统计学第5章 方差分析

合集下载

统计学:5方差分析

统计学:5方差分析

统计学
ST管AT理IST者ICS层次水平的不同是否会导致评分的显著差异? (第三版)
一家管理咨询公司为 高、中、初级管 理者提供人力资 源讲座。听完讲 座后随机抽取不 同层次管理者大 满意度评分,取 0.05 的 显 著 性 水 平,检验管理者 层次水平的不同 是否会导致评分 的显著差异?
高级 7 7 8 7 9
统计学
STATISTICS (第三版)
第 5 章 方差分析
5.1 方差分析的基本原理 5.2 单因素方差分析 5.3 双因素方差分析
7-1
2008年8月
统计学
STATISTICS (第三版)
学习目标
方差分析的基本思想和原理 单因素方差分析 多重比较 双因素方差分析的方法
7-2
2008年8月
STATISTICS (第三版)
方差分析的基本假定
1. 正态性(normality)。每个总体都应服从正态分布, 即对于因子的每一个水平,其观测值是来自正态 分布总体的简单随机样本
2. 方差齐性(homogeneity variance)。各个总体的方 差必须相同,对于分类变量的k个水平,有 12=22=…=k2
3. 独立性(independence)。每个样本数据是来自因 子各水平的独立样本(该假定不满足对结果影响较 大)
7-5
2008年8月
统5.1计学方差分析的基本原理
STATISTICS (第三版)
方差分析的基本假定
如果原假设成立,即H0 :m1=m2=……=mk
自变量对因变量没有显著影响
每个样本都来自均值为m、方差为 2的同一正态总体
中级 8 9 8 10 9 10 8
初级 5 6 5 7 4 8

(整理)统计学教案习题05方差分析

(整理)统计学教案习题05方差分析

第五章 方差分析一、教学大纲要求(一)掌握内容 1.方差分析基本思想(1) 多组计量资料总变异的分解,组间变异和组内变异的概念。

(2) 多组均数比较的检验假设与F 值的意义。

(3) 方差分析的应用条件。

2.常见实验设计资料的方差分析(1)完全随机设计的单因素方差分析:适用的资料类型、总变异分解(包括自由度的分解)、方差分析的计算、方差分析表。

(2)随机区组设计资料的两因素方差分析:适用的资料类型、总变异分解(包括自由度的分解)、方差分析的计算、方差分析表。

(3)多个样本均数间的多重比较方法: LSD-t 检验法;Dunnett-t 检验法;SNK-q 检验法。

(二)熟悉内容多组资料的方差齐性检验、变量变换方法。

(三)了解内容两因素析因设计方差分析、重复测量设计资料的方差分析。

二、教学内容精要(一) 方差分析的基本思想 1. 基本思想方差分析(analysis of variance ,ANOV A )的基本思想就是根据资料的设计类型,即变异的不同来源将全部观察值总的离均差平方和(sum of squares of deviations from mean ,SS )和自由度分解为两个或多个部分,除随机误差外,其余每个部分的变异可由某个因素的作用(或某几个因素的交互作用)加以解释,如各组均数的变异SS 组间可由处理因素的作用加以解释。

通过各变异来源的均方与误差均方比值的大小,借助F 分布作出统计推断,判断各因素对各组均数有无影响。

2.分析三种变异(1)组间变异:各处理组均数之间不尽相同,这种变异叫做组间变异(variation among groups ),组间变异反映了处理因素的作用(处理确有作用时 ),也包括了随机误差( 包括个体差异及测定误差 ), 其大小可用组间均方(MS 组间)表示,即 MS 组间= 组间组间ν/SS , 其中,SS 组间=21)(x xn ki ii -∑= ,组间ν=k -1为组间自由度。

第5章方差分析

第5章方差分析

5.1.4 方差分析中的基本假定
(基本前提:独立、同分布、同方差)
一、因素中的k个水平相当于r个正态总体。 每个水平下的n个观察数据(试验结果)相当 于从正态总体中抽取的容量为n的随机样本。 (同分布) 二、r个正态总体的方差是相同。 即:σ12=σ22…….=σr2=σ2 (同方差) 三、从不同的正态总体中抽取的各个随机样 本是相互独立的。(独立)
SSE
j1 i1
r
nj
xijxj
(续前)
方差分析的优点之二:增加了稳定性 由于方差分析将所有的样本资料结合在一起, 故而增加了分析结论的稳定性。 例如:30个样本,每一个样本中包括10个观 察单位(n=10)。如果采用t检验法,则在两 两检验中,一次只能研究2个样本和20个观察 单位,而在方差分析中,则可以把30个样本 和300个样本观察单位同时放在一起、结合进 行研究。 所以,方差分析是一种实用、有效的分析方 法。
r
2

