一笔画和中国邮递员问题
第八讲邮递线路问题

第八讲邮递线路问题一、多笔画在第一册第八讲例1中,我们讨论了下列图形的一笔画问题。
通过观察列出了下表:由此表我们发现,一个图能否一笔画成与图的奇结点的个数有关系。
如果我们再进一步观察,还可发现,这些图中的奇结点的数目都是偶数。
这是一种偶然的巧合还是一种普遍的规律呢?如果我们再观察一些其它的图,结果也是没有出现奇结点数目是奇数的现象。
于是我们可以作如下猜想:在任何一个图中,奇结点的个数一定是偶数。
这是因为一个图的每条边都与两个结点相连结,所以,如果把一个图的所有结点的度数相加,由于每条边都计算了两次,其度数和是边数的2倍,它是偶数,可设为2n。
又因为每个偶结点的度数都是偶数,它们的度数和当然是偶数,可设为2m。
由此可知,所有奇结点的度数和为2n-2m=2(n-m)(n、m为自然数)也是一个偶数,但每个奇结点的度数都是奇数,所以奇结点的个数一定是偶数。
否则,如果奇结点的个数是奇数,那么,因为奇数个奇数的和是奇数,就得到所有奇结点度数的和是奇数。
这与上述结论相矛盾。
这就说明,在任何一个图中,奇结点的个数一定是偶数。
例1 先数一数下列各图形中奇结点的个数。
如果有的图形不能一笔画成,那么,至少几笔才能画成?分析与解:图8-2(a)中只有两个奇结点,根据欧拉定理,可从A点出发一笔画出到B点结束,图(b)中有四个奇结点,不能一笔画成。
图8-2(b)与图(a)比较,多出了折线CEFD。
如果先一笔画出图(a),再添一笔画出折线CEFD,就可得到图(b)。
因此,图(b)至少两笔才能画成。
图8-2(c)中共有六个奇结点,也不能一笔画成。
图(c)与图(b)比较又多出了一面旗子。
它也含有两个奇结点,于是在两笔画出图(b)的基础上,再添一笔画上旗子,就成了图(c)。
因此,图(c)至少三笔才能画成。
例2 图8-3(a)表示一所房子,问至少几笔才能画成?分析与解:1图8-3(a)所示的图中共有B、E、F、G、I、J六个奇结点,所以不能一笔画成。
小学数学《一笔画》练习题(含答案)精选全文

可编辑修改精选全文完整版小学数学《一笔画》练习题(含答案)什么样的图形能一笔画成呢?这就是一笔画问题,它是一种有名的数学游戏.所谓一笔画,就是从图形上的某点出发,笔不离开纸,而且每条线都只画一次不准重复.我们把一个图形中与偶数条线相连接的点叫做偶点.相应的把与奇数条线相连接的点叫做奇点.判断图形能否一笔画的规律:(1)能一笔画出的图形必须是连通的图形;(2)凡是只由偶点组成的连通图形.一定可以一笔画出.画时可以由任一偶点作为起点.最后仍回到这点; (3)凡是只有两个奇点的连通图形一定可以一笔画出.画时必须以一个奇点作为起点.以另一个奇点作为终点;(4)奇点个数超过两个的图形,一定不能一笔画.(一) 一笔画以及多笔画【例1】 观察下面的图形,说明哪些图可以一笔画完,哪些不能,为什么?对于可以一笔画的图形,指明画法.(f)(e)(d)JIH G F ED C BAJ K IHGFED CB A分析:(a )图:可以一笔画,因为只有两个奇点A 、B ;画法为A →头部→翅膀→尾部→翅膀→嘴. (b )图:不能一笔画,因为此图不是连通图.(c )图:不能一笔画,因图中有四个奇点:A 、B 、C 、D.(d )图:可以一笔画,因为只有两个奇点;画法为:A →C →D →A →B →E →F →G →H →I →J →K →B. (e )图:可以一笔画,因为没有奇点;画法可以是:A →B →C →D →E →F →G →H →I →J →B →D →F →H →J →A.(f )图:不能一笔画出,因为图中有八个奇点.[注意]在上面能够一笔画出的图中,画法并不是惟一的.事实上,对于有两个奇点的图来说,任一个奇点都可以作为起点,以另一个奇点作为终点;对于没有奇点的图来说,任一个偶点都可以作为起点,最后仍以这点作为终点.[巩固]判断下列图a、图b、图c能否一笔画.E分析:图a是一个连通的图形,图中只有点A和点F两个奇点,所以它能一笔画,其中一种画法如下:A —M—N—A—F—B—C—B—K—C—D—E—D—L—E—F.‘图b是一个不连通的图形,所以不能一笔画.图c是连通图,图中所有点都是偶点,所以能一笔画.其中一种画法如下:A—B—C—D—E—F—D—A—F —C—A.【例2】右图是某地区所有街道的平面图.甲、乙二人同时分别从A、B出发,以相同的速度走遍所有的街道,最后到达 C.如果允许两人在遵守规则的条件下可以选择最短路径的话,问两人谁能最先到达C?分析:本题要求二人都必须走遍所有的街道最后到达C,而且两人的速度相同.因此,谁走的路程少,谁便可以先到达C.容易知道,在题目的要求下,每个人所走路程都至少是所有街道路程的总和.