统计学——方差分析概念和方法

合集下载

统计学中的方差分析方法

统计学中的方差分析方法

统计学中的方差分析方法统计学是现代社会中最重要的学科之一,它基于大量的数据和数学模型,研究人类社会和自然环境中各种现象和规律。

其中,方差分析是统计学中最基本的分析方法之一,它常常被用来分析各种因素对某个变量的影响。

在本文中,我们将详细介绍方差分析方法的基本原理和应用。

一、方差分析的基本原理方差分析是利用方差的性质分析多组数据之间的差异或相似性的方法。

它是以方差分解为基础的,通过对总方差、组间平方和和组内平方和的分解,来度量实验因素对实验变量的影响。

在具体的研究过程中,我们通常将所研究的因素分为不同的组别,并在每个组别中测量实验变量的值,随后运用方差分析方法来分析不同组别之间的差异。

在方差分析中,我们通常采用F检验法来判断差异的显著性。

通过计算F值并与临界值进行比较,得出数据是否符合研究假设的结果。

如果F值大于临界值,则说明差异是显著的,反之则说明差异不显著。

F检验法在实际应用中非常广泛,适用于大多数实验设计和数据类型。

二、方差分析的应用方差分析方法可以用于各种不同类型的数据分析,如一元方差分析、双因素方差分析、三因素方差分析等等。

下面我们将分别介绍它们的应用。

1. 一元方差分析一元方差分析是指只有一个自变量和一个因变量的分析方法,也就是说只有一个因素影响一个变量。

一元方差分析通常用于分析实验组与对照组之间的差异或者不同处理方式对实验结果的影响等。

例如,我们要研究不同肥料对作物产量的影响,我们可以将实验分成几组,每组采用不同的肥料,最后对产量进行测量。

接着通过方差分析法来比较每组之间产量的差异,最后确定哪种肥料更适合提高作物产量。

2. 双因素方差分析双因素方差分析是指有两个自变量和一个因变量的分析方法,也就是说有两个因素对一个变量产生影响。

双因素方差分析通常用于研究两种或多种因素的交互效应。

例如,我们要研究不同机器和不同操作员对产品质量的影响,我们可以先在不同机器上制造同种产品,然后再让不同的操作员进行操作。

统计学中的标准差与方差分析

统计学中的标准差与方差分析

统计学中的标准差与方差分析一、引言统计学作为一门学科,在社会发展过程中扮演着越来越重要的角色。

随着科技的不断发展,数据量与精度的提高,统计学在各领域的应用越来越广泛。

本文将重点探讨统计学中的两个重要概念——标准差与方差分析,介绍它们的定义、性质、应用场景以及相关计算方法,希望能够对广大读者更好地理解和灵活运用这两个概念。

二、标准差1. 定义标准差是衡量一组数据的离散程度的一个指标,它是各个数据与均值偏差平方和的平均数的平方根。

标准差越小,意味着数据离散程度越小,反之亦然。

2. 性质标准差具有如下性质:(1)标准差为非负数;(2)当所有数据相等时,标准差为0;(3)标准差的值越大,表示数据的离散程度越大;(4)标准差的值受到极值(即离群值)的较大影响。

3. 应用场景标准差在统计分析中的应用非常广泛,特别是在概率分布、正态分布、抽样等方面。

例如,在投资领域中,标准差是指价格波动的大小和稳定性,是投资风险的重要度量。

4. 计算方法标准差的计算方法如下:(1)计算数据的均值;(2)将各个数据与均值的差值平方;(3)将差值平方求和并除以数据个数n;(4)将平均数的平方根即为标准差。

三、方差分析1. 定义方差分析是一种用于比较两个或多个总体均值是否相等的统计方法。

通过计算各组样本的方差、不同组间的方差和总体内部的方差,确定不同组之间的方差是否大于总体内部的方差。

2. 性质方差分析具有如下性质:(1)方差分析要求研究的总体是正态分布的;(2)方差分析所得的F统计量应该与其自由度一起考虑;(3)方差分析的显著性检验要根据选择的显著性水平进行处理。

