T检验例题资料
t检验经典案例集

1.某地随机抽样调查了部分健康成人的红细胞数和血红蛋白量,结果如下表:某年某地健康成年人的红细胞数和血红蛋白含量指标性别例数均数标准差标准值*红细胞数男360 4.66 0.58 4.84(1012/L)女255 4.18 0.29 4.33血红蛋白男360 134.5 7.1 140.2(g/L)女255 117.6 10.2 124.7*实用内科学(1976年)所载均数(转为法定单位)请就上表资料:(1)说明女性的红细胞数与血红蛋白的变异程度何者为大?(2)计算男性两项指标的抽样误差。
(3)试估计该地健康成年女性红细胞数的均数。
(4)该地健康成年男、女血红蛋白含量是否不同?(5)该地男性两项血液指标是否均低于上表的标准值(若测定方法相同)?2.一药厂为了解其生产的某药物(同一批次)之有效成份含量是否符合国家规定的标准,随机抽取了该药10片,得其样本均数为103.0mg,标准差为2.22mg。
试估计该批药剂有效成份的平均含量。
3.通过以往大量资料得知某地20岁男子平均身高为1.68米,今随机测量当地16名20岁男子,得其平均身高为1.72米,标准差为0.14米。
问当地现在20岁男子是否比以往高?4.为了解某一新降血压药物的效果,将28名高血压病患者随机分为试验组和对照组,试验组采用新降压药,对照组则用标准药物治疗,测得治疗前后的舒张压(mmHg)如下表。
问:(1)新药是否有效?(2)要比较新药和标准药的疗效是否不同,请用下述两种不同方式分别进行检验:I仅考虑治疗后的舒张压;II考虑治疗前后舒张压之差。
您认为两种方法各有何优缺点?何种方法更好?两种药物治疗前后的舒张压(mmHg)药治疗前102 100 92 98 118 100 102 116 109 116 92 108 102 100 治疗后90 90 85 90 114 95 86 84 98 103 88 100 88 86标准药病人号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 治疗前98 103 110 110 110 94 104 92 108 110 112 92 104 90 治疗后100 94 100 105 110 96 94 100 104 109 100 95 100 855.某医师观察某新药治疗肺炎的疗效,将肺炎病人随机分为新药组和旧药组,得两组的退热天数如下表。
t检验习题及答案

例题7.5一家食品生产企业以生产袋装食品为主,每天的产量大约为8000袋左右。
按规定每袋的重量应为100g。
为对产品质量进行检测,企业质检部门经常要进行抽检,以分析每袋重量是否符合要求。
现从某天生产的一批食品中随机抽取25袋,测得每袋重量如表7—2所示。
表7—225袋食品的重量112.5 101.0 103.0 102.0 110.5102.6 107.5 95.0 108.8 115.6100.0 123.5 102.0 101.6 102.2116.6 95.4 97.8 108.6 105.0136.8 102.8 101.5 98.4 93.3已知产品重量的分布,且总体标准差为10g,试估计该天产品平均质量的置信区间,以为95%建立该种食品重量方差的置信区间。
解:已知δ=10,n=25,置信水平1-α=95%,Z x/2=1.96案例处理摘要案例有效缺失合计N 百分比N 百分比N 百分比重量25 100.0% 0 .0% 25 100.0%描述统计量标准误重量均值105.7600 1.93038 均值的95% 置信区间下限101.7759上限109.74415% 修整均值104.8567中值102.6000方差93.159标准差9.65190极小值93.30极大值136.80范围43.50四分位距9.15偏度 1.627 .464峰度 3.445 .902 重量重量 Stem-and-Leaf PlotFrequency Stem & Leaf1.00 9 . 34.00 9 . 557810.00 10 . 01112222234.00 10 . 57882.00 11 . 02。
t检验学生课堂练习

例1:某医生测量了36名从事铅作业男性工人的血红蛋白含量,数据见表1-1.问从事铅作业男性工人的血红蛋白是否不同于正常成年男性平均值140g/L?
表1-1 从事铅作业男性工人的血红蛋白含量
例2:桃树枝条的常规含氮量为2.40%,现对一桃树新品种枝条的含氮量进行了10次测定,其结果为:2.38%、2.38%、2.41%、2.50%、2.47%、2.41%、2.38%、2.26%、2.32%、2.41%,试问该测定结果与常规枝条含氮量有无差别。
例3某医师研究血清转铁蛋白测定对病毒性肝炎诊断的临床意义,测得12名正常人和15名病毒性肝炎患者血清转铁蛋白含量(μg/L),结果如表1-3所示。
推断血清转铁蛋白测定对病毒性肝炎诊断的意义表1-3 血清转铁蛋白含量
例4假说:“北方动物比南方动物具有较短的附肢。
”为验证这一假说,调查了如下鸟翅(mm)资料:北方的:
120,113,125,118,116,114,119;南方的:
116,117,121,114,116,118,123,120.试检验这一假说
例5高效液相色谱法测定甘草和炙甘草中甘草酸的含量,数据如下表所示。
试判断甘草与炙甘草中甘草酸的含量是否不同。
甘草与炙甘草中甘草酸的含量(g/100g)
甘草 3.3 2.2 2.2 4.4 2.9
炙甘草 2.6 1.7 1.8 3.5 2.4。
t检验例题