仔细观察上图,可以发现图中有两个奇点:A和C.这就是说,此图可以以A、C两点分别作为起点和终点而一笔画成.也就是说,甲可以从A出发,不重复地走遍所有的街道,最后到达C;而从B出发的乙则不行.因此,甲所走的路程正好等于所有街道路程的总和,而乙所走的路程则必定大于这个总和,这样甲先到达C.[巩固]在六面体的顶点B和E处各有一只蚂蚁(见右图),它们比赛看谁能爬过所有的棱线,最终到达终点D.已知它们的爬速相同,哪只蚂蚁能获胜?分析:许多同学看不出这是一笔画问题,但利用一笔画的知识,能非常巧妙地解答这道题.这道题只要求爬过所有的棱,没要求不能重复.可是两只蚂蚁爬速相同,如果一只不重复地爬遍所有的棱,而另一只必须重复爬某些棱,那么前一只蚂蚁爬的路程短,自然先到达D点,因而获胜.问题变为从B到D与从E到D哪个是一笔画问题.图中只有E,D两个奇点,所以从E到D可以一笔画出,而从B到D却不能,因此E点的蚂蚁获胜.[数学小游戏] 用一笔画成四条线段把所有的点连起来,怎样画?分析:通过试画,似乎不可以画,但通过仔细观察,对照一笔画的规律,便可发现,若添上两个辅助点,就可画成.如右图:FE DCB ADCBA我们把不能一笔画成的图,归纳为多笔画.多笔画图形的笔画数恰等于奇点个数的一半.事实上,对于任意的连通图来说,如果有2n 个奇点(n 为自然数),那么这个图一定可以用n 笔画成.公式如下: 奇点数÷2=笔画数,即2n ÷2=n.【例3】 判断下列图形能否一笔画.若能,请给出一种画法;若不能,请加一条线或去一条线,将其改成可一笔画的图形.IH G FED CBA 图aH G I KLJ F EDCBA 图b DC HG EFBA图c分析:图a :原图有四个奇点,所以不能一笔画,在B,D 两点之间加一条线后,图中只有两个奇点,故可以一笔画出,如图d 所示.画法:H →A →B →C →D →E →F →I →D →B →I →H →G →F .图b :原图有四个奇点,所以不能用一笔画.去掉K ,L 两点之间的连线,图中只有两个奇点,故 可以一笔画出,如图e 所示.画法:B →C →D →E →F →→J →H →G →I →A →B →K →I →L →E .图c :原图有四个奇点,所以不能用一笔画.在B ,C 两点之间加一条线后,图中只有两个奇点, 故可以一笔画出,如图f 所示.画法:A →E →D →H →A →B →F →C →G →B →C →D注意:a 、b 、c 三个图都是连通的图形,但由于每个图的奇点个数均超过两个,所以都不能一笔画.图dA BCD EFG H IH GI KLJ F EDCB A 图eDC HG EFBA图f[前铺]观察下面的图,看各至少用几笔画成?分析:(1)图中有8个奇点,因此需用4笔画成. (2)图中有12个奇点,需6笔画成. (3)图是无奇点的连通图,可一笔画成.DC BA(2)(1)FEC DB A分析:图(1)中有6个奇点,因此可添上两条(或3条)边后可改为一笔画;又因为这个图中,把这6个奇点任意分为3对后,最多只有两对奇点间有边相连,因此,可去掉两条边后改为一笔画,举例如图(3)~(6).图(2)中有4个奇点,因此,可添上2条(或1条)边后改为一笔画;又因为把奇点按A 与B ,C 与D (或A 与D ,B 与C )分为两对后,每对间均有边相连,因此,可去掉两条(或1条)边后改为一笔画.举例如图(7)~(8).说明:图(6)运用了两种方法,去掉边BC ,添上边AD 与EF.(二)一笔画的实际应用【例5】 18世纪的哥尼斯堡城是一座美丽的城市,在这座城市中有一条布勒格尔河横贯城区,这条河有两条支流在城市中心汇合,汇合处有一座小岛A 和一座半岛D ,人们在这里建了一座公园,公园中有七座桥把河两岸和两个小岛连接起来(如图a).如果游人要一次走过这七座桥,而且对每座桥只许走一次,问如何走才能成功?:这个有趣的问题引起了著名数学家欧拉的注意,他证明了七桥问题中提到的走法根本不存在. 下面,我们考虑如下两个问题:(1)如果再架一座桥,游人能否走遍所有这八座桥?若能,这座桥应架在何处?若不能,请说明理由. (2)架设几座桥可以使游人走遍所有的桥回到出发地?而得到一个由四个点和七条线组成的图形(如图b).在图b 中,点A ,B ,C ,D 四个点均为奇点,显然不能一笔画出这个图形.若将其中的两个奇点改成偶点,即在某两个奇点之间连一条线,这样奇点个数由四个变为两个,此时,图形可以一笔画出.如我们可以选择奇点B ,D ,在B ,D 之间连一条线(架一座桥),如图c .在图c 中只有点A 和C 两个奇点,那么我们可以以A 为起点,C 为终点将图形一笔画出.其中一种画法为:A →C →A →B →A →D →B →D →C所以,如果在河岸B 与小岛D 之间架一座桥,游人就可以不重复地走遍所有的桥.