3. 应用场景方差分析常用于生物学、医学、工程学、教育学等领域中的实验设计和比较分析。

例如,在医药研究中,方差分析可以用于评价新药物的疗效是否与传统疗法相同,确定不同治疗方案的疗效是否有显著差异。

4. 计算方法方差分析的计算方法分为单因素方差分析和双因素方差分析两种,其中单因素方差分析的计算方法如下:(1)计算各组数据的平均值;(2)计算总体平均值;(3)计算各组平均值与总体平均值之差的平方和;(4)计算组内偏差平方和;(5)计算组间偏差平方和;(6)计算组间偏差平方和与组内偏差平方和之比,得出F值和P值,进行显著性检验。

anova方差分析

anova方差分析

anova方差分析方差分析(Analysis of Variance,简称ANOVA)是一种统计方法,用于比较两个或多个组间差异的显著性。

ANOVA通过计算样本数据的方差来判断不同组之间的差异是否显著,从而推断总体差异的显著性。

本文将详细介绍ANOVA的原理、步骤和应用,并提供一个实际案例来说明其具体操作过程。

一、原理:ANOVA的原理基于两个统计推断的概念:方差和F分布。

方差是指一组数据中各个观察值与其平均值之间的差异。

F分布是一种概率分布,用于比较两个或多个样本数据的方差之间的差异。

ANOVA将样本数据的总方差分解为组内方差和组间方差,通过计算F值来判断组间方差是否显著大于组内方差。

二、步骤:进行ANOVA方差分析通常需要以下步骤:1. 建立假设:首先需要明确要比较的组别或处理之间的差异,然后建立相应的零假设(组别之间没有显著差异)和备择假设(组别之间存在显著差异)。

2. 数据整理:将收集到的数据按照组别分类整理,并计算每组的平均值、方差以及总体样本量。

3. 计算变异性:通过计算组内平方和、组间平方和、总平方和和均方来估计方差的大小。

4. 计算F值:利用均方计算F值,公式为F = 组间平方和 / 组内平方和。

5. 判断显著性:根据所采用的显著性水平(通常为0.05)和自由度来查找F分布表,比较计算得到的F值与临界F值,判断组间差异是否显著。

6. 进行后续分析:如果ANOVA结果显著,可以进行多重比较(如Tukey HSD检验)或其他进一步的统计分析,以确定具体哪些组别之间存在显著差异。

三、应用:ANOVA在实际应用中具有广泛的应用领域,常被用于以下几个方面:1. 科学研究:例如医学试验中比较不同药物治疗组的效果、生物学实验中比较不同处理条件下的实验结果等。

2. 工业品质控制:例如比较不同生产批次的产品质量、评估生产工艺参数对产品性能的影响等。

3. 教育评估:例如比较不同教学方法对学生成绩的影响、评估不同学校教育质量的差异等。

方差分析及协方差分析

方差分析及协方差分析

方差分析及协方差分析方差分析和协方差分析是统计学中常用的两种分析方法,用于研究变量之间的关系和差异。

本文将分别介绍方差分析和协方差分析的基本概念、原理和应用。

一、方差分析(Analysis of Variance)1.基本概念:方差分析是一种通过对不同组之间的差异进行分析,来揭示组间差异是否非随机的统计方法。

它可以用于比较两个或更多个组的均值是否有显著差异。

2.原理:方差分析的原理基于对总体变异的分解。

总体变异可以分解为组间变异和组内变异。

组间变异表示不同组之间的差异,而组内变异表示组内个体之间的差异。

方差分析通过计算组间变异与组内变异之间的比值来判断组间差异是否显著。

3.适用场景:方差分析适用于有一个自变量和一个或多个因变量的情况。

常见的应用场景包括:比较不同药物对疾病影响的效果、比较不同教学方法对学生成绩的影响等。

4.步骤:方差分析的步骤包括:确定研究目的和假设、选择适当的方差分析模型、计算方差分析统计量和p值、进行结果解释。

二、协方差分析(Analysis of Covariance)1.基本概念:协方差分析是一种结合方差分析和线性回归分析的方法。

它通过控制一个或多个连续变量(协变量)对组间差异进行调整,来比较不同组之间的差异。

协方差分析不仅考虑到组间差异,还考虑到了协变量的影响。

2.原理:协方差分析的基本原理是通过线性回归模型来估计组间均值的差异,同时考虑协变量的影响。

通过计算协方差矩阵和相关系数,可以得到组间差异的调整后的统计结果。

3.适用场景:协方差分析适用于有一个自变量、一个或多个因变量,以及一个或多个连续变量的情况。

常见的应用场景包括:比较不同药物对疾病影响的效果,并控制患者年龄和性别等协变量。

4.步骤:协方差分析的步骤包括:确定研究目的和假设、选择适当的协方差分析模型、建立回归模型、计算协方差分析统计量和p值、进行结果解释。

总结:方差分析和协方差分析都是常用的统计分析方法,用于研究组间差异和变量之间的关系。

方差分析与协方差分析

方差分析与协方差分析

方差分析与协方差分析方差分析 (Analysis of Variance, ANOVA) 和协方差分析 (Analysis of Covariance, ANCOVA) 是统计学中常用的两种数据分析方法。

