高等数学-00-0绪论ppt课件
合集下载
高等数学课件详细

分学
多元微积分的应用实例
物理学:描述物理现象,如流体力学、电磁学等 工程学:解决工程问题,如结构分析、控制系统设计等 经济学:分析经济模型,如市场均衡、最优化问题等 计算机科学:用于图像处理、机器学习等领域
无穷级数与常微分
07
方程
无穷级数的概念和性质
性质:收敛性、发散 性、绝对收敛性、条
件收敛性等
数
常微分方程的概念和分类
常微分方程:描述函数在某点或某区 间上的变化规律的方程
一阶常微分方程:只含有一个未知函 数和一个自变量的方程
二阶常微分方程:含有两个未知函数 和两个自变量的方程
高阶常微分方程:含有多个未知函数 和多个自变量的方程
线性常微分方程:未知函数和自变量 之间的关系是线性的方程
非线性常微分方程:未知函数和自变 量之间的关系是非线性的方程
常微分方程的基本解法与实例
基本解法:分离变量法、积分因子法、常数变易法等 实例:求解一阶线性常微分方程、求解二阶线性常微分方程等 应用:在物理、化学、生物等领域有广泛应用 难点:求解高阶常微分方程、求解非线性常微分方程等
微分方程的应用实例
生物:描述生物种群增长、 生态平衡等现象
化学:描述化学反应速率、 物质扩散等现象
06
多元函数微积分
多元函数的极限与连续性
多元函数的极限:定义、性质、计算方法 多元函数的连续性:定义、性质、判断方法 多元函数的可微性:定义、性质、判断方法 多元函数的可导性:定义、性质、判断方法 多元函数的可积性:定义、性质、判断方法 多元函数的积分:定义、性质、计算方法
偏导数与全微分
性质。
函数连续性的 性质:连续函 数具有局部有 界性、局部保 号性、局部保 序性等性质。
多元微积分的应用实例
物理学:描述物理现象,如流体力学、电磁学等 工程学:解决工程问题,如结构分析、控制系统设计等 经济学:分析经济模型,如市场均衡、最优化问题等 计算机科学:用于图像处理、机器学习等领域
无穷级数与常微分
07
方程
无穷级数的概念和性质
性质:收敛性、发散 性、绝对收敛性、条
件收敛性等
数
常微分方程的概念和分类
常微分方程:描述函数在某点或某区 间上的变化规律的方程
一阶常微分方程:只含有一个未知函 数和一个自变量的方程
二阶常微分方程:含有两个未知函数 和两个自变量的方程
高阶常微分方程:含有多个未知函数 和多个自变量的方程
线性常微分方程:未知函数和自变量 之间的关系是线性的方程
非线性常微分方程:未知函数和自变 量之间的关系是非线性的方程
常微分方程的基本解法与实例
基本解法:分离变量法、积分因子法、常数变易法等 实例:求解一阶线性常微分方程、求解二阶线性常微分方程等 应用:在物理、化学、生物等领域有广泛应用 难点:求解高阶常微分方程、求解非线性常微分方程等
微分方程的应用实例
生物:描述生物种群增长、 生态平衡等现象
化学:描述化学反应速率、 物质扩散等现象
06
多元函数微积分
多元函数的极限与连续性
多元函数的极限:定义、性质、计算方法 多元函数的连续性:定义、性质、判断方法 多元函数的可微性:定义、性质、判断方法 多元函数的可导性:定义、性质、判断方法 多元函数的可积性:定义、性质、判断方法 多元函数的积分:定义、性质、计算方法
偏导数与全微分
性质。
函数连续性的 性质:连续函 数具有局部有 界性、局部保 号性、局部保 序性等性质。
《高数基础知识》课件

05
CHAPTER
空间解析几何
空间直角坐标系是描述空。
空间直角坐标系
在空间直角坐标系中,点的位置可以用三个坐标来表示,这三个坐标分别对应于三个坐标轴。