(2)在(1)的基础上,再在另外两个奇点A 与C 之间连一条线(即架一座桥),使这两个奇点也变成偶点,如图d .那么A ,B ,C ,D 四个点均为偶点,所以图d 可以一笔画出,并且可以以任意点为起点,最后 仍回到这个点.其中一种画法为:A →C →A →C →D →A →B →D →B →A这表明:在河岸B 与小岛D 之间架一座桥后,再在小岛A 与河岸C 之间架一座桥,共架设两座桥,就可以使游人不重复地走遍所有的桥并回到出发地.[巩固]如图所示,两条河流的交汇处有两个岛,有七座桥连接这两个岛及河岸.问:一个散步者能否一次不重复地走遍这七座桥?分析:用点表示小岛与河岸,用连接两点的线表示连接相应两地的桥,如图,有2个奇点,所以该图可以一笔画,即可以一次不重复地走遍这七座桥.例如右下图的走法.EDCBA【例6】 有一个邮局,负责21个村庄的投递工作,右图中的点表示村庄,线段表示道路.邮递员从邮局出发,怎样才能不重复地经过每一个村庄,最后回到邮局?分析:图中有两个奇点,所以该图可以一笔画,但因为邮局所在点为奇点,所以要一笔画就不可能回到邮局.又图中A,B,C,D,E,F,G,H,I,J十点均有4条线段与之相连,如果我们将上图一笔画的话,就要经过以上十点各两次,这也不满足题目的要求,所以要将这些点相连的线段去掉一些,使得与这些点相连的线段均只有两条,并且将两个奇点也变成只有两条线段与之相连,这样得到的图形即可一笔画,又只经过每个点一次,并且可以回到邮局,一种可行路线如下:邮局I JHGF E D C B A 邮局邮局【例7】 右图是某博物馆的平面图,相邻两个展厅之间有一扇门相通,每一个展厅都有一门通往馆外.问参观者能否不重复地一次穿过每一扇门?若能,请找出一条可行路径;若不能,请说明理由.如果允许关闭某一扇门,问参观者能否不重复地穿过每一扇开着的门?分析:我们把展厅A,B,C,D,E 及馆外F 看成某个图中的点,把两个展厅之间的门看作是连接表示这两个展厅的点的线.根据题中条件知,馆外F 与A ,B ,C ,D ,E 各展厅相通,这样将点F 与点A ,B ,C ,D ,E 用线连接;展厅A 与展厅B ,C ,D 相通,将点A 与点B ,C ,D 用线连接;展厅B 除与A 相通外,它还与D ,E 展厅相通,将B 与D ,E 连接;除此之外,展厅C ,D 相通,展厅D ,E 相通,将点C ,D 连接,再将点D ,E 连接(如图a).于是本题要解决的问题就变成了能否将图a 一笔画的问题.可以看出:图a 中共有六个点,其中有四个奇点,它们分别为C ,D ,E ,F ,由一笔画的规律可知,图a 不能一笔画.也就是说,参观者不能够不重复地一次穿过每一扇门.如果允许关闭某一扇门,这相当于在图a 中去掉一条线,那么参观者就有可能不重复地一次穿过每一扇门.我们知道,在图a 中有四个奇点C ,D ,E ,F 为了把图a 改成一笔画图形,我们设法减少奇点个数,使奇点数变为两个.为此,我们可以去掉一条连接两个奇点的线,如去掉E 与F 间的连线,相应的图a 就变成了图b .在图b 中,除了原来的C 和D 是奇点外,其余点全部是偶点,故图b 可以一笔画.其中一种画法为:C →F →D →E →B →F →A →B →D →A →C →D .上面的分析表明,如果关闭连接E 、F 两展厅之间的门,参观者就可以不重复地一次穿过每一扇开着的门. 本题与七桥问题类似,只是将行人过桥换成了参观者穿过每一扇门.我们将这个问题转化为一笔画问题来研究.[前铺]右图是某展览馆的平面图,一个参观者能否不重复地穿过每一扇门?如果不能,请说明理由.如果能,应从哪开始走? FFF F E C D BA EB A分析:我们将每个展室看成一个点,室外看成点E ,将每扇门看成一条线段,两个展室间有门相通表示两个点间有线段相连,于是得到下图.能否不重复地穿过每扇门的问题,变为下图是否一笔画问题.EDC BA图中只有A ,D 两个奇点,是一笔画,所以答案是肯定的,应该从A 或D 展室开始走. 【例8】 已知长方体木块的长是80厘米,宽40厘米,高80厘米(如右图),并且要求蜘蛛在爬行过程中只能前进,不能后退,同一条棱不能爬两次.请问这只蜘蛛最多要爬行多少厘米?分析:图中八个顶点均为奇点,所以不能一笔画,要使其能一笔画,至少要去掉三条棱,使上图只有两个奇点,就可以满足一笔画的条件.长方体的棱长总和一定,(80+80+40)×4=800(厘米),因此去掉的三条棱越短,蜘蛛爬过的距离就越远.所以我们去掉三条棱长为40厘米的棱,于是可知,蜘蛛爬行的最远距离为: 800-40×3=680(厘米).蜘蛛的爬行路径为:G →F →C →D →G →H →A →B →E →H(如右图).