j1 i r
xij xj 2 x
j1 i1 2 r
nj
ij
xj
x
2
j
x
j1 i1

r
nj
x j x
2

j1 i1
nj
xij xj xj x SSE SSA
nj
j1 i1
2、随机误差项离差平方和(SSE)的计算 SSE反映的是水平内部或组内观察值的离散状 况。它实质上反映了除所考察因素以外的其 他随机因素的影响,反映样本数据( x i j ) 与水平均值 ( x j )之间的差异,故而称之 为随机误差项离差平方和或组内误差。计算 公式如下:

5章 方差分析

5章 方差分析
检验或F检验,两个以上样本均数的比较只能用F检验。 2、回归方程的线性假设检验;
3、检验两个或多个因素间有无交互作用。
应用条件(P63)
1、各个样本是相互独立的随机样本; 2、各个样本来自正态总体; 3、各个处理组的总体方差方差相等, 即方差齐。
不满足应用条件时处理方法
1、进行变量变换,以达到方差齐或 正态的要求;
H0:三种卡环抗拉强度的总体均数相等;各区组 卡环抗拉强度的总体均数相等
H1:三种卡环抗拉强度的总体均数不全相等;各 区组卡环抗拉强度的总体均数不全相等
0.05
2、计算F值
方差分析表
──────────────────────────
变异来源 SS
V
MS
F
──────────────────────────
2、如果方差分析无差别,分析结束。
多样本均数之间的多重比较
两两比较,又称基于方差分析的后续 检验(post hoc test)。
LSD-t检验和SNK检验
多个样本均数的比较一般分为两种情况:
①证实性实验研究:在设计阶段就根据研究目的或专业 知识决定某些均数间的两两比较,例如多个处理组与 对照组的比较,处理后不同时间与处理前的比较等。
MS组内 2

1 nA

1 nB

a 指样本均数排序后,比较的两组间包含的组数。
例5-3,SNK多重比较:
处理组
甲组
乙组
丙组
丁组
xi
ni
组次
0.2913 8 1
1.0200 8 2
2.1488 8 3
2.2650 8 4
S xA xB
MS组内 2

统计学5 多因素试验资料的方差分析课件

统计学5 多因素试验资料的方差分析课件
• 适用情况: • 当实验涉及的因素或效应在三个或三个以上,而
且因素间可能存在交互作用时。
正交设计与析因设计的区别:
• 析因设计:是各因素各水平全面组合的设计。 • 正交设计:是各因素各水平部分组合的设计。
正交设计能成倍减少试验次数,但是以牺牲 部分因素间的交互作用为代价。
正交设计表
• 每张正交表的表头都有一个表头符号,一般写法 为 LN(mk) 。
对于交互作用AB H0:因素A与因素B无交互效应 H1:因素A与因素B存在交互效应
(2)选择检验方法,计算检验统计量
析因设计方差分析计算表
(3)确定P值,做出推断结论
F < Fα(ν 1,ν 2)
P > 0.05
不拒绝H0,差异无统计学意义,尚不能 认为多个总体均数不等或不全相等。
F ≥ Fα(ν 1,ν 2)
20
Corrected Total
17.339
19
a. R Squared = .991 (Adjusted R Squared = .990)
Sig. .000 .000 .000 .332 .236
正交设计资料的方差分析
• 正交设计 • 正交设计表 • 分析步骤
正交设计
• 正交设计是利用一套规格化的正交表,将各个试 验因素、各水平之间的组合进行均匀搭配,合理 安排,是一种高效的、多因素试验设计方法。
• N 代表实验次数; • m 代表各因素水平; • k代表最高容许安排的试验因素及其效应数。
• 例如,L8(27), L16(215)
正交设计表
L8(27)正交表