点的坐标表示
在空间解析几何中,向量可以用三个坐标来表示,这三个坐标分别对应于三个坐标轴上的分量。
平面与直线的交点
如果一条直线和一个平面相交,那么它们的交点可以用直线和平面的方程联立求解得到。
平面与平面的交线
如果两个平面相交,那么它们的交线可以用两个平面的方程联立求解得到。
06
CHAPTER
多项式函数与插值法
多项式的定义
多项式是数学中一个基本概念,由一个或多个项通过加法或减法组合而成。
多项式的根
总结词
详细描述
总结词
掌握极限的四则运算法则,理解极限运算的基本方法
详细描述
极限的四则运算法则包括加减乘除和复合运算,是研究函数极限行为的基础。极限运算的基本方法包括利用极限的四则运算法则、等价无穷小替换、洛必达法则等,这些方法可以帮助我们求解各种极限问题,并进一步研究函数的性质和变化规律。
03
CHAPTER
样条插值法的应用
THANKS
感谢您的观看。
详细描述
总结词
高数的发展历程
详细描述
高数的发展可以追溯到17世纪,随着微积分学的发展,高数逐渐形成并完善。在18世纪和19世纪,高数的发展取得了巨大的进步,许多数学家如欧拉、高斯等都为高数的发展做出了杰出的贡献。
总结词
高数在日常生活和科学中的应用
详细描述
高数在日常生活和科学中有着广泛的应用。例如,在物理学中,高数被用于描述和解决力学、电磁学、光学等领域的问题;在经济学中,高数被用于研究金融、投资、贸易等问题;在工程学中,高数被用于设计、分析、优化各种系统和结构。
CHAPTER
空间解析几何
空间直角坐标系是描述空。
空间直角坐标系
在空间直角坐标系中,点的位置可以用三个坐标来表示,这三个坐标分别对应于三个坐标轴。
点的坐标表示
在空间解析几何中,向量可以用三个坐标来表示,这三个坐标分别对应于三个坐标轴上的分量。
平面与直线的交点
如果一条直线和一个平面相交,那么它们的交点可以用直线和平面的方程联立求解得到。
平面与平面的交线
如果两个平面相交,那么它们的交线可以用两个平面的方程联立求解得到。
06
CHAPTER
多项式函数与插值法
多项式的定义
多项式是数学中一个基本概念,由一个或多个项通过加法或减法组合而成。
多项式的根
总结词
详细描述
总结词
掌握极限的四则运算法则,理解极限运算的基本方法
详细描述
极限的四则运算法则包括加减乘除和复合运算,是研究函数极限行为的基础。极限运算的基本方法包括利用极限的四则运算法则、等价无穷小替换、洛必达法则等,这些方法可以帮助我们求解各种极限问题,并进一步研究函数的性质和变化规律。
03
CHAPTER
样条插值法的应用
THANKS
感谢您的观看。
详细描述
总结词
高数的发展历程
详细描述
高数的发展可以追溯到17世纪,随着微积分学的发展,高数逐渐形成并完善。在18世纪和19世纪,高数的发展取得了巨大的进步,许多数学家如欧拉、高斯等都为高数的发展做出了杰出的贡献。
总结词
高数在日常生活和科学中的应用
详细描述
高数在日常生活和科学中有着广泛的应用。例如,在物理学中,高数被用于描述和解决力学、电磁学、光学等领域的问题;在经济学中,高数被用于研究金融、投资、贸易等问题;在工程学中,高数被用于设计、分析、优化各种系统和结构。
《高等数学课件PPT》-完整详细版

1
微积分基本定理
微积分基本定理的概念和推导,描述定积分和不定积分之间的关系。
2
带变限积分
带变限积分的计算方法和几何解释,通过例题演示如何求解带变限积分。
极限和连续
深入介绍极限和连续的概念、性质和运算法则,帮助学生理解和掌握这两个重要概念。
极限