[注意]这是一个立体图形,它有八个顶点,我们把长方体的棱看作顶点与顶点之间的连线,蜘蛛只能前进不能后退,并且每一条棱不能爬两次,这实质上是一个一笔画问题.【例9】 右图是某小区的街道分布图,街道长度如图所示(单位:公里),图中各点表示不同楼的代号.一辆垃圾清扫车从垃圾站(垃圾站位于C 楼与D 楼之间的P 处)出发要清扫完所有街道后仍回到垃圾站,问怎样走路线最短,最短路线是多少公里?分析:为了少走冤枉路和节省时间,题目中要求最短路线,根据一笔画原理,我们知道一笔画路线就是最短路线.本题要求清扫车从P点出发,仍回到P 点.通过观察上图可知,图中有六个奇点,根据一笔画规律可知,清扫车想清扫完所有街道而又不走重复的路是不可能的.要使清扫车从P 点出发,最后仍回到P 点,就必须把图中所有的奇点都变成偶点,即在两奇点之间添加一条线.在实际问题中,就是清扫车在哪些街道上重复走的问题,由于每条街道的长度不同,因此需要我们考虑清扫车重复走哪条街道才使总路线最短.为使六个奇点都变成偶点,我们可以有下图中的四种方法表示清扫车所走的重复路线,其中填虚线的地方表示的是重复路线.重复的路程分别为:图a :2×2+3=7;图b :3+4×2=11;图C :3×3=9; 图d :3+6×2=15.显然,重复走的路线最短,总路程就最短.从上述计算中就可找到最短路线图,即下面四个图中的图a .408080H G F ED C BA804080H GFED CBA图b 图a图d图c在图a 中,所有点均为偶点,是一笔画图形.清扫车可按如下路径走:P →D →G →D →E →F →G →H →L →H →C →B →L →M →A →B →C →P ,全程为:(1+2+4+2)×2+3×5+2×2+3=40(公里).【例10】 邮递员李文投送邮件的街道以及街道的长度如右图所示(单位:千米),每天小李要从邮局出发,走遍所有街道后回到邮局.请你帮他设计一条最短路线,并计算出这条路线有多少千米?分析:本题仍可以用一笔画图形的方法来解决.在图a 中共有六个奇点E ,F ,G ,H ,I ,J ,把这些奇点配对,每对之间用虚线连接(如图a),其中要用到D 点,这样图中就没有奇点了,从而可以不重复地走遍所有的街道.由于邮递员李文要重复走一些路段,因此重复走的路越短越好,即添上去的重复线段的总长度越短越好.在图a 中H 与E 之间有重叠,这样势必会增加李文所走路程的长度,应作调整.经调整后,将重叠部分去掉便得图b .在图b 的圈形闭路IHGJI 中,I ,J ,G ,H 各点没有连线时是奇点,连线后变成偶点,增加长度为50×2=100千米.而如果连IJ 和HG ,增加的长度仅为10×2=20,由此可知图b 需继续作调整,改成图c ,这种连接方法是最好的,它使李文行走的路线最短.根据以上分析,为了保证添上去的线段之和最短,应遵循下面的两条原则:(1)连线不能有重叠的线段;(2)在每一个圈形闭路上,连线长度之和不能超过 这个闭路总圈长的一半.经过分析可以知道,图c 的连接方法能使邮递员李文行走路线最短,而且能保证李文从邮局出发又回到邮局.这时他的行走路线为:邮局→A →I →J →I →H →G →H →E →D →F →D →G →J →B →C →D →E →邮局 他行走的全程为: (50+15)×4+20×4+10×6+20×2=440(千米).图a图b图c[小结]本题中采用的方法叫做“奇偶点图上作业法”,用这种方法来确定最短路线比较简便实用.此方法可以用下面的口诀来描述:画出路线图,确定奇偶点;奇点对对连,连线不重叠;闭路添连线.不得过半圈.[巩固]右图是某地区街道的平面图,图上的数字表示那条街道的长度.清晨,洒水车从A 出发,要洒遍所有的街道,最后再回到A.问:如何设计洒水路线最合理? 分析:这又是一个最短路线的问题.通过分析可以知道:在洒水路线中,K 是中间点,因此必须成为偶点,这样洒水车必须重复走KC 这条边(如下左图).至此,奇点的个数并未减少,仍是6个.容易得出,洒水车必须重复走的路线有:GF 、IJ 、BC.即洒水路线如下右图.全程45+3+6=54(里).1. (例1)判断下列各图能否一笔画.图aG I H F ECD BA图bF ED CBA分析:图a 中九个点全是偶点,因此可以一笔画,其中一种画法为:A →F →B →G →C →H →D →E →H →l →→F →G →l →E →A .图b 中A ,B ,C ,D 四个点均为奇点,故不可以一笔画.图c 中,只有A,C 为奇点,故可一笔画.其中一种画法为:A →D →E →C →H →N →G →M →F →A →B →C .2. (例3)下列各图至少要用几笔画完?分析:(1)4笔;(2)4笔;(3)2笔;(4)1笔;(5)1笔;(6)1笔.3.