电源通过电刷和换向器接入电枢绕组,使电枢导体有电流i a通过。
2.电机内部有磁场存在。
3.载流的转子(即电枢)导体将受到电磁力 f 的作用 f = B l i a(左手定则)4.所有导体产生的电磁力作用于转子可产生电磁转矩,以便拖动机械负载以n(r/min)旋转。
5.结论:直流电机的可逆性原理:同一台电机,结构上不作任何改变,可以作发电机运行,也可以作电动机运行。
直流电机

• 直流发电机
• 直流电动机 额定转矩
额定转矩TN单位:N.m; 额定功率PN的单位:W
• • • •
1. 他励发电机 这种发电机的励磁电流是由另一直流电源单独供电的 。 2. 自励发电机 发电机的励磁电流由电机电枢提供,它又可分为如下三类。
• (1)并励发电机 • 励磁绕组与电机电枢两端并联连接,由发电机本 身发出的端电压提供励磁电流。 • (2) 串励发电机 • (3) 复励发电机 • • 此外,有些直流电机是用永久磁铁来产生磁场的, • 称为永磁式直流电机。
2. 转子部分
定子由主磁极、换向极、机座和电刷装置
机械能与电能相互转换的 枢纽,因此称作电枢。 电枢主要包括电枢铁心、电枢绕组、换 向器等。
1—轴承;2—轴;3—电枢绕组;4—换向极绕组;5—电枢铁心;6— 7—刷杆座;8—换向器;9—电刷;10—主磁极;11—机座;12—励磁绕组; 13—风扇;14—前端盖
1 - 5 生产机械的机械特性
• 一、生产机械的机械特性 所谓生产机械的机械特性,是指同一轴上负载静阻转 矩和转速之间的函数关系。 可在同一直角坐标系中作出电动机的机械特性和生 产机械的机械特性,用运动方程式对传动系统的运行状 态进行分析。
(一) 恒转矩型机械特性 恒转矩型负载的特点是负载转矩与转速的大小无关,是一常数。 1. 摩擦性恒转矩负载
通过,使定子铁心产生固定磁场,
即定子的主要作用是产生主磁场。
2— 电枢绕组:在固定的磁场中 旋转,主要作用是产生感应电动 势或产生机械转矩,实现能量的 转换。 3—电刷
4—换向片
3、4—换向器:电刷固定不动,换向片与电枢绕组一起旋转, 主要作用对发电机而言是将电枢绕组内感应的交流电势转换成电
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4、运动方程式中转矩正、负号的规定
首先确定电动机处于电动状态时的旋转方向为转速的正方向, 然后再规定:
(1)电磁转矩 T 与转速 n 的正方向相同时为正,相反时为负。
(2)负载转矩 TL 与转速 n 的正方向相同时为负,相反时为正。
2 (3)惯性转矩 GD dn 的大小和正负号由 T 和 TL 的代数和决定。
2)降低电枢电压调速
前提 N , R 0 调U。
(1)调速特性曲线
n n0
n01 n02
A (n)
UN
A1 (n1 )
A2 ( n 2 ) U1
U降低
U2
0
TL
T
(2)主要特征
①U↓→n↓; ②从基速向下调速;
③负载转矩TL一定时,电枢电流Ia与转速n无关;
④ β不变,硬度不变,转速稳定性好; ⑤ 可实现转速连续变化,平滑性好。
1、能耗制动 1)能耗制动过程
如图,处于电动状态的电动机,突然 将开关S投向制动电阻 RB 上,即实现 制动。
Ia
U
S
电动
I aB
RB
M
Ea
制 动
制动瞬间(如特性曲线图),U=0, n不能突变,运行点从A→B,Ф 和Ea 均不变。此时 I aB <0,TB <0。 制动运行时,将系统储存的动能转换成电能, 消耗在电阻上,直到电机停止转动。
2)静差率
n n n 100 % 0 100 % n0 n0