数列极限和函数极限的定义和性质,常见的极限计 算方法和极限存在准则。
连续
函数连续的定义和判定条件,连续函数的性质和运 算法则。
函数及其图像
介绍函数的概念和性质,以及如何通过绘制函数图像来更好地理解函数。
函数
函数的定义、定义域、值域和性质,常见函数类型 和函数之间的关系。
图像
绘制函数图像的方法和技巧,通过观察图像认识函 数的特点和变化趋势。
导数和微分
介绍导数和微分的概念、性质和计算方法,以及它们在几何和物理中的应用。
1 导数
导数的定义和性质,导数的计算方法和常见 函数的导数公式。
2 微分
微分的概念和计算方法,微分在几何和物理 中的应用。
《高等数学课件PPT》-完整详 细版
一份完整详细的高等数学课件PPT,深入介绍高等数学的各个知识点,帮助 学生更好地理解和掌握这门重要学科。
课程目标和重要性
通过介绍高等数学课程的学习目标和重要性,帮助学生明确学习目标,激发学习兴趣,并认识到 高等数学在现实生活和学科发展中的广泛应用。
学习目标
深入理解高等数学的各个概念和方法,提高解决数学问题的能力。
不定积分与牛顿-莱布尼茨公式
深入研究不定积分的概念、性质和计算方法,以及牛顿-莱布尼茨公式的推导和应用。
1 不定积分
不定积分的定义和计算方法,常见函数的不 定积分公式。
高等数学课件完整

要点二
二重积分的性质
二重积分具有一些基本性质,如线性性、可加性、保号性 等。这些性质在求解二重积分时非常有用。
07 无穷级数
常数项级数的概念与性质
常数项级数的定义
由一系列常数按照一定顺序排列并加上正负号组 成的无穷序列。
收敛与发散
常数项级数可能收敛于一个有限值,也可能发散 至无穷大或不存在。
级数的基本性质
特点
高等数学具有抽象性、严谨性和 应用广泛性等特点,需要学生具 备较强的逻辑思维能力和数学基 础。
高等数学的重要性
培养逻辑思维能力
高等数学的学习有助于培养学生的逻辑思维能力,提高学生的数学 素养和解决问题的能力。
为后续课程打下基础
高等数学是许多后续课程的基础,如物理学、工程学、经济学等, 掌握高等数学有助于学生更好地理解和应用这些学科的知识。
不定积分的性质
不定积分具有线性性、 可加性、常数倍性等基 本性质,这些性质在求 解积分时非常有用。
基本积分公式
掌握基本积分公式是求 解不定积分的基础,如 幂函数、指数函数、三 角函数等的基本积分公 式。
定积分的概念与性质
定积分的定义
定积分是积分学中的另一个重 要概念,它表示函数在某个区
间上的积分值。定积分记为 ∫[a,b]f(x)dx,其中a和b是积
函数的性质
函数具有有界性、单调性、奇偶性、周 期性等重要性质,这些性质对于研究函 数的图像和变化规律具有重要意义。
极限的概念与性质
1 2 3
极限的定义
极限是描述函数在某一点或无穷远处的变化趋势 的重要工具,它可以通过不同的方式定义,如数 列极限、函数极限等。
极限的性质
极限具有唯一性、有界性、保号性、四则运算法 则等重要性质,这些性质对于求解极限问题和证 明极限定理具有重要作用。
高等数学第一章的总结-PPT

n
1
lim
n
n2 n2
lim n1
1
n2
1
lim n
n
1
n2
n2
1
2
n2
1
n
1
例:
lim
1
1
(e n
2
en
n
en
)
n n
1
e
x
d
x
e 1
0
1
n
1
解:原式
lim
n
1 n
e
n
(1
e
1
n
)
(1
e) lim
n
n
1
1en
1en
1
(1 e) lim ln(1 u) (1 e) lim ln(1 u) u e 1.