它们在比较多个组或处理之间的差异时非常有用,并且可以探究因素对观察结果的影响。

本文将详细介绍方差分析和协方差分析的概念、原理和应用。

一、方差分析的概念和原理方差分析是一种用于比较多个组之间均值差异的统计方法。

它基于对总体方差的分解,将观察结果的变异分解成不同的来源,如组内变异和组间变异。

方差分析的目标是确定组间变异是否显著大于组内变异,进而判断不同组均值之间的差异是否具有统计学意义。

方差分析通常基于以下假设:1. 观察结果服从正态分布;2. 不同组之间的观察结果具有同方差性;3. 观察结果是相互独立的。

方差分析的原理是通过计算不同组之间的均方差(Mean Square, MS)和F统计量来进行推断。

F统计量是组间均方差与组内均方差的比值,如果F值显著大于1,则说明不同组之间存在显著差异。

方差分析可以分为单因素方差分析和多因素方差分析,其中单因素方差分析适用于只有一个自变量的情况,而多因素方差分析则适用于有多个自变量的情况。

二、方差分析的应用方差分析在科学研究和实际应用中广泛应用,以下是一些常见的应用场景:1. 实验比较:方差分析可用于比较不同处理、不同实验条件下的实验结果。

例如,在农业领域,可以利用方差分析比较不同肥料、不同温度等对作物产量的影响。

2. 组间比较:方差分析可用于比较不同组别、不同样本间的差异。

例如,在医学研究中,可以利用方差分析比较不同药物对疾病治疗效果的差异。

3. 教育评估:方差分析可用于教育研究中,比较不同学校或不同教学方法对学生学习成绩的影响。

三、协方差分析的概念和原理协方差分析是一种结合方差分析和线性回归分析的方法。

它用于比较多个组别或处理之间的差异,同时控制一个或多个协变量的影响。

统计学中的方差分析方法

统计学中的方差分析方法

统计学中的方差分析方法方差分析(Analysis of Variance,简称ANOVA)是统计学中常用的一种假设检验方法,用于比较两个或更多个样本均值是否存在差异。

它通过分析不同组之间的方差来评估组内和组间的变异情况,进而得出结论。

一、方差分析的基本思想方差分析基于以下两个基本假设:1. 原假设(H0):各总体均值相等,即样本所来自的总体没有差异;2. 备择假设(H1):各总体均值不相等,即至少存在一个样本来自于与其他样本不同的总体。

二、一元方差分析(One-way ANOVA)一元方差分析适用于只有一个自变量的情况,它将样本根据自变量分为两个或多个组,然后比较这些组之间的均值差异。

下面以一个简单的案例来说明一元方差分析。

假设我们要研究三种不同肥料对植物生长的影响,我们将随机选取三个试验区,分别施用A、B和C三种不同的肥料,每个试验区都观察到了相应植物的生长情况(例如植物的高度)。

我们的目标是通过方差分析来判断这些不同肥料是否对植物的生长有显著的影响。

在执行一元方差分析之前,我们首先需要验证方差齐性的假设。

如果各组样本的方差相等,我们就可以继续使用方差分析进行比较。

常用的方差齐性检验方法有Bartlett检验和Levene检验。

在通过方差齐性检验后,我们可以进行一元方差分析。

分析结果将提供两个重要的统计量:F值和P值。

F值表示组间均方与组内均方的比值,P值则表示了接受原假设的概率。

如果P值较小,则说明组间的差异是显著的,我们可以拒绝原假设,接受备择假设,即不同肥料对植物生长有显著影响。

三、多元方差分析(Two-way ANOVA)多元方差分析适用于有两个以上自变量的情况,分析对象的均值差异可以归因于两个或多个自变量的相互作用。

这种分析方法常用于研究两个或多个因素对实验结果的影响情况。

以品牌和价格对手机销量的影响为例,我们假设品牌和价格是两个自变量,手机销量是因变量。

我们可以将样本分成不同的组合,比如将不同品牌的手机按不同的价格段进行分类。

医学统计学(方差分析)

医学统计学(方差分析)