试验号 1 2 3 4 5 6 7
1
1111111

SPSS统计分析第五章方差分析

SPSS统计分析第五章方差分析

二、方差分析中的术语
因素与处理(Factor and Treament) 水平(Level) 单元(Cell) 因素的主效应和因素间的交互效应 均值比较 协方差分析
1.因素与处理
因素(Factor)是影响因变量变化的客观条件;例如影响农作物产量的因素有气温、降雨量、日照时 间等; 处理(Treatments)是影响因变量变化的人为条件。也可以通称为因素。如研究不同肥料对不同种系 农作物产量的影响时农作物的不同种系可称为因素,所施肥料可视为不同的处理。 一般情况下Factors与Treatments在方差分析中可作相同理解。在要求进行方差分析的数据文件 中均作为分类变量出现。即它们的值只有有限个取值。即使是气温、降雨量等平常看作是连续变 量的,在方差分析中如果作为影响产量的因素进行研究,就应该将其数值用分组定义水平的方法 事先变为具有有限个取值的离散变量
4.因素的主效应和因素间的交互效应
有A、B两种药物治疗缺铁性贫血,患者12例,分为4组。实验方案是:第一组用一 般疗法;第二组在一般疗法基础上加用A药;第三组在一般疗法基础上加用B药,第 四组在一般疗法基础上A、B两药同时使用。一个月后观察红细胞增加数。要求分析 两种药物的疗效(数据下表)。
实验数据
Coefficients:为多项式指定各组均值的系数。 因素变量分为几组,输入几个系数,多出的无意 义。如果多项式中只包括第一组与第四组的均值 的系数,必须把第二个、第三个系数输入为0值。 如果只包括第一组与第二组的均值,则只需要输 入前两个系数,第三、四个系数可以不输入 。 多项式的系数需要由读者自己根据研究的需要输 入。
各组平均值
第一组 0.8 0.9 0.7 0.8
红细胞增加数(百万/m3)
第二组

统计学实验—SPSS和R软件应用与实例-第5章方差分析-SPSS

统计学实验—SPSS和R软件应用与实例-第5章方差分析-SPSS
2. 统计软件SPSS16.0或更高版本。
2019/10/14
《统计学实验》第5章方差分析
5-4
三、实验内容
1. 单因素方差分析 2. 多因素方差分析
2019/10/14
《统计学实验》第5章方差分析
5-5
第5章 方差分析
5.1 单因素方差分析 5.2 双因素方差分析
2019/10/14
《统计学实验》第5章方差分析
Levene Statistic
df1
df2
.292
2
27
Sig. .749
表5.4 咖啡因用量实验的方差分析表输出结果
Between Groups Within Groups Total
2019/10/14
ANOVA
Sum of Squares
df Mean Square
61.400
2
30.700
2019/10/14
《统计学实验》第5章方差分析
5-11
【统计理论】
三种“ 平方和”之间的关系 平方和分解:
S S TS S A S S E
2019/10/14
《统计学实验》第5章方差分析
5-12
【统计理论】
由于上述几种平方和的数值受到样本量和水平 数的影响,一种更为科学的方法是将各部分平方和 除以相应自由度,其比值称为均方和,简称均方 (mean square,MS),即
具体的说就是要比较第 i组和第 j 组平均数,即
检验
H 0 : { i j 0 ,i 1 ,,r ,j 1 ,,r ,i j }
2019/10/14
《统计学实验》第5章方差分析
5-16
【统计理论】
注意到 i j 0与 j i 0是等价的。因此

湖南大学-应用统计学 第五章 方差分析

湖南大学-应用统计学 第五章 方差分析

各yij间总的差异大小可用总偏差平方和 rm
ST
( yij y )2
i1 j 1
表示,其自由度为fT=n1;
仅由随机误差引起的数据间的差异可以用
rm组内偏差平方和来自Se ( yij

2
yi. )
表示,
i1 j 1
也称为误差偏差平方和,其自由度为 fe=nr ;
如今要对因子平方和 SA 与误差平方和 Se 之间进
行比较,用其均方和 MSA= SA /fA , MSe= Se /fe 进
行比较更为合理,故可用 F MSA SA / fA 作为
检验H0的统计量。
MSe Se / fe
25 June 2019
湖南大学
第五章 方差分析
第22页
定理2 在单因子方差分析模型 (3) 及前述符号 下,有
25 June 2019
湖南大学
第五章 方差分析
第2页
例1 在饲料养鸡增肥的研究中,某研究所提 出三种饲料配方:A1是以鱼粉为主的饲料, A2是以槐树粉为主的饲料,A3是以苜蓿粉 为主的饲料。为比较三种饲料的效果,特
选 24 只相似的雏鸡随机均分为三组,每 组各喂一种饲料,60天后观察它们的重量。 试验结果如下表所示:
25 June 2019
湖南大学
第五章 方差分析
第25页
常用的各偏差平方和的计算公式如下:
ST

r i 1
m j 1
yi2j

T2 n
SA

1 m
r i 1
Ti 2
T2 n
Se ST SA
(10)
一般可将计算过程列表进行。
25 June 2019
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(I) 采伐类型 (J) 采伐类型 均值差 (I-J) 标准 误 p-值 95% 置信区间 下限 上限
变差源 组间 组内 总计