)x
e
两个重要极限
(1) lim sin 1
0
(2) lim ( 1 1 ) e
1
或 lim(1 ) e
0
注: 代表相同的表达式
思考与练习
填空题 ( 1~4 )
1. lim sin x __0___ ;
x x
3. lim xsin 1 _0___ ;
x0
x
2. lim xsin 1 __1__ ;
从此时刻以后 0 x x0 0 x x0
f (x)
f (x) A
x x0
x x0 0
思考题
x
sin
1 x
,
试问函数 f ( x) 10,
5
x2,
x0 x 0在x 0处
x0
的左、右极限是否存在?当 x 0 时, f ( x) 的
高等数学ppt课件

05
常微分方程初步
常微分方程基本概念
1 2
常微分方程定义
明确常微分方程的定义,包括独立变量、未知函 数、方程阶数等概念。
初始条件和边界条件
解释初始条件和边界条件在解常微分方程中的作 用和意义。
3
常微分方程的解
阐述通解、特解、隐式解、显式解等概念,并举 例说明。
一阶常微分方程解法
分离变量法
介绍分离变量法的原理、步骤和适用范围,通 过实例演示其应用。
向量积定义
两向量按照右手定则所构成的平行四边形的面积,结果为一向量,可用于计算法向量、判断三向量共 面等。
平面和直线方程求解方法
要点一
平面方程求解方法
包括点法式、一般式等,用于确定平面在空间中的位置。
要点二
直线方程求解方法
包括点向式、参数式等,用于确定直线在空间中的位置和 方向。
常见曲面方程及其图形特征
为未来职业生涯打基础
许多行业都需要具备一定的数学基础 ,学习高等数学有助于为未来职业生 涯打下坚实基础。
02
函数与极限
函数概念与性质
函数定义
详细解释函数的定义,包括函数值、定义域、值域等概念。
函数性质
介绍函数的单调性、奇偶性、周期性等基本性质,并举例说明。
初等函数及其图像
基本初等函数
详细讲解幂函数、指数函数、对数函数、三角函数等基本初等函数的定义、性质和图像。
隐函数求导法
阐述隐函数存在定理,介绍隐函数求导方法及应用实例。
二重积分定义和计算方法
二重积分定义
阐述二重积分概念、性质及实际意义,介绍 二重积分在物理、工程等领域的应用。
二重积分计算方法
分别介绍直角坐标系和极坐标系下二重积分 的计算方法,包括累次积分法、换元积分法
高等数学课件详细

导数的应用
第五章
函数的单调性和极值
导数与函数的单调性:导数大于0,函数单调递增;导数小于0,函数单调递减
极值的定义:函数在某点处的导数为0,且该点两侧的导数符号相反,则该点为函数的极 值点
极值的分类:极大值和极小值
极值的求解:通过求导数等于0的点,并判断该点两侧的导数符号,确定极值点
曲线的凹凸性和拐点
质。
定积分的应用: 定积分在物理、 工程、经济等 领域有着广泛 的应用,如计 算物体的质量、 体积、重心等。
定积分的计算 方法:常用的 定积分计算方 法有牛顿-莱布 尼茨公式、积 分表法、数值
积分法等。
定积分的运算和求法
定积分的定义: 对函数在某一区 间上的积分
定积分的性质: 线性性、可加性、 单调性等
导数:函数在某一点的切 线斜率
凹凸性:函数在某点附近 的增减性
拐点:函数在某点附近的 凹凸性发生变化的点
应用:判断函数的单调性、 极值、最值等
洛必达法则和不定积分
洛必达法则:用于求解极限, 包括0/0型和∞/∞型
不定积分:用于求解函数的原 函数,包括基本积分公式和换 元积分法
洛必达法则的应用:求解极限、 求导、求积分等
不定积分的应用:求解函数的 原函数、求导、求积分等
泰勒公式和等价无穷小量代换
等价无穷小量代换:将复杂 函数替换为简单函数,便于 计算和近似
泰勒公式的应用:求极限、 求导数、求积分等
泰勒公式:将函数展开为多 项式形式,便于计算和近似
等价无穷小量代换的应用: 求极限、求导数、求积分等
不定积分与定积分
极限的应用:极限在微积分、函数分析、概率论等领域有着广泛的应用。
极限的运算和求法
极限的定义:函数 在某点或某区间上 的极限值
高等数学(完整版)详细 ppt课件

3)的定义域.