(例6)右图是某展览厅的平面图,它由五个展室组成,任两展室之间都有门相通,整个展览厅还有一个进口和一个出口,问游人能否一次不重复地穿过所有的门,并且从入口进,从出口出?分析:把每个展室看作一个结点,整个展厅的外部也看作一个点,两室之间有门相通,可以看作两点之间有边相连.这样,展厅的平面图就转化成了我们数学中的图,一个实际问题也就转化为这个图(如下图)能否一笔画成的问题了,即能否从A出发,一笔画完此图,最后再回到A.上图(b)中,所有的结点都是偶点,因此,一定可以以A作为起点和终点而一笔画完此图.也即游人可以从入口进,一次不重复地穿过所有的门,最后从出口出来.下面仅给出一种参观路线:A→E→B→C→E→F→C→D→F→A.4.(例7)一辆清洁车清扫街道,每段街道长1公里,清洁车由A出发,走遍所有的街道再回到A.怎样走路程最短,全程多少公里?分析:清洁车走的路径为: ABCNPBCDEFMNEFGHOLMHOIJKPLJKA. 即:清洁车必须至少重复走4段1公里的街道,如下图.最短路线全程为28公里.5.(例10)一个邮递员的投递范围如右图,图上的数字表示各段街道的长度.请你设计一条最短的投递路线,并求出全程是多少?分析:邮递员的投递路线如下图,即:路线为:ABCDEDOBOMNLKLGLNEFGHIMOJIJA.最短路线的全程为39+9=48.。
一笔画问题

一笔画问题画一个图案,如果用笔既不重复也不遗漏,纸不离笔,一笔画成,那么就称这个图案是一笔画图案.现在我们来研究的问题是:(1)怎样的图案才能一笔画成?(2)如果一个图案能一笔画成,那么该从哪里起笔到哪里收笔?需提醒大家的是,这些问题与图案中的“奇点”的个数有关.何谓奇点呢?我们知道,任何图案都是由线条(直线或曲线)连成的.在图案中,由三条或三条以上的方向各不相同的线连接在一起的点叫做图案点,通过图案点的线是奇数条就称奇点(当然,通过图案点的线是偶数条就称偶点,现在只需回答前面的问题而与偶点无关).例如,在下面各图案中的奇点个数见统计表(请读者对照图案辨认奇点).统计表:接着就请读者朋友拿起你的笔来逐个试画以上各图案,看能否一笔画成,将结论填在统计表内.并注意体会能一笔画的图案应该怎样画.最后,请根据上表归纳出前面两个问题的答案.【规律】(1)奇点数为0或2的图案可以一笔画成.奇点数多于2的图案不能一笔画成.(2)画奇数为0的图案时,可以选择任意点起笔都能一笔画成;画奇数为2的图案时,必须选择其中的一个奇点起笔,而到另一个奇点收笔才能一笔画成.【练习】1.下面各图案,能一笔画出来吗?试一试.2.容易看出,下面的两个图案都不能一笔画成,请在每个图案上各补画一条线就能使新图案一笔画成了.会吗?3.这是大数学家欧拉曾经研究过的一个著名数学问题----七桥问题.东普士的多尼斯堡城中有一条横贯城区的河流,河上有两个岛,两岸和两岛之间共架有七座桥、如下图所示:问人们能不重复地走遍这七座桥吗?4.回龙州公园的游览点与路线示意图如下.如果要使游人游完所有的游览点而不重复行走的路线,请问入口处和出口处应该设在什么位置?如果一个图形可以用笔在纸上连续不断而且不重复地一笔画成,那么这个图形就叫一笔画。
显然,在下面的图形中,(1)(2)不能一笔画成,故不是一笔画,(3)(4)可以一笔画成,是一笔画。
同学们可能会问:为什么有的图形能一笔画成,有的图形却不能一笔画成呢?一笔画图形有哪些特点?关于这个问题有一个著名的数学故事——哥尼斯堡七桥问题。
(六)中国邮递员问题

v•1 e 1 v•2
e4
e5
e2
v•3 e 3 v•4
该图不存在欧拉回路
存在奇点
定理 无向连通图G为欧拉图的 充要条件是G中无奇点
证明:必要性
已知G=(V,E)为欧拉图,即存在一条欧拉回路C, C经过G的每一条边,由于G为连通图, 所以G中的每个点至少在C中出现一次
v•35
• • 9
v
4
4
4
4 v9
G1
步骤1、若图中某条边有两条或多于两条的重复边
同时去掉偶数条,使图中每一条边最多有一条重复边
可得到重复边权和较小的欧拉图 G2 G2的重复边权和= 21
v•1 2 •v 6 4 •v 7
• • • v
5
2
6
v
3
5
4
3
v8
v•3 5
4
4
9 v•4 4 •v 9
G2
G2是欧拉图, 重复边权和=21
记 G G C 1 ( V , E ) E , EE1, V是 E中边的端 在 G 中, G 与 C 以 1的公v共 2为顶 起点 点取C 一 2
简单 C 2 : { v 2 ,回 e 1,0 v 5 ,e 5 路 ,v 6 ,e 6 ,v 1 ,e 1 ,v 2 }
记 G G C 2 ( V , E ) E , EE1, V是 E中边的