4、结论。 F值=11.43>3.32,p-值=0.0002<0.05,因此检 验的结论是采伐对林木数量有显著影响。
中央财经大学统计学院 31
5.2.4 方差分析中的多重比较

在方差分析中,当零假设被拒绝时我们可以确定 至少有两个总体的均值有显著差异。但要进一步 检验哪些均值之间有显著差异还需要采用多重比 较的方法进行分析。这在方差分析中称为事后检 验(Post Hoc test)。 多重比较是对各个总体均值进行的两两比较。方 法很多,如Fisher最小显著差异(Least Significant Difference,LSD)方法、Tukey的诚 实显著差异(HSD)方法或Bonferroni的方法等。 这里我们只介绍最小显著差异方法。
中央财经大学统计学院
12
(1)正态性的检验



各组数据的直方图 峰度系数、偏度系数 Q-Q图, K-S检验*
中央财经大学统计学院
13
(2)等方差性的检验


经验方法:计算各组数据的标准差,如果最大值 与最小值的比例小于2:1,则可认为是同方差的。 最大值和最小值的比例等于1.83<2 Levene检验 *
第5章 方差分析
Analysis of Variance (ANOVA)
5.1 方差分析简介 5.2 单因素方差分析 5.3 双因素方差分析
中央财经大学统计学院
学习目标

掌握方差分析中的基本概念; 掌握方差分析的基本思想和原理; 掌握单因素方差分析的方法及应用; 初步了解多重比较方法的应用; 了解双因素方差分析的方法及应用。
中央财经大学统计学院 21
5.2.3 :方差分析的步骤

1.检验数据是否符合方差分析的假设条件。 2.提出零假设和备择假0 : 1 2 r

备择假设:至少有两个均值不相等,即
H1 : 1, 2 ,, r不全相等
中央财经大学统计学院
22
5.2.3 :方差分析的步骤

3.根据样本计算F统计量的值。
方差分析表
离差平方和 SS 变差来源 SSA 组 间 组 内 总变异 SSE SST
自由度 df r-1 n-r n-1
均方 MS MSA MSE
F值 MSA/MSE
中央财经大学统计学院
23
5.2.3 :方差分析的步骤

4.确定决策规则并根据实际值与临界值的 比较,或者p-值与α 的比较得出检验结论。 在零假设成立时组间方差与组内方差的比 值服从服从自由度为(r-1, n-r) 的 F 分布
0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0 0.5 1 1.5 2
F检验的临界值和拒绝域 拒绝域
p-值
α
2.5 3 3.5 实际值 4 4.5 临界值
24
5
5.5
6
中央财经大学统计学院
起薪的例子(1)
在起薪的例子中,设显著性水平= 0.05, 试分析专业对起薪的影响已否显著 。


1、根据前面的分析,数据符合方差分 析的假设条件。 2、提出零假设和备择假设: H0:μ1=μ2=μ3=μ4, H1:μ1、μ2、μ3、μ4不全相等。
中央财经大学统计学院 25
起薪的例子(2)

3、计算F统计量的实际值和p值。下面是SPSS计 算的方差分析表。由于 p 值 0.002 0.05, 因此拒绝零假设。
中央财经大学统计学院
29
例2 热带雨林 (4)

2、提出零假设和备择假设 零假设:雨林采伐对林木数量没有显著影 响(各组均值相等); 备择假设:雨林采伐对是有显著影响(各 组均值不全相等)。
中央财经大学统计学院
30
例2 热带雨林 (5)

3、方差分析表
SS 625.16 820.72 1445.88 df 2 30 32 MS 312.58 27.36 F 11.43 Pvalue 0.0002 F crit 3.32
只受随机 因素的影响
中央财经大学统计学院
20
5.2.2 :方差分析的基本思想
组间方差
SSA MSA r 1
F=