t检验例题假设我们有两组数据,分别是A组和B组。
我们想要检验A组和B组的平均值是否有显著差异。
以下是一个t检验的例题:假设A组是一组人的体重数据,B组是另一组人的体重数据。
我们想要检验A组和B组的平均体重是否有显著差异。
A组的体重数据:[60, 65, 70, 75, 80]B组的体重数据:[55, 60, 65, 70, 75]首先,我们需要计算出每组数据的平均值和标准差。
A组的平均值:(60 + 65 + 70 + 75 + 80) / 5 = 70B组的平均值:(55 + 60 + 65 + 70 + 75) / 5 = 65A组的标准差:sqrt(((60-70)^2 + (65-70)^2 + (70-70)^2 + (75-70)^2 + (80-70)^2) / 4) = sqrt(250) ≈ 15.81B组的标准差:sqrt(((55-65)^2 + (60-65)^2 + (65-65)^2 + (70-65)^2 + (75-65)^2) / 4) = sqrt(62.5) ≈ 7.91然后,我们可以使用t检验来确定这两组数据的平均值是否有显著差异。
t值的计算公式为:t = (A组的平均值 - B组的平均值) / sqrt((A组的标准差^2/ A组的样本数) + (B组的标准差^2/ B组的样本数))t值 = (70 - 65) / sqrt((15.81^2 / 5) + (7.91^2 / 5)) ≈ 0.71最后,我们需要查找t分布表,确定给定的t值对应的p值。
假设显著性水平为0.05,自由度为8(A组样本数 - 1 + B组样本数 - 1 = 4 + 4 = 8)。
查表得到,当自由度为8时,t分布的临界值为±2.306。
因为0.71 < 2.306,所以我们无法拒绝原假设,即A组和B组的平均体重没有显著差异。
这就是一个t检验的例题。
通过计算t值并查找t分布表中的临界值,我们可以得出结论是否拒绝原假设。
生物统计t检验的试题及答案

生物统计t检验的试题及答案1. 单样本t检验适用于哪种类型的数据?A. 两个独立样本的比较B. 配对样本的比较C. 一个样本与已知总体均值的比较D. 多个独立样本的比较答案:C2. 独立样本t检验的前提条件是什么?A. 样本必须是正态分布B. 样本必须是配对的C. 样本必须是等方差的D. 样本必须是随机抽样答案:C3. 在进行t检验时,如果样本量较小(通常小于30),应该如何处理?A. 使用正态分布近似B. 使用非参数检验C. 使用配对样本t检验D. 使用独立样本t检验答案:B4. 配对样本t检验用于比较哪两种类型的数据?A. 两个独立样本B. 两个相关样本C. 两个不同时间点的样本D. 两个不同条件下的样本答案:B5. t检验中,自由度是如何计算的?A. 自由度等于样本量B. 自由度等于样本量减去1C. 自由度等于样本量减去2D. 自由度等于样本量除以2答案:B6. 如果t检验的结果显示p值小于0.05,这意味着什么?A. 拒绝零假设B. 接受零假设C. 结果是偶然的D. 结果是显著的答案:A7. 在t检验中,零假设通常是什么?A. 两组样本均值之间存在显著差异B. 两组样本均值之间不存在显著差异C. 样本均值与总体均值之间存在显著差异D. 样本均值与总体均值之间不存在显著差异答案:B8. 效应量在t检验中有什么作用?A. 衡量样本大小B. 衡量两组样本均值之间的差异大小C. 衡量数据的方差D. 衡量数据的正态性答案:B9. 在进行t检验时,如果样本数据不满足正态分布,应该如何处理?A. 忽略不计B. 使用非参数检验C. 增加样本量D. 转换数据答案:B10. t检验的结果如何解释?A. t值越大,差异越显著B. p值越小,差异越显著C. 自由度越高,差异越显著D. 效应量越大,差异越显著答案:B。
生物统计学t检验的试题及答案