1 x2
解
f
(x)
1 2
0 x1 1 x2
f
(x
3)
1 2
0 x31 1 x32
1 2
3 x 2 2 x 1
故 D f :[3,1]
ppt课件
17
三、函数的特性
1.函数的有界性:
若X D, M 0, x X , 有 f ( x) M 成立,
因变量
自变量
当x0 D时, 称f ( x0 )为函数在点x0处的函数值.
函数值全体组成的数集 W { y y f ( x), x D} 称为函数的值域.
ppt课件
9
函数的两要素: 定义域与对应法则.
( x D x0)
对应法则f
(
W
y f (x0 )
自变量
)
因变量
约定: 定义域是自变量所能取的使算式有意义 的一切实数值.
{x a x b} 称为半开区间, 记作 (a,b]
有限区间
[a,) {x a x} (,b) {x x b}
无限区间
oa
x
ob
x
区间长度的定义:
两端点间的距离(线段的长度)称为区间的长度.
ppt课件
4
3.邻域: 设a与是两个实数 , 且 0.
数集{ x x a }称为点a的邻域 ,
Q----有理数集 R----实数集
数集间的关系: N Z, Z Q, Q R. 若A B,且B A,就称集合A与B相等. ( A B)
例如 A {1,2}, C { x x2 3x 2 0}, 则 A C.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学水平
熟练使用初等数学, 熟悉公理化几何
懂微积分和统计 能处理经济问题
能使用高等微积分、 近世代数和统计
.
19
技术水平 职业
生物化学师 心理学家 律师 经济分析师 会计 公司董事 计算机推销员 税务代理人
私人经纪人
2. 职业要求
语言水平
6 6 6 4 5 4 4 6 5
.
数学水平
6 5 4 5 5 5 4 4 5
.
6
二、话说数学 —— 数学是什么?
1. 数学是关于数和形的学问
数—— 代数:数量关系的科学, 有序思 维占主导, 培养逻辑推理能力;
形—— 几何:空间形式的科学, 空间想
象、形象思维占主导, 培养直觉
能力和洞察力.
.
7
2. 数学是关于模式和秩序的科学
人类的心智和文化为模式的识别、分类
和利用建立的一套规范化的思想体系,
的价值, 而它的直接体现是数字化世界。
高新技术本质上是一种数学技术 — 这一
观点已为越来越多的人所认同。
.
12
5. 数学应该称为 “ 数学科学 ”
因为数学是研究量化模式的具有普 遍性的科学,而不是各种特殊的物质运 动形态的科学,当今学术界人士才普遍 认识到在科学分类法中,应当把数学与 自然科学、社会科学(人文科学)、技
大学文化是一种严谨求是的文化,
大学文化是一种具有强烈批判精神
的文化.
.
5
大学的英文是 University ,
它跟宇宙 (Universe) 是同一个字根。 试想,如果宇宙中只有一种物质形态,不就 完结了吗 ?群星灿烂、变幻无穷才能称之为 宇宙。而大学就应该是观念的宇宙、知识的 宇宙、人才的宇宙。
被称之为数学.
数学的处理对象分为三类:
数据,测量,观察资料;
推断,演绎,证明;
自然现象, 人类行为, 社会系统的各
种模式。
.
8
3. 数学的三大基本特征
研究对象的高度抽象性; 论证方法的演绎性与逻辑的严谨性; 应用的极其广泛性.
正像已故著名数学家华罗庚教授曾指出的 —
宇宙之大, 粒子之微, 火箭之速, 化工之巧, 地球
20
三、话说微积分 (Calculus)
1. 数学的三大核心领域
代数 (Algebra)
几何 (Geometry) 分析 (Mathematical Analysis)
2. 数学科学按内容可分成五大学科
纯粹数学 (Pure mathematics)
应用数学 (Applied mathematics)
微分几何大师陈省身对中国在21世纪成
为数学强国充满了无限的期望。
.