评估经济政策的 效果
研究设计:用于 设计实验和研究 方法
数据分析:用于 分析实验数据和 结果
假设检验:用于 检验假设和结论
结果解释:用于 解释实验结果和 结论
PRT FIVE
可以检验多个自变量对因变 量的影响
适用于多个样本均值比较
可以控制其他自变量的影响
可以检验自变量与因变量之 间的关系是否显著
确定研究目的和假设
选择合适的统计方法
收集数据并进行预处 理
对数据进行分组和分 类
计算方差和标准差
进行方差分析并解释 结果
添加标题 添加标题 添加标题 添加标题 添加标题 添加标题
确定研究设计:选择合适的方差分析类型如单因素方差分析、双因素方差分析或多因素方差分析 收集数据:收集实验或调查数据包括自变量和因变量 计算均值和方差:计算每个组的均值和方差以及总体均值和总体方差 计算F值:使用F分布表计算F值用于检验假设 确定P值:计算P值用于判断假设是否成立 得出结论:根据P值和F值得出结论如假设成立或不成立以及各组之间的差异是否显著。
异常值:需要检 查数据中是否存 在异常值如果存 在需要处理或剔 除
样本量:样本量 需要足够大否则 方差分析的结果 可能不准确
样本量:应足够大 以保证统计结果的 可靠性
分组数:应适中过 多或过少都会影响 结果的准确性
样本量与分组数的 关系:应根据研究 目的和实际情况进 行选择
样本量与分组数的 选择原则:应遵循 统计学原理和研究 设计要求
识别异常值:通过统计方法或经验判断识别异常值 处理方法:删除、替换或保留异常值根据实际情况选择合适的处理方法 影响因素:异常值可能受到样本量、测量误差等因素的影响
结果解释:异常值对分析结果的影响需要谨慎对待避免过度解读或忽视其存在

统计学方差分析

统计学方差分析

统计学方差分析方差分析(ANOVA)是统计学中一种用于比较多个样本平均值之间差异的方法。

它能够确定因素(或者称之为自变量)对因变量的影响是否显著。

在进行方差分析时,常常使用F检验来判断不同组之间的平均值是否存在显著差异。

方差分析常被用于实验设计和自然观察研究中,特别是在多个因素同时影响因变量的情况下。

方差分析基于总体的假设,即总体的均值相等。

方差分析的目的是确定是否存在一个或多个因素对于因变量的影响。

这些因素可以是分类因素(例如不同的治疗组)或者连续因素(例如不同的剂量水平)。

方差分析通过计算组内变异和组间变异之间的比率来判断这种影响是否显著。

方差分析的基本原理是将组内变异(即观测值之间的差异)与组间变异(即组均值之间的差异)进行比较。

如果组间变异大于组内变异,那么可以推断存在一个或多个因素对于因变量的影响。

通过计算F统计量(组间均方与组内均方之比),可以判断这种影响是否显著。

方差分析有几个基本假设需要满足。

首先,观测值必须是互相独立的。

其次,观测值必须是正态分布的。

最后,方差必须是均匀的,也就是方差齐性假设。

方差分析可以分为单因素方差分析和多因素方差分析。

单因素方差分析适用于只有一个因素对因变量的影响进行研究的情况。

多因素方差分析适用于有多个因素同时对因变量进行影响的情况。

在多因素方差分析中,可以考虑因素之间的交互作用。

方差分析还可以通过进行事后多重比较来进一步研究组之间的差异。

常用的事后比较方法包括LSD(最小显著差异)方法、Tukey HSD(Tukey honestly significant difference)方法和Bonferroni校正方法等。

方差分析在实际应用中具有广泛的应用。

例如,在医学研究中,可以使用方差分析来比较不同治疗组的效果;在工程设计中,可以使用方差分析来确定不同因素对产品质量的影响;在社会科学研究中,可以使用方差分析来研究不同教育程度对工资的影响等等。

