【常考题】高二数学上期末试题及答案
高二数学上学期期末考试试题含解析(共19页)

镇海中学(zhōngxué)2021学年第一学期期末考试高二年级数学试卷第I卷〔选择题〕一、选择题.在每一小题给出的四个选项里面,只有一项是哪一项符合题目要求的.,,那么〔〕A. B. C. D.或者【答案】C【解析】【分析】求解出集合的取值范围,利用交集定义求解.【详解】由得:或者,即或者那么此题正确选项:【点睛】此题主要考察集合运算中的交集运算,属于根底题.,,那么〔〕A. B.C. D.【答案】D【解析】【分析】根据(gēnjù)单调性,可得,再验证可得最终结果.【详解】在上单调递增,即又又此题正确选项:【点睛】此题考察与对数函数有关的比拟大小类问题,属于根底题.在点〔1,0〕处切线的倾斜角为,那么〔〕A. 2B.C. -1D. 0 【答案】A【解析】【分析】求导得,代入,可得切线斜率,即的值.【详解】由题意得:代入,可得切线斜率又,得此题正确选项:【点睛】此题考察导数的几何意义、直线斜率与倾斜角的关系,属于根底题.R上的函数的图像是连续的,且其中的四组对应值如下表,那么在以下区间中,函数不一定存在零点的是〔〕x 1 2 3 53 -1 2 0A. B. C. D.【答案(dá àn)】D【解析】【分析】根据零点存在定理,依次判断各个选项。
又为的子集,那么区间有零点,那么区间也必有零点;上有零点,那么上必有零点;由此可得结果.【详解】由题意可得:在上必有零点又,在上必有零点在上必有零点又,在上必有零点在上不一定存在零点此题正确选项:【点睛】此题主要考察零点存在定理,关键在于需要明确当,不能得到区间内一定无零点的结论,需要进一步判断.,假设,那么〔〕A. 1B. -1C. -2D. 3【答案】B【解析(jiě xī)】【分析】判断的奇偶性,通过奇偶性求得函数的值.【详解】由题意得:即定义域为,关于原点对称又可得:为奇函数此题正确选项:【点睛】此题考察通过函数奇偶性求函数值。
数学期末考试试卷及答案(高二上学期)

数学期末考试试卷及答案(高二上学期)一、选择题(每题4分,共40分)1. 若复数z满足|z-1|=|z+1|,则z在复平面内表示的点位于()A. 实轴B. 虚轴C. 线段AB的中点D. 圆心O答案:C2. 已知函数f(x)=2x+1,若f(f(x))=3,则x等于()A. -1B. 0C. 1D. 2答案:A3. 设函数g(x)=x²-4x+c,若g(x)的图象上存在两个点A、B,使得∠AOB=90°(其中O为坐标原点),则c的取值范围是()A. (-∞, 1]B. [1, +∞)C. (-∞, 3]D. [3, +∞)答案:A4. 已知等差数列{an}的前5项和为25,第5项为15,则该数列的首项为()A. 1B. 3C. 5D. 7答案:B5. 若平行四边形ABCD的对角线交于点E,已知BE=4,CE=6,∠DCE=30°,则BD的长度为()A. 8B. 10C. 12D. 16答案:B6. 已知函数h(x)=x³-3x,若h(x)的图象上存在一个点P,使得∠AOP=90°(其中O为坐标原点),则x的取值范围是()A. (-∞, 0]B. [0, +∞)C. (-∞, 1]D. [1, +∞)答案:C7. 若等比数列{bn}的前三项分别为1、2、4,则该数列的公比为()A. 2B. 3C. 4D. 5答案:A8. 已知函数p(x)=x²-2x+1,若p(p(x))=0,则x等于()A. 0B. 1C. 2D. 3答案:B9. 设函数q(x)=|x-1|+|x+1|,则q(x)的最小值为()A. 0B. 1C. 2D. 3答案:C10. 若三角形ABC中,∠A=60°,AB=3,AC=4,则BC的长度为()A. 5B. 6C. 7D. 8答案:B二、填空题(每题4分,共40分)11. 若复数z=a+bi(a、b为实数),且|z|=2,则___。
数学期末考试试卷及答案(高二上学期)