必要性G: 有设 一条 vi为以起,v点 j为终点的欧 L 拉 在 G上增加一 e(v条 i,vj)边 ,得连通 G, 图 把e边 加L 到 中G 得 的一条欧 C,拉 即 G为 回 欧路 拉图 d(v)为偶 ,v G 数 在 G 中,,d(vi ),d(vj )为奇数
哥尼斯堡七桥难题

从“哥尼斯堡七桥问题”谈到“中国邮递员问题”古城哥尼斯堡,景致迷人,碧波荡漾的普瑞格尔河横贯其境。
普瑞格尔河的两岸及河中的两个美丽的小岛,由七座桥连接组成了这座秀色怡人的城市(如图)。
古往今来,吸引了无数的游人驻足于此。
早在十八世纪,哥尼斯堡属于德国东普鲁士(今俄罗斯加里宁格勒。
1945年德国战败根据波茨坦会议的决定将哥尼斯堡连同东普鲁士一部分地区割让给苏联,次年为纪念刚逝世的苏联共产党和苏维埃国家领导人米哈伊尔·加里宁,柯尼斯堡更名为加里宁格勒)。
那时候,哥尼斯堡市民生活富足。
市民们喜欢四处散步,于是便产生这样的问题:是否可以设计一种方案,使得人们从自己家里出发,经过每座桥恰好一次,最后回到家里。
这便是著名的“哥尼斯堡七桥问题”。
热衷于这个有趣的问题的人们试图解决它,但一段时间内竟然没有人能给出答案。
后来,问题传到了瑞士著名数学家欧拉那里,居然也激起了他的兴趣。
他从人们寻求路线屡遭失败的教训中敏锐地领悟到,也许这样的方案根本就不存在。
欧拉经过悉心的研究,1736年,年方29岁的欧拉终于解决了这个问题,并向圣彼得堡科学院递交了一份题为《哥尼斯堡的七座桥》的论文。
论文不仅仅是解决了这一难题,而且引发了一门新的数学分支——图论的诞生。
论文的核心就是著名的“一笔画原理”:对满足下列两个要求的图就可以一笔画出:i.首先是连通图;ii.其次奇点个数为0或2,当且仅当奇点个数为0时,始点和终点重合,形成的一笔画称为欧拉回路,而当奇点个数为2时,形成的一笔画称为欧拉迹。
我们知道,对于可一笔画出的图,首先必须是连通的;其次对于图中的某点,如果不是始点或终点,那么它必有进有出,即交汇于此点的弧线总是成双成对的,此点必定是偶点。
如图,七桥问题的图的奇点的个数为4,这表明它不是欧拉回路,也不是欧拉迹,因而,不论始点和终点是否重合都不可能找到一条经过七座桥且每座桥只走一次的路线!随着时间的推移,图论不断发展,欧拉回路问题也有所拓广。
一笔画和中国邮递员问题

《集合论与图论》第17讲
14
Fleury算法(递归形式)
算法:
(1) if d(v)>1 then e:=v关联的任意非割边
(2)
else e:=v关联的唯一边
(3) u:=e的另一个端点.
(4) 递归地求G-e的从u到w的欧拉通路
27
作业(#13)
p234, 习题八, 2,3,4(更正: G-v0)
《集合论与图论》第17讲
28
定理1: 设G是无向连通图,则 (1) G是欧拉图
⇔ (2) G中所有顶点都是偶数度 ⇔ (3) G是若干个边不交的圈的并 证明: (1)⇒(2)⇒(3)⇒(1). (1)⇒(2): 若欧拉回路总共k次经过顶点v,则
d(v)=2k.
《集合论与图论》第17讲
6
定理1((2)⇒(3))
(2) G中所有顶点都是偶数度 (3) G是若干个边不交的圈的并 证明: (2)⇒(3): 若删除任意1个圈上的边,
else Gi+1:=G-E(Pi+1), e:=Gi+1中与Pi+1上vk关联的任意边, Pi+1:= vk…vk. v*:=vk,v:=vk, i:=i+1, goto (1).
《集合论与图论》第17讲
19
逐步插入回路算法(举例)
《集合论与图论》第17讲
20
应用(轮盘设计)
000,001,010,011,100,101,110,111
i1goto集合论与图论第17讲20逐步插入回路算法举例集合论与图论第17讲21应用轮盘设计集合论与图论第17讲22应用轮盘设计00110110000001100010101011110111集合论与图论第17讲23中国邮递员问题中国邮递员问题chinesepostmanproblem
中国邮递员问题 ppt课件

中国邮递员问题
管梅谷教授首先提出的方法是奇偶点图上作业 法(1962年)
Edmonds,Johnson(1973年)给出有效算法。
复杂度为 O(|V(G)|2|E(G)|)
中国邮递员问题
中国邮递员问题
解决这样的问题,可以采用奇偶 点图上作业法:如果在配送范围 内,街道中没有奇点,那么他就 可以从配送中心出发,走过每条 街道一次,且仅一次,最后回到 配送中心,这样他所走的路程也 就是最短的路程。
原来的问题可以叙述为在一个有奇点的图中, 要求增加一些重复边,使新图不含奇点,并且 重复边的总权为最小。
我们把使新图不含奇点而增加的重复边简称为 可行(重复边)方案,使总权最小的可行方案 为最优方案。
现在的问题是第一个可行方案如何确定? 在确定一个可行方案后,怎么判断这个方案是
否为最优方案? 若不是最优方案,如何调整这个方案?