方差分析是统计学中重要的一种方法,能够帮助我们了解不同因素对因变量的影响程度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2. 系统误差
因素的不同水平(不同总体)下,各观察值之间的差异 比如,不同行业之间的被投诉次数之间的差异 这种差异可能是由于抽样的随机性所造成的,也可能
是由于行业本身所造成的,后者所形成的误差是由系 统性因素造成的,称为系统误差
方差分析的基本思想和原理
(两类方差)
1. 数据的误差用平方和(sum of squares)表示,称为 方差 2. 组内方差(within groups) 因素的同一水平(同一个总体)下样本数据的方差 比如,零售业被投诉次数的方差 组内方差只包含随机误差 3. 组间方差(between groups) 因素的不同水平(不同总体)下各样本之间的方差 比如,四个行业被投诉次数之间的方差 组间方差既包括随机误差,也包括系统误差
消费者对四个行业的投诉次数 行业 观测值 零售业 旅游业 航空公司 家电制造业
1 2 3 4 5 6 7
57 66 49 40 34 53 44
68 39 29 45 56 51
31 49 21 34 40
44 51 65 77 58
什么是方差分析?
(例题分析)
1. 分析四个行业之间的服务质量是否有显著差 异,也就是要判断“行业”对“投诉次数” 是否有显著影响 2. 作出这种判断最终被归结为检验这四个行业 被投诉次数的均值是否相等 3. 如果它们的均值相等,就意味着“行业”对 投诉次数是没有影响的,即它们之间的服务 质量没有显著差异;如果均值不全相等,则 意味着“行业”对投诉次数是有影响的,它 们之间的服务质量有显著差异
xi
x
j 1
ni
ij
ni
(i 1,2,, k )
式中: ni为第 i 个总体的样本观察值个数 xij 为第 i 个总体的第 j 个观察值
构造检验的统计量
(计算全部观察值的总均值)
1. 全部观察值的总和除以观察值的总个数 2. 计算公式为
x
x
i 1 j 1
k
ni
ij
n n 式中:n n1 n2 nk
H1: m1 ,m2 ,… ,mk不全相等
构造检验的统计量
• 构造统计量需要计算 水平的均值 全部观察值的总均值 误差平方和 均方(MS)
构造检验的统计量
(计算水平的均值)
1. 假定从第i个总体中抽取一个容量为ni的简单 2.
随机样本,第i个总体的样本均值为该样本的 全部观察值总和除以观察值的个数 计算公式为
方差分析中的有关术语
1. 因素或因子(factor) 所要检验的对象 要分析行业对投诉次数是否有影响,行业是要检验
的因素或因子
2. 水平或处理(treatment)
的水平
因子的不同表现 零售业、旅游业、航空公司、家电制造业就是因子 在每个因素水平下得到的样本值 每个行业被投诉的次数就是观察值
(图形分析)
80 60
» ¶ ß Î ý ±Í Ë ´ Ê
40 20 0 0
零售业 1
旅游业 2
航空公司 3
家电制造 5 4
Ð Ò µ
» ¬ ² Í Ð Ò ±Í Ë ´ Ê µ É µ Í µ » ¶ ß Î ý Ä ¢ ã ¼
方差分析的基本思想和原理
(图形分析)
1. 从散点图上可以看出 – 不同行业被投诉的次数是有明显差异的 – 即使是在同一个行业,不同企业被投诉的次数也明 显不同
• 若备择假设成立,即H1: mi (i=1,2,3,4)不全 相等
– 至少有一个总体的均值是不同的 – 四个样本分别来自均值不同的四个正态总体
f(X)
m3 m1 m2 m4
X
问题的一般提法
1. 设因素有k个水平,每个水平的均值分别用m 1、 m 2 、 、mk 表示 2. 要检验k个水平(总体)的均值是否相等,需要提出如 下假设: H0: m1 m2 … mk H1: m1 , m2 , ,mk 不全相等 3. 设m1为零售业被投诉次数的均值,m2为旅游业被投诉 次数的均值,m3为航空公司被投诉次数的均值,m4为 家电制造业被投诉次数的均值,提出的假设为 H0: m1 m2 m3 m4 H1: m1 , m2 , m3 , m4 不全相等
SST = (57-47.869565)2+…+(58-47.869565)2 =115.9295
构造检验的统计量
(计算水平项平方和 SSA)
1. 各组平均值 xi (i 1,2,, k ) 与总平均值 x 的离
2. 3. 4.
差平方和 反映各总体的样本均值之间的差异程度,又称组 间平方和 该平方和既包括随机误差,也包括系统误差 计算公式为
布总体的简单随机样本 比如,每个行业被投诉的次数必需服从正态分布
方差分析中的基本假定