数学期末考试试卷及答案(高二上学期)一、选择题(共40分,每小题2分)1. 一次函数y = 2x - 3的图象是直线,下列说法正确的是()。
A. 过点(-3, 3)B. 过点(0, -3)C. 过点(3, 0)D. 过点(0, 3)答案:C2. 已知函数y = ax² + bx + c的图象经过点(1, 4),则a + b + c的值为()。
A. 4B. 6C. 8D. 10答案:B3. 在直角坐标系中,已知点A(2, 3),点B在x轴上,且AB = 5,则点B的坐标为()。
A. (2, 0)B. (0, -3)C. (7, 0)D. (-3, 0)答案:A4. 设函数f(x) = 2x + 3,g(x) = x² - 4,则f(g(2))的值为()。
A. 3B. 7C. 9D. 11答案:C5. 函数y = x² - 6x + 8的图象是一条抛物线,下列说法正确的是()。
A. 开口向上B. 开口向下C. 与x轴平行D. 与y轴平行答案:A二、解答题(共60分)6. 解方程组:2x - y = 3x + y = 5解答:将第一式两边同时加上第二式得到:2x - y + x + y = 3 + 53x = 8x = 8/3将x的值代入第二式得到:8/3 + y = 5y = 5 - 8/3y = 15/3 - 8/3y = 7/3因此,方程组的解为x = 8/3,y = 7/3。
7. 某商品原价为120元,现在打8折出售,求出售价格。
解答:打8折即为原价乘以0.8,所以出售价格为120元 × 0.8 = 96元。
8. 某数的5倍减去6等于30,求这个数。
解答:设这个数为x,则根据题意可以列出方程:5x - 6 = 305x = 30 + 65x = 36x = 36/5因此,这个数为36/5。
9. 已知等差数列的首项为3,公差为4,求第10项。
解答:第10项可以通过首项加上9倍公差来计算:第10项 = 3 + 9 × 4= 3 + 36= 39因此,第10项为39。
高二数学上学期期末考试试卷含答案