Fleury算法的复杂度是 O(| E(G)|2)
中国邮递员问题
求欧拉回路的算法(回路算法)
算法思想: 首先得到一个回路C1, 再在剩
下的图G- C1中求一条与C1有公共顶点的
回路C2, 则C1与 C2构成一个更长的回路,
继续下去可得到含所有边恰好一次的回
路. 回路算法的复杂度是
O(|
E(G) |)
这个问题就是一笔画问题。
中国邮递员问题
管梅谷教授。
上海市人。1957年毕业于华 东师范大学数学系。历任 山东师范大学讲师、副教 授、教授、校长,中国运 筹学会第一、二届常务理 事,山东省数学学会第四 届副理事长,山东省运筹 学会第一届副理事长,山 东省世界语协会理事长。 是第六届全国政协委员。 从事运筹学及其应用的研 究,对最短投递路线问题 的研究取得成果。所提模 型在国外称为中国投递问 题。
第六节 中国邮递员问题

e4
3
4
e3
e4
e1
V4 V2
3
4
e3
2
V2
e2
2
e5
V3
1
e2
2
e5
V3
1
e1
V4
(b)
8 30(a )
V1
V1
2
e4
3
4
e3
e4
e1
V4 V2
3
4
e3
2
V2
e2
2
e5
V3
1
e2
2
e5
V3
1
e1
V4
(d )
(c )
②
赋权图G的每个闭链上,
重复边权之和不超过该闭链总权数的一半
或该闭链中非重复边权之和. 设重复边权之和为a,非重复边权之和为b:
1 a (a b ) 2
ab
作业
195页
习题8
8.3题
第六节 中国邮递员问题 所谓中国邮递员问题,用图的语言来描 述,就是给定一个赋权连通图G ,要寻求一 个圈,使得经过G的每条边至少一次,并且 圈的总圈数最小。
这个问题是由我国数学家管梅谷教授于 1962年首先提出来的,因此称为“中国邮路 问题”. 这个问题和所谓的“一笔画问题”联系密切 。
8. 6. 1 一笔画问题
定理 8.6
加边法化欧拉图的原则和方法是:
在赋权图G的一些边上,加且仅加一条重 复边,使图G的每个顶点成为偶次顶点 ;
①
赋权图G的每个闭链上,重复边权之和不 超过该闭链总权数的一半或该闭链中非重复 边权之和.
②
例8.8 设有图 8-30(a)所示的赋权图,构造 总权数最小的闭的欧拉链.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《集合论与图论》第17讲
14
Fleury算法(递归形式)
算法:
(1) if d(v)>1 then e:=v关联的任意非割边
(2)
else e:=v关联的唯一边
(3) u:=e的另一个端点.
(4) 递归地求G-e的从u到w的欧拉通路
定理1: 设G是无向连通图,则 (1) G是欧拉图
⇔ (2) G中所有顶点都是偶数度 ⇔ (3) G是若干个边不交的圈的并 证明: (1)⇒(2)⇒(3)⇒(1). (1)⇒(2): 若欧拉回路总共k次经过顶点v,则
d(v)=2k.
《集合论与图论》第17讲
6
定理1((2)⇒(3))
(2) G中所有顶点都是偶数度 (3) G是若干个边不交的圈的并 证明: (2)⇒(3): 若删除任意1个圈上的边,
22
中国邮递员问题
中国邮递员问题(Chinese postman problem): 求邮递员走遍管区所有街道的 最短回路
管梅谷(Guan Mei-gu),1962,中国 运筹学(Operation Research) 组合优化(Combinatorial Optimization)
一组有限条指令, 具有以下特征:
输入: 算法工作对象 输出: 算法工作结果 确定性: 算法根据输入和当前工作状态, 决定
下一步采用的指令 可行性: 算法的指令都是可以实现的 终止性: 算法工作有穷步后停止
输入
指令组 工作区
输出
《集合论与图论》第17讲
13
Fleury算法
输入: 连通图G,起点v,终点w. 若v≠w, 则 除v,w外的顶点都有偶数度;若v=w, 则所 有顶点都有偶数度.