生物统计学t检验的试题及答案一、单项选择题(每题2分,共10分)1. 在生物统计学中,t检验主要用于比较哪两类数据?A. 两个独立样本的均值B. 两个相关样本的均值C. 多个独立样本的均值D. 多个相关样本的均值答案:A2. t检验的基本假设是什么?A. 两组数据的方差相等B. 两组数据的方差不相等C. 两组数据服从正态分布D. 两组数据服从泊松分布答案:C3. 以下哪个不是t检验的类型?A. 单样本t检验B. 独立样本t检验C. 配对样本t检验D. 方差分析(ANOVA)答案:D4. 当样本量较大时,t分布会趋近于哪种分布?A. 正态分布B. 泊松分布C. t分布D. F分布答案:A5. 在进行t检验时,如果p值小于显著性水平(通常为0.05),我们通常会得出什么结论?A. 拒绝原假设B. 接受原假设C. 无法得出结论D. 需要更多的数据答案:A二、多项选择题(每题3分,共15分)6. t检验中,以下哪些因素会影响自由度的计算?A. 样本大小B. 样本均值C. 样本方差D. 样本标准差答案:A, C7. 在进行配对样本t检验时,以下哪些情况是适用的?A. 同一受试者在不同时间点的测量B. 同一受试者在不同条件下的测量C. 两个不同受试者组的比较D. 两个独立样本的比较答案:A, B8. t检验的结果通常包括哪些统计量?A. t值B. 自由度C. p值D. 置信区间答案:A, B, C9. 在解释t检验结果时,以下哪些因素是重要的?A. t值的大小B. 自由度C. p值D. 样本量答案:A, C10. t检验的假设检验中,以下哪些是正确的?A. 零假设通常表示两组之间没有差异B. 备择假设通常表示两组之间有差异C. p值小于显著性水平时,拒绝零假设D. p值大于显著性水平时,接受零假设答案:A, B, C三、简答题(每题5分,共20分)11. 描述t检验中零假设和备择假设的含义。
答:在t检验中,零假设(H0)通常表示两组数据之间没有显著差异,即它们的均值相等。
t检验试题及详细答案

t检验试题及详细答案一、选择题1. 以下哪种情况最适合使用独立样本t检验?A. 比较两个相关样本的平均值B. 比较两个独立样本的平均值C. 比较一个样本的平均值与总体已知的平均值D. 比较多个样本的平均值答案:B2. 在进行t检验之前,需要满足哪些基本假设?A. 数据应呈正态分布B. 方差齐性C. 数据应随机抽取D. 所有上述答案:D3. 如果两个独立样本的方差不等,应该使用哪种t检验?A. 独立样本t检验B. 配对样本t检验C. Welch's t检验D. 单样本t检验答案:C二、简答题1. 解释什么是t检验,并说明它在统计分析中的应用。
t检验是一种统计检验方法,用于比较两组数据的均值是否存在显著差异。
它广泛应用于社会科学、生物学、经济学等领域,以确定实验处理的效果是否显著,或者两组数据是否来自具有相同均值的总体。
t检验分为单样本t检验、独立样本t检验和配对样本t检验,根据不同的实验设计和数据类型选择适当的t检验。
2. 说明在什么情况下应该使用配对样本t检验。
配对样本t检验用于比较同一组受试者在不同条件下或者在不同时间点的两次测量的平均值。
例如,在医学研究中,可能会对同一组病人在治疗前后的血压进行测量,以确定治疗效果是否显著。
在这种情况下,由于每个受试者的两次测量是相关的,因此使用配对样本t检验来分析数据。
三、计算题一个研究者想要了解音乐训练对儿童注意力的影响。
研究中,20名儿童在进行音乐训练前后的注意力测试分数被记录下来。
训练前的分数平均值为75,标准差为10;训练后的分数平均值为85,标准差为12。
请问音乐训练是否有显著影响?解:使用配对样本t检验来分析这个问题。
t = (M2 - M1) / sqrt((SD2^2 + SD1^2) / n)= (85 - 75) / sqrt((12^2 + 10^2) / 20)= 10 / sqrt((144 + 100) / 20)= 10 / sqrt(244 / 20)= 10 / sqrt(12.2)= 10 / 3.5计算得到t值约为2.86。
生物统计学t检验的试题及答案