第一学期期末考试 高二 年级 数学 试卷一、选择题(本大题共12小题,每小题5分,满分60分)每小题只有一个....正确选项,请将正确选项填到答题卡处1.设集合{|(1)(2)0}A x x x =+-<, {|13}B x x =<<,则A B =( )A .{|13}x x -<<B .{|11}x x -<<C .{|12}x x << D .{|23}x x <<2.下列函数中,在区间上为增函数的是( )A .B .C .D .3.已知平面向量,,且//,则=( ) A .B .C .D .4.设x ,y ∈R ,则“x ≥2且y ≥2”是“x 2+y 2≥4”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件5.已知等差数列{a n }的公差为d (d ≠0),且a 3+a 6+a 10+a 13=32,若a m =8,则m 为( )A .12B .8C .6D .46.函数()22)(x x f π=的导数是( )A .x x f π4)(=' B. x x f 24)(π=' C. x x f 28)(π=' D. x x f π16)(='7.为了得到函数的图象,可以将函数的图象( )A . 向右平移个单位长度B . 向右平移个单位长度C . 向左平移个单位长度D . 向左平移个单位长度8.已知双曲线()222210,0x y a b a b-=>> 的一条渐近线过点(3 ,且双曲线的一个焦点在抛物线27y x = 的准线上,则双曲线的方程为 ( )A .2212128x y -=B .2212821x y -=C .22134x y -=D .22143x y -=9.若一个正三棱柱的三视图如图所示,则这个正三棱柱的表面积为( )A .318B .315C .3824+D .31624+10.在长为10厘米的线段AB 上任取一点G ,用AG 为半径作圆,则圆的面积介于36π平方厘米到64π平方厘米的概率是( )A .925 B .1625 C .310 D .1511.己知函数恒过定点A .若直线过点A ,其中是正实数,则的最小值是( )A .B .C .D . 512.已知不等式2201x m x ++>-对一切()1x ∈+∞,恒成立,则实数m 的取值范围是( ) A . 6m >- B . 6m <- C . 8m >- D . 8m <-第II 卷 (非选择题共90分)二、填空题(本大题共4小题,每小题5分,共20分)13.已知命题p :∀x >0,(x +1)e x >1,则p 为 .14.设变量x ,y 满足约束条件,22,2.y x x y x ≥⎧⎪+≤⎨⎪≥-⎩则z =x -3y 的最小值为15.已知函数3()128f x x x =-+在区间[3,3]-上的最大值与最小值分别为,M m ,则M m -=__________16.对于下列表格x 196 197 200 203 204 y136 7 m所示的五个散点,已知求得的线性回归方程为y ^=0.8x -155. 则实数m 的值为 .三、解答题(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(本小题满分11分)已知0m >,p :()()260x x +-≤,q :22m x m -≤≤+ . (I )若p 是q 的充分条件,求实数m 的取值范围;(Ⅱ)若5m =,“p 或q ”为真命题,“p 且q ”为假命题,求实数x 的取值范围.18、(本小题满分11分).在锐角中,分别为角所对的边,且.(1)确定角的大小;(2)若,且的面积为,求的周长.19 . (本小题满分12分)已知数列{}n a 中,)(2,1*11N n a a a n n ∈==+,数列{}n b 是以公差为3的等差数列,且32a b =.(1) 求数列{}n a ,{}n b 的通项公式; (2) 求数列{}n n b a -的前n 项和n S .20.(本小题满分12分)某工厂对一批产品进行了抽样检测.如图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图,其中产品净重的范围是[96,106],样本数据分组为[96,98),[98,100),[100,102),[102,104),[104,106],已知样本中产品净重小于100克的个数是36.(1)求样本容量及样本中净重大于或等于98克并且小于104克的产品的个数;(2)已知这批产品中每个产品的利润y (单位:元)与产品净重x (单位:克)的关系式为3(9698),5(98104),4(104106).y x x x =≤<⎧⎪≤<⎨⎪≤≤⎩求这批产品平均每个的利润.21.(本小题满分12分)已知椭圆)0(12222>>=+b a by a x C :的焦距为32,长轴长为4.(1)求椭圆C 的标准方程;(2)直线m x y l +=:与椭圆C 交于 A ,B 两点.若OB OA ⊥,求m 的值.22. (本小题满分12 分) 已知函数(1)讨论函数 f (x)的单调性; (2)若对任意的a ∈ [1,4),都存在 (2,3]使得不等式成立,求实数m 的取值范围.高二数学期末考试参考答案一、选择题 题号 1 2 3 4 5 6 7 8 9 101112答案ABBABCADCDBA13、∃x 0>0,使得(x 0+1)0e x ≤1. 14.-8 15.32 16. 8 17. (本题11分)解:(I ):26p x -≤≤ ………………………1分p 是q 的充分条件[]2,6∴-是[]2,2m m -+的子集 ………………………2分 022426m m m m m >⎧⎪∴-≤-⇒≥∴⎨⎪+≥⎩的取值范围是[)4,+∞………………………5分(Ⅱ)当5m =时,:37q x -≤≤,由题意可知,p q 一真一假, ………………………6分p 真q 假时,由2637x x x x -≤≤⎧⇒∈∅⎨<->⎩或 ………………………8分 p 假q 真时,由26326737x x x x x <->⎧⇒-≤<-<≤⎨-≤≤⎩或或 ………………………10分 所以实数x 的取值范围是[)(]3,26,7-- ………………………11分18. (本题11分)解:(1),由正弦定理得A C A sin sin 2sin 3•=…………1分又,, …………3分又 …………5分(2)由已知得,…………7分在中,由余弦定理得…………8分即,又,(舍负)…………10分故的周长为 …………11分19 . (本题12分)解(1))(2,1*11N n a a a n n ∈==+ ,{}的等比数列是公比为数列2n a ∴, 121-⨯=∴n n a ..........................................3分 因为等差数列{}n b 的公差为3,又42232===a b ,所以233)1(2-=⨯-+=n n b b n ,..........................6分 (2))()()(2211n n n b a b a b a S -++-+-=)(2121n n b b b a a a ++-++=)(.....................8分 2)231(212-1-+--=n n n ..................................10分 122322-+-=nn n...............................12分20、 (本题12分)解: (1)产品净重小于100克的频率为(0.050+0.100)×2=0.300.......1分 设样本容量为n .∵样本中产品净重小于100克的个数是36...........2分 ∴36n =0.300,∴n =120...........3分.∵样本中净重大于或等于98克并且小于104克的产品的频率为(0.100+0.150+0.125)×2=0.750.........4分∴样本中净重大于或等于98克并且小于104克的产品的个数是120×0.750=90.....5分 (2) 产品净重在[96,98),[98,104),[104,106]内的频率分别为0.050×2=0.100, (0.100+0.150+0.125)×2=0.750, 0.075×2=0.150,........8分∴其相应的频数分别为120×0.1=12,120×0.750=90,120×0.150=18,...10分 ∴这批产品平均每个的利润为1120×(3×12+5×90+4×18)=4.65(元)...12分 20.(本题12分)解:(1)∵椭圆)0(12222>>=+b a b y a x C :的焦距为32,长轴长为4,3=∴c ,2=a ,∴1=b ,..........................................2分∴椭圆C 的标准方程为1422=+y x .........................4分 (2)设),(,2211y x B y x A )(,将直线AB的方程m x y +=为代入椭圆方程得0448522=-++m mx x . .......................6分 则58-21mx x =+,544221-=m x x , ①.又0)44(206422>--=∆m m ,解得52<m . .......................9分,由OB OA ⊥得:0)(2))((2212121212121=+++=+++=+m x x m x x m x m x x x y y x x ........11分将①代入,得5102±=m ,又∵满足52<m ,∴5102±=m .........12分22.(本题满分12分)解:(1).........2分令得:..........3分令得:...........4分所以函数f(x)的单调递增区间为:和;单调递减区间为:.........6分(2)因为由(1)知函数在(2,3]上单调递增,所以........8分若对任意的a[1,4),都存在(2,3]使得不等式成立,等价于恒成立........9分令当时,所以当时,........11分故实数m 的取值范围是:.......12分。
最新高二数学上学期期末考试试卷含答案