SSE 组内方差 MSE nr


如果因素A的不同水平对结果没有影响,那么在组间 方差中只包含有随机误差,两个方差的比值会接近1 如果不同水平对结果有影响,组间方差就会大于组 内方差,组间方差与组内方差的比值就会大于1 当这个比值大到某种程度时,就可以说不同水平之 间存在显著差异,或者说因素A对结果有显著影响。
i 1 j 1 r m
因素A导致的变差
随机因素导致的变差
SST=SSA+SSE
中央财经大学统计学院 18
5.2.2 :组间方差和组内方差


各离差平方和的大小与观察值的多少有关,为了 消除观察值多少对离差平方和大小的影响,需要 将其平均,这就是均方。 计算方法是用离差平方和除以相应的自由度 三个平方和的自由度分别是 SST 的自由度为n-1,n为全部观察值的个数 SSA的自由度为r-1,其中r为因素水平的个数 SSE 的自由度为n-r
例2 热带雨林 (2)

从未采 伐过 27 22 29 21 19 33 16 20 24 27 28 19 1年前采 8年前采 伐过 伐过 12 18 12 4 15 22 9 15 20 18 18 19 17 22 14 12 14 12 2 17 19
中央财经大学统计学院 28
1、正态性检验:直方图
X ij i ij i ij
中央财经大学统计学院 17
5.2.2 :总变差(离差平方和)的分解
总变差
SST ( xi x )2
i 1 n
组间离差平方和
SSA m( xi x )
i 1 r 2
组内离差平方和
SSE ( xij xi )2
中央财经大学统计学院 8


5.1.1 方差分析中的几个基本概念
因变量:我们实际测量的、作为结果的变 量,例如失业持续时间。 自变量:作为原因的、把观测结果分成几 个组以进行比较的变量例如奖金水平。 在方差分析中,自变量也被称为因素 (factor)。 因素的不同表现,即每个自变量的不同取 值称为因素的水平。

固定效应模型:因素的所有水平都是由实 验者审慎安排而不是随机选择的。

随机效应模型:因素的水平是从多个可能 的水平中随机选择的。 固定效应和随机效应模型在假设的设置和 参数估计上有所差异,本章研究的都是固 定效应模型。
中央财经大学统计学院 11

5.1.2:方差分析中的基本假设


(1)在各个总体中因变量都服从正态分布; (2)在各个总体中因变量的方差都相等; (3)各个观测值之间是相互独立的。

用t检验比较两个均值: 每次只能比较两个均值,要解决上述问题 需要进行6次t检验……

在整体检验中犯第一类错误的概率显著增 加: 如果在每次t检验中犯第一类错误的概率 等于5%,则在整体检验中等于1-(10.05)6=0.2649
中央财经大学统计学院 7
方差分析可以用来比较多个均值

方差分析(Analysis of variance,ANOVA) 的主要目的是通过对方差的比较来检验多 个均值之间差异的显著性。 可以看作t检验的扩展,只比较两个均值时 与t检验等价。 20世纪20年代由英国统计学家费希尔(R. A. Fisher)最早提出的,开始应用于生物 和农业田间试验,以后在许多学科中得到 了广泛应用。
中央财经大学统计学院 32

用LSD法进行多重比较的步骤

1、提出假设

H0: i = j H1: i j
t
xi x j 1 1 MSE ( ) ni n j

2、计算检验的统计量
3a、 如果
3b、计算

t t / 2

t t / 2
则拒绝H0。

xi x j 的置信区间: ( xi x j ) t / 2
例2 热带雨林 (3)

同方差性检验:最大值与最小值之比等于 33.19 / 4.81=1.34,明显小于4,因此可以认 为是等方差的。 组 从未采伐过 1年前采伐过 8年前采伐过 计数 12 12 9 求和 285 169 142 平均 23.75 14.08 15.78 方差 25.66 24.81 33.19
平方和 组间
组内
df
均方 3 1642638.889
F 7.078
p值 0.002
4927916.667
4641666.667
20
232083.333
总数
9569583.333
23
中央财经大学统计学院 26
例2 热带雨林 (1)

各水平下的样本容量不同时单因素方差分析的 方法也完全适用,只是公式的形式稍有不同, 在使用软件进行分析时几乎看不出这种差别。
样本1
2 x1, s1
样本2
2 x2 , s2
样本3
2 x3 , s3
样本4
2 x4 , s4
1 2 3 4 ??
中央财经大学统计学院 5
各个总体的均值相等吗?
f(X)
1 2 3 4
f(X)
X
3 1 2 4
中央财经大学统计学院 6
X
研究方法:两样本的t检验?
相关文档
最新文档