18
数学水平与就业
1999年美国出版了一本教材:《理解数学》 书中第三页列出了如下的就业表.
1. 摘要,参加辩论
5
读科技杂志、经济报告、法律 文件,写社论、评论文
6
比 5 级更高,能撰写研究论文
.
14
Poincare 把数学美的基本特征概括为:
简洁、对称、完备、统一、和谐与奇异.
7. 数学科学与人类文明
数学与人类文明同样古老, 数学是构筑 当代物质文明的基石。
数学文化——以理性的精神对待人与社 会、及人与自然的关系。
“李约瑟难题” ? —— 数学与思想解放.
.
15
谈谈数学素质
数学素质是指: 人认识和处理数形规律、 逻辑关系及抽象事物的悟性和潜能,指人 通过数学教育而获得的一种理性思辩意识 和能力、理性的思维模式和研究精神.
之变,生物之谜,日用之繁,数学无处不在. 缺少
了数学就不能准确地刻画客观事物的变化,更不
能由已知数据推出其它数据,因而就减少了科学
预见的可能性,减弱了科学预见的精确度.
.
9
4. 数学提供了独特的思考方式
抽象化 ——从众多不同的现象抽象出共
有的性质来研究;
符号化 ——把自然语言扩充深化为简明、
紧凑的符号语言,这是自然科学
高等数学
配套课件
绪论
2005.8
.
1
贺同学们
1. 告别应试教育 2. 走向独立人
.
2
绪论
一、什么是大学及大学文化 ? 二、话说数学 —— 数学是什么? 三、话说微积分 (Calculus) 四、在大学学数学 五、教学安排与要求
.
3
一、什么是大学及大学文化 ?
前清华大学校长 (1931.10__1948.12 任国立清华大学校长 )
梅贻琦 《大学一解》
《礼记》的《大学》篇开章明义之数语 即曰,“大学之道,在明明德,在新民, 在止于至善”.
若论其目,则格物,致知,诚意,正心, 修身,属明明德; 而齐家,治国,平天下, 属新民。
.
4
大学文化是一种追求真理的文化, 大学文化是一种追求理想和人生
抱负的文化, 大学文化是一种崇尚学术的文化,
的结合已经形成了一种关键性的可实现的
技术,称为数学技术 。
.
11
数学技术本质上是数学内容的物化, 成
为计算机的软件及硬件、多种技术的一个
核心组成部分。 数学成为一种技术、而
且是关键的、有自主知识产权的技术。数
学可以成为产品、 而且是高科技的产品,
能真正、直接转化为生产力,创造财富。
历史上从未有象现在这样认识到数学
.
16
大学数学教育目的在使大学生养成
科学的基本态度——实事求是;
科学的基本方法——观察、实验和推理;
科学的基本精神——理性精神、
怀疑和批判、探索和创新。
.
17
历史已经证明,而且将继续证明,一种 没有相当发达的数学的文化是注定要衰落 的,一个不以掌握数学作为一种文化的民 族也是注定要衰落的。
数学水平是一个民族的文化修养与智力 创新力发展的度量。环顾世界,所有的经 济大国和科技大国,必然也是数学强国。
公有的阐述方式,以数学为最;
公理化 —— 从前提、从数据、从图形,
从不完全和不一致的原始资料进
行推理。归纳与演绎并用。
.
10
最优化 —— 考虑所有的可能性, 从中寻
求最优解。
模型化 —— 对现实现象进行分析, 从中
找出数量关系, 并化为数学问题。 应用这些思考方式形成的悟性和经验 — 数学能力.
数学技术 — 数学思想和方法与计算技术
术科学相并列,称之为数学科学。
.
13
6. 数学与美
科学研究的任务有两条, 正如庄子所说: “判天地之美,析万物之理”.
美是艺术家所追求的一种境界, 同样也 是数学界公认的一种评价标准.
数学是艺术: 思维的艺术、抽象的艺术. 数学求真, 就是求美, 真就是美.
美学的四种中心构架:
史诗、音乐、 造型、 数学.