生物统计学t检验的试题及答案生物统计学T检验的试题及答案一、单项选择题(每题2分,共10分)1. T检验中,当总体方差未知且样本量较小时,应使用以下哪种检验方法?A. Z检验B. T检验C. U检验D. F检验答案:B2. 在进行独立样本T检验时,以下哪个条件是必须满足的?A. 两个样本的方差必须相等B. 两个样本的均值必须相等C. 两个样本的样本量必须相等D. 两个样本必须独立答案:D3. 配对样本T检验适用于以下哪种情况?A. 两个独立样本的比较B. 同一样本在不同时间点的比较C. 两个样本的方差比较D. 三个以上样本的比较答案:B4. 在T检验中,如果自由度为10,且T统计量的值为2.5,查表得知相应的P值为0.02,那么我们可以得出以下哪种结论?A. 拒绝原假设B. 接受原假设C. 无法判断D. 需要更多的数据答案:A5. 以下哪个选项不是T检验的前提条件?A. 数据应呈正态分布B. 样本应独立C. 数据应呈均匀分布D. 总体方差未知答案:C二、多项选择题(每题3分,共15分)6. T检验可以分为哪几种类型?A. 单样本T检验B. 独立样本T检验C. 配对样本T检验D. 方差分析答案:ABC7. 在进行T检验时,以下哪些因素会影响自由度的计算?A. 样本量B. 组别数量C. 总体方差D. 样本均值答案:AB8. 以下哪些情况下,我们不能使用T检验?A. 数据不呈正态分布B. 样本量非常大C. 样本不独立D. 总体方差已知答案:AC9. T检验的结果通常包括哪些统计量?A. T统计量B. 自由度C. P值D. 置信区间答案:ABC10. 配对样本T检验中,以下哪些因素是必须满足的?A. 样本必须是配对的B. 样本量必须相等C. 样本必须独立D. 配对样本的差值应呈正态分布答案:ABD三、填空题(每题2分,共10分)11. 在独立样本T检验中,如果两个样本的方差不相等,我们可以使用________检验。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
T检验
习题1.按规定苗木平均高达1.60m以上可以出圃,今在苗圃中随机抽取10株苗木,测定的苗木高度如下:
1.75 1.58 1.71 1.64 1.55 1.72 1.62 1.83 1.63 1.65
假设苗高服从正态分布,试问苗木平均高是否达到出圃要求?(要求α=0.05)
解:1)根据题意,提出:无效假设为:苗木的平均苗高为H0=1.6m; 备择假设为:苗木的平均苗高H A>1.6m;
2)定义变量:在spss软件中的“变量视图”中定义苗木苗高, 之后在“数据视图”中输入苗高数据;
3)分析过程
在spss软件上操作分析过程如下:分析——比较均值——单样本T检验——将定义苗高导入检验变量——检验值定义为1.6——单击选项将置信区间设为95%——确定输出如下:
表1.1:单个样本统计量
表1.2:单个样本检验
4)输出结果分析
由表1.1数据分析可知,变量苗木苗高的平均值为1.6680m,标准差为0.0843,说明样本的离散程度较小,标准误为0.0267,说明抽样误差较小。
由表1.3数据分析可知,T检验值为2.55,样本自由度为9,t检验的双尾检验值为0.031<0.05,说明差异性显著,因此,否定无效假设H0,取备择假设H A。
根据题意,苗木的苗高服从正态分布,由以上分析知:在显著水平为0.05的水平上检验,苗木的平均苗高大于1.6m,符合出圃的要求。
习题2.从两个不同抚育措施育苗的苗圃中各以重复抽样的方式抽得样本如下:
样本1苗高(CM):52 58 71 48 57 62 73 68 65 56
样本2苗高(CM):56 75 69 82 74 63 58 64 78 77 66 73
设苗高服从正态分布且两个总体苗高方差相等(齐性),试以显著水平α=0.05检验两种抚育措施对苗高生长有无显著性影响。
解:1)根据题意提出:无效假设为H0:两种抚育措施对苗木生长没有显著的影响;备择假设H A:两种抚育措施对苗高生长影响显著;
2)在spss中的“变量视图”中定义变量“苗高1”,“抚育措施”,之后在“数据视图”中输入题中的苗高数据,及抚育措施,其中措施一定义为“1”措施二定义为“2”;
3)分析过程
在spss软件上操作分析过程如下:分析——比较变量——独立样本T检验——将“苗高1变量”导入“检验变量”——将“抚育措施”导入“分组变量”——定义组,其中:组一定义为“1”组二定义为“2”——单击选项将置信区间设为95%——输出分析数据如下;
表2.1:组统计量
表2.2:独立样本检验
4)输出结果分析
由上述输出表格分析知:在两种抚育措施下的苗木高度的平均值分别为61.00cm;69.58cm。
苗高均值差异性分析的F值为0.946,说明通过方差方程的检验其两总体的苗高均值齐性,标准差分别为8.233、8.240。
由表2.2知通过均值方程的t检验的t值为-2.434,样本的双尾检验值为0.024<0.05,说明差异性显著,因此,否定无效假设,肯定备择假设。
由分析知,在显著水平为0.05水平时检验,两种抚育措施对于
苗高的影响显著。