额定负载时的转速降落与理想空载转速之比。静差率越小,相对 稳定性越好。
3)平滑性
ni ni 1
相邻两级调速中,高一级转速 n i 与低一级转速 ni 1 之比。 φ 越接近1,平滑性越好。i→∞,φ→1为无极调速。
能耗自动最小电为: Rmin
Ea Ra I max
5)制动电阻的最小值
因为:
I aB
U N Ea 0 Ra R
1 Ra R
所以:
I aB
因为R↓→Iab↑→
TB Ct N I↑aB →停车越快;
但是,因为R↓→Iab↑→ 换向困难,R又不能太小。 所以制动电阻的最小值为:
375 dt
5、负载的转矩特性
负载的转矩特性,就是负载的机械特性,简称负载特性。
1)恒转矩负载特性
恒转矩负载特性是指生产机械的负载转矩 TL 与转速 n 无关的特性。 分反抗性恒转矩负载和位能性恒转矩负载两种。 (1)反抗性恒转矩负载 (2)位能性恒转矩负载
n TL
n
TL
2)恒功率负载特性
恒功率负载特点是:负载转矩与转速的乘积为一 常数,即 TL 与 n 成反比,特性曲线为一条双曲线。
n
TL
3)泵与风机类负载特性 负载的转矩 TL 基本上与转速 n的平方成正比。负 载特性为一条抛物线。
n
理想的通 风机特性
实际通风 机特性
TL0
TL
二、他励电动机的启动
电动机的起动是指电动机接通电源后,由静止状态加速到稳定运行 状态的过程。
1、直接启动
在直接启动时,n 0, E a 0, 启动电流 I a 启动转矩
第4章 他励直流电动机的运行
本章主要介绍电力拖动系统的运动方程、负载转矩特 性、直流电动机的机械特性、启动、调速、制动等方法和 物理过程。
一、电力拖动系统的运动方程式
1、运动方程式
运动方程式描述了系统的运动状态,系统的运动状态取决于 作用在原动机转轴上的各种转矩。
电源 电力拖动系统的组成
控制设备
电动机
2)主要特征
①拖动位能负载; ②电枢回路串联较大电阻,β 很大(特性较软);
③运行在第四象限的C→D段;
④TB > 0,n < 0,电磁转矩为制动转矩。
5、回馈制动运行
电动状态下运行的电动机,在某种条件下会出现 n n0 情况,此 时 E a U ,I a 反向, T 反向,由驱动变为制动。从能量方向看,电机 处于发电状态——回馈制动状态。 稳定运行有两种情况:
R增大
n2
R1
R2
0
TL
T
(3)主要特征
①R↑→n↓; ②从基速向下调速;
③负载转矩TL一定时,电枢电流Ia与转速n无关;
2 p cua I a R 随转速n降低而增大; ④负载转矩TL一定时,铜损耗
⑤ R↑→β ↑→特性变软→n的运行稳定性差;
⑥受R容量大,体积大的限制,只能有级调速,最大为六级。
为恒转矩调速。 (2)恒功率调速
TL
Ia I N ,
在 T Ct I a 中,调速时,让Ф↓ →T ↓,但Ф↓→ n↑( Ω ↑) 则 P=T↓Ω ↑ = 常数
为恒功率调速。
n
TL
四、他励电动机的制动
当电磁转矩的方向与转速方向相同时,电相反时,电机运行于制动状态。
e N e t N
④ TB<0,n>0,电磁转矩为制动转矩; ④减速中n和Ea逐渐下降,到0点后,Ea=0,Ia=0,n=0,经抱闸停车; ⑤ 不容易实现准确停车。
4)功率流程图
2 I a ( Ra R1 )
p0
P1
PM
P2
电动机将电源输入的电功率加上系统释放所储存的动能扣除空载 功率损耗后,转变成电磁功率全部消耗在电枢回路的电阻上。
A
当电车下坡时,运行转速 可能超过理想空载转速, 进入第二象限
n n0
TL 0
为了限制起动电流,他励直流电动机通常采用电枢回路串电 阻或降低电枢电压起动。