解法: (1) 求带权图G所有奇数顶点之间的短程线 (2) 用所有奇数顶点和短程线得完全图K (3) 求K的最小完美匹配M (4) 用M给G沿短程线加重复边得G* (4) 求G*的欧拉回路
《集合论与图论》第17讲
25
中国邮递员问题(举例)
A2 B1 C1 D2 E
G1
6
5
3
I 2H
4
G2 F
B2 K5 8
H4
D 57
G
A2 B1 C1 D2 E
G* 1
6
5
3
I 2H
4
G2 F
最优路线: ABCDEFGHBCDGHIA, W(G*)=35
《集合论与图论》第17讲
26
总结
七桥问题,一笔画,欧拉通(回)路,欧拉图 判定欧拉图的充分必要条件 求欧拉回路的算法 中国邮递员问题
《集合论与图论》第17讲
ba c
a
1
0
c
1
1
0
《集合论与图论》第17讲
1 0 1
21
应用(轮盘设计)
D=<V,E>, V={00,01,10,11}, E={ abc=<ab,bc> | a,b,c∈{0,1} }
000
00
001
100
01 010 10
101
011 11
110
1
11
1
0
0
0
1
1
00
111
《集合论与图论》第17讲
(5) 把e接续在递归地求出的通路上
《集合论与图论》第17讲
15
Fleury算法(迭代形式)
算法:
(1) P0:=v; (2) 设Pi=v0e1v1e2…eivi已经行遍,设Gi=G-
{e1,e2 ,… ,ei}, ei+1:= Gi中满足如下2条件的边: (a) ei+1与vi关联 (b) 除非别无选择,否则ei+1不是Gi中的桥 (3) 若Gi≠Ni, 则回到(2); 否则算法停止
《集合论与图论》第17讲
18
逐步插入回路算法
(0) i:=0, v*:=v,v:=v1,P0=v1, G0=G. (1) e:=在Gi中与v关联的任意边(v,v’),
Pi+1:=“Pi”ev’. (2) if v’≠v* then i:=i+1, v=v’, goto (1). (3) if E(Pi+1)=E(G) then 结束
第17讲 欧拉图
1. 七桥问题,一笔画,欧拉通(回)路,欧拉图 2. 判定欧拉图的充分必要条件 3. 求欧拉回路的算法 4. 中国邮递员问题
《集合论与图论》第17讲
1
七桥问题
七桥问题(Seven bridges of Königsberg problem): River Pregel, Kaliningrad, Russia
《集合论与图论》第17讲
2
Leonhard Euler
Leonhard Euler(1707~1783):
人类有史以来最多产的数学家. 1736年,“七桥问题”,图论和拓扑学诞生
C
c A
d
g e
D
a bf
B 《集合论与图论》第17讲
3
一笔画
《集合论与图论》第17讲
4
欧拉图(Eulerian)
《集合论与图论》第17讲
16
论》第17讲
17
Fleury算法(正确性证明)
定理5: 设G是无向欧拉图,则Fleury算法 终止时得到的简单通路是欧拉回路
证明: (1) Pm是回路: 显然. (2) Pm经过G中所有边: (反证)否则,
G-Pm的连通分支还是欧拉回路, 并且与 Pm相交. 若v0是交点,则算法不应结束; 若 v0不是交点,则算法在最后离开交点回到 v0时走了桥; 这都是矛盾! #
则所有顶点的度还是偶数, 但是不一定连 通了. 对每个连通分支重复进行.
《集合论与图论》第17讲
7
定理1((3)⇒(1))
(1) G是欧拉图 (3) G是若干个边不交的圈的并 证明: (3)⇒(1): 有公共点但边不交的简单
回路, 总可以拼接成欧拉回路: 在交点处, 走完第1个回路后再走第2个回路. # 用归纳法严格证明
27
作业(#13)
p234, 习题八, 2,3,4(更正: G-v0)
《集合论与图论》第17讲
28
《集合论与图论》第17讲
8
无向半欧拉图的充分必要条件
定理2: 设G是无向连通图,则 (1) G是半欧拉图
⇔ (2) G中恰有2个奇度顶点 证明: (1)⇒(2): 欧拉通路的起点和终点是
奇数度,其余顶点都是偶数度. (2)⇒(1): 在两个奇数度顶点之间加1条新边,
所有顶点都是偶数度,得到欧拉回路.从欧 拉回路上删除所加边后,得到欧拉通路. #
else Gi+1:=G-E(Pi+1), e:=Gi+1中与Pi+1上vk关联的任意边, Pi+1:= vk…vk. v*:=vk,v:=vk, i:=i+1, goto (1).
《集合论与图论》第17讲
19
逐步插入回路算法(举例)
《集合论与图论》第17讲
20
应用(轮盘设计)
000,001,010,011,100,101,110,111
《集合论与图论》第17讲
10
有向半欧拉图的充分必要条件
定理4: 设G是无向连通图,则 (1) G是半欧拉图
⇔ (2) G中恰有2个奇度顶点, 其中1个入度 比出度大1,另1个出度比入度大1, 其余顶 点入度等于出度. #
《集合论与图论》第17讲
11
例
《集合论与图论》第17讲
12
算法(algorithm)
欧拉通路(Euler trail): 经过图中所有边的 简单通路
欧拉回路(Euler tour/circuit): 经过图中所 有边的简单回路
欧拉图(Eulerian): 有欧拉回路的图 半欧拉图(semi-Eulerian): 有欧拉通路的
图
《集合论与图论》第17讲
5
无向欧拉图的充分必要条件
《集合论与图论》第17讲
9
有向欧拉图的充分必要条件
定理3: 设G是有向连通图,则 (1) G是欧拉图
⇔ (2) ∀v∈V(G), d+(v)=d-(v) ⇔ (3) G是若干个边不交的有向圈的并 证明: (1)⇒(2)⇒(3)⇒(1). (1)⇒(2): 若欧拉回路总共k次经过顶点v,则
d+(v)=d-(v)=k. 其余与定理1类似. #
《集合论与图论》第17讲
23
带权图(weighted graph)
带权图(weighted graph): G=<V,E,W>,
W:E→R, W(e)称为e的权
B5 C
3
5
A 8 14 10
D
B5 C
3
5
A 8 14 10
D
4
9
4
9
F6 E
F6 E
13
《集合论与图论》第17讲
24
中国邮递员问题(解法)