1. 在上述假定条件下,判断行业对投诉次数是否 有显著影响,实际上也就是检验具有同方差的 四个正态总体的均值是否相等 2. 如果四个总体的均值相等,可以期望四个样本 的均值也会很接近 四个样本的均值越接近,推断四个总体均值相等
方差分析的基本假定
1. 每个总体都应服从正态分布 对于因素的每一个水平,其观察值是来自服从正态分
2. 各个总体的方差必须相同 各组观察数据是从具有相同方差的总体中抽取的 比如,四个行业被投诉次数的方差都相等 3. 观察值是独立的 比如,每个行业被投诉的次数与其他行业被投诉的次
数独立
第 7 章 方差分析与试验设计
§7.1 §7.2 §7.3 §7.4 方差分析的引论 单因素方差分析 方差分析中的多重比较 双因素方差分析
学习目标
1. 2. 3. 4. 5. 6. 解释方差分析的概念 解释方差分析的基本思想和原理 掌握单因素方差分析的方法及应用 理解多重比较的意义 掌握双因素方差分析的方法及应用 掌握试验设计的基本原理和方法
的证据也就越充分 样本均值越不同,推断总体均值不同的证据就越 充分
方差分析中基本假定
• 如果原假设成立,即H0: m1 = m2 = m3 = m4
– 四个行业被投诉次数的均值都相等 – 意味着每个样本都来自均值为m、差为2的同一正 态总体
f(X)
m1 m2 m3 m4
X
方差分析中基本假定
3. 观察值
方差分析中的有关术语
1. 试验 这里只涉及一个因素,因此称为单因素四水平的
试验
2. 总体 因素的每一个水平可以看作是一个总体 比如零售业、旅游业、航空公司、家电制造业可
以看作是四个总体
3. 样本数据
被投诉次数可以看作是从这四个总体中抽取的样
本数据
方差分析的基本思想和原理
1. 若不同不同行业对投诉次数没有影响,则组间误差中
方差分析的基本思想和原理 (方差的比较)
2.
3.
只包含随机误差,没有系统误差。这时,组间误差与 组内误差经过平均后的数值就应该很接近,它们的比 值就会接近1 若不同行业对投诉次数有影响,在组间误差中除了包 含随机误差外,还会包含有系统误差,这时组间误差 平均后的数值就会大于组内误差平均后的数值,它们 之间的比值就会大于1 当这个比值大到某种程度时,就可以说不同水平之间 存在着显著差异,也就是自变量对因变量有影响 判断行业对投诉次数是否有显著影响,实际上也 就是检验被投诉次数的差异主要是由于什么原因 所引起的。如果这种差异主要是系统误差,说明 不同行业对投诉次数有显著影响
3. 4.
SSE x
k ni i 1 j 1
ij
x
i
2
前例的计算结果:SSE = 2708
构造检验的统计量
(三个平方和的关系)
总离差平方和(SST)、误差项离差平方和
(SSE)、水平项离差平方和 (SSA) 之间的 关系
x
k ni i 1 j 1
ij
x ni xi x xij x
– 这种差异也可能是由于抽样的随机性所造成的
2. 需要有更准确的方法来检验这种差异是否显著, 也就是进行方差分析
– 所以叫方差分析,因为虽然我们感兴趣的是均值, 但在判断均值之间是否有差异时则需要借助于方差
– 这个名字也表示:它是通过对数据误差来源的分析 判断不同总体的均值是否相等。因此,进行方差分 析时,需要考察数据误差的来源。
2 k 2 k ni i 1 i 1 j 1
2
前例的计算结果:
SST = SSA + SSE
4164.608696=1456.608696+2708
构造检验的统计量
(三个平方和的作用)1源自 SST反映全部数据总的误差程度;SSE反映随机
2.
误差的大小;SSA反映随机误差和系统误差的大 小 如果原假设成立,则表明没有系统误差,组间平 方和SSA除以自由度后的均方与组内平方和SSE 和除以自由度后的均方差异就不会太大;如果组 间均方显著地大于组内均方,说明各水平(总体) 之间的差异不仅有随机误差,还有系统误差 判断因素的水平是否对其观察值有影响,实际上 就是比较组间方差与组内方差之间差异的大小
– 家电制造也被投诉的次数较高,航空公司被投
诉的次数较低
2.
行业与被投诉次数之间有一定的关系
– 如果行业与被投诉次数之间没有关系,那么 它们被投诉的次数应该差不多相同,在散点 图上所呈现的模式也就应该很接近
方差分析的基本思想和原理
1. 仅从散点图上观察还不能提供充分的证据证明不 同行业被投诉的次数之间有显著差异
§7.2
单因素方差分析
一. 数据结构 二. 分析步骤 三. 关系强度的测量
单因素方差分析的数据结构
(one-way analysis of variance)
观察值 ( j ) 因素(A) i 水平A1 水平A2 … 水平Ak
相关文档
最新文档