2、电枢回路串电阻启动
由电动机启动时的公式
Is UN (1.5 ~ 2) I N Ra R
S
M
U
S1 S 2
S3
可以确定电动机启动时电枢回路 所串电阻的大小
n
n0
Ra Rst 1 Rst 2 Rst 3
A
Ra
能耗制动
4、倒拉反转运行
他励直流电动机拖动位能性负载运行。 在电枢回路中串联一个较大的电阻,即可实现制动。
1)特性曲线
n
n0
电枢串较大 电阻特性
B
A
Ra
正向电动 提升重物
工作点由A-B-C-D, CD段为制动段。
电动机以稳 定转速下放 重物
C
0 TB
TL
T
负载作用下电 动机反向旋转
D
Ra RB
Rmin
U N Ea U Ea 2Ea Ra N Ra Ra I max I max I max
式中,I max 为电动机的最大允许电流。
3、反接制动与能耗制动比较
1)若是同一台电动机,同一个最大允许电流,则Rmin(反)=2Rmin(能) 2)因为Rmin(反)=2Rmin(能)所以,β(反)=2β(能) 3)从特性曲线上看,在停车过 程中,反接制动的电磁转矩比能 耗制动的大,因此停车迅速。 4)在准确停车上,反接制动不 反接制动 如能耗制。 5)对于要求频繁正、反转的生 产机械(如可逆轧钢机)采用反 接制动可使正向停车和反向启动 连续进行,缩短过渡过程时间。
④减速中n和Ea逐渐下降,到0点后,Ea=0,Ia=0,n=0,停车
结束;
⑤ 容易实现准确停车。
4)功率流程图
2 I a ( Ra R1 )
p0
PM
P2
电动机将系统释放所储存的动能扣除空载功率损耗后,转变 成电磁功率全部消耗在电枢回路的电阻上。
5)制动电阻的最小值
因为:
I aB
Ea Ra R
R1
R增大
启动后,分段切除所串电阻, 全部切除后,稳定运行在A点。
R3
R2
0
TL
Ts
T
2、降低电枢电压启动
由电动机启动时的公式
Is U Ra (1.5 ~ 2) I N
可以确定电动机启动时电压的大小
n n0
电源电压可以连续上升 (调节),使启动更快、 更平稳。
A
UN
U降低
0
TL
T
例题:P69例题4-1
3)弱磁调速
前提 U U N , R 0, TL 不过分大 。
(1)调速特性曲线
n
n01
A1
1 N
n0
A
1
Ф 减小
N
0
TL
T
(2)主要特征
①从基速向上调速; ②因为励磁电流小,所以功率损耗小; ③弱磁控制方便;
④最大转速nmax受换向和机械强度的限制,nmax≤1.2 n N 导致调速
范围小;
⑤ 特性变软→n的运行稳定性差。
4)调速综述
他励直流电动机广泛采用降低电源电压向下调速及减弱磁 通向上调速的双向调速方法,具有①调速范围宽;②功率损耗 小;③运行效率高等优点。
例题:P73例题4-2
5)恒转矩与恒功率调速
(1)恒转矩调速 调速过程中:
n
T Ct I a = 常数
Ia I N , N , 则
2、反接制动
如图,将正向运行的电动机的 电源电压突然反接,同时在电枢回 路串入电阻。
U
S
电动
1)制动过程
开关S投向“电动” 时,电 枢接正极电压,电机处于电动 状态。 进行制动时,开关投向 “制动” ,电枢回路串入制动 电阻 后,接上极性相反的电 源电压,电枢回路内产生反向 电流,电动机处于制动状态。
1)当 T TL 或
2)当 T TL 3)当 T TL
dn 0 时,系统处于静止或恒转速运行状态,即处于稳态。 dt dn 或 dt 0 时,系统处于加速运行状态,即处于动态。 dn 0 时,系统处于减速运行状态,即处于动态。 或 dt