一、选择题1、数列}{n a 的首项为2,且41-=-n n a a (n ≥2),则通项公式是: A 、n a n 46-= B 、24-=n a n C 、1+=n a n D 、n a n 24-=2、已知数列}{n a 的通项公式为nn n n a )5(43-+=,前n 项的和为n S ,则=∞→nn SlimA 、87- B 、7259-C 、0D 、54- 3、经过点(5、10)且与原点距离为5的直线的斜率是: A 、43B 、2C 、21D 、43或不存在 4、以原点圆心,且截直线01543=++y x 所得弦长为8的圆的方程是:A 、522=+y x B 、2522=+y x C 、422=+y x D 、1622=+y x 5、方程01)2()1(22=-++++m y m mx 所表示的图形是一个圆,则常数m 的值是:A 、2B 、-1C 、2或-1D 、不存在 6、直线02)()32(22=--+-+m y m m x m m 与直线01=--y x 平行,则m 的值是:A 、1B 、-1C 、1或-1D 、不存在7、椭圆1121622=+y x 上的点P 到右焦点距离为38,则P 点的横坐标是:A 、38B 、83C 、316D 、37 8、给出下列四条不等式:①2)1(-x >2)(x ②2)1(-x >x ③x ≥0 ④x >12)1(-x >x 2)1(-x >x以上不等式中与不等式x x >-1同解的有 A 、①③ B 、②④ C 、③ D 、④9、等差数列{}n a 中23=a ,公差1=d ,n S 为前n 项的和,要使+++321321S S S …+nS n 的值最大,则n 为: A 、7 B 、8 C 、9 D 、8或910、数列{}n a 满足21=a ,++=21a a a n …+1-n a (n ≥2),则20a 等于: A 、172 B 、182 C 、192 D 、220 二、填空题:11、直线x y 21=关于直线x y 2=对称的直线方程是__________12、不等式2<|12-x |<8的解集是_________________13、与直线0543=+-y x 垂直, 且与圆4)2()1(22=++-y x 相切的直线方程是_____。
高二数学上学期期末考试题精选及答案

高二数学上学期期末考试题第I 卷(试题) 一、 选择题:(每题5分,共60分)2、若a,b 为实数,且a+b=2,则3a +3b 的最小值为( )(A )18, (B )6, (C )23, (D )243 3、与不等式xx --23≥0同解的不等式是 ( ) (A )(x-3)(2-x)≥0, (B)0<x-2≤1, (C)32--x x≥0, (D)(x-3)(2-x)>06、已知L 1:x –3y+7=0, L 2:x+2y+4=0, 下列说法正确的是 ( )(A )L 1到L 2的角为π43, (B )L 1到L 2的角为4π(C )L 2到L 1的角为43π, (D )L 1到L 2的夹角为π437、和直线3x –4y+5=0关于x 轴对称的直线方程是 ( )(A )3x+4y –5=0, (B)3x+4y+5=0, (C)-3x+4y –5=0, (D)-3x+4y+5=08、直线y=x+23被曲线y=21x 2截得线段的中点到原点的距离是 ( )(A )29 (B )29 (C )429 (D )22911、双曲线: 的准线方程是191622=-x y ( ) (A)y=±716 (B)x=±516 (C)X=±716 (D)Y=±51612、抛物线:y=4ax 2的焦点坐标为 ( ) (A )(a 41,0) (B )(0, a 161) (C)(0, -a 161) (D) (a161,0)二、填空题:(每题4分,共16分) 13、若不等式ax 2+bx+2>0的解集是(–21,31),则a-b= . 14、由x ≥0,y ≥0及x+y ≤4所围成的平面区域的面积为 . 15、已知圆的方程⎩⎨⎧-=+=θθsin 43cos 45y x 为(θ为参数),则其标准方程为 .16、已知双曲线162x -92y =1,椭圆的焦点恰好为双曲线的两个顶点,椭圆与双曲线的离心率互为倒数,则椭圆的方程为 .三、 解答题:(74分)17、如果a ,b +∈R ,且a ≠b ,求证: 422466b a b a b a +>+(12分)19、已知一个圆的圆心为坐标原点,半径为2,从这个圆上任意一点P 向x 轴作线段PP 1,求线段PP 1中点M 的轨迹方程。
上学期高二的数学期末考试试题和答案

上学期高二的数学期末考试试题和答案一、选择题(每题5分,共25分)1. 若函数f(x) = 2x + 1是单调递增的,则实数a的取值范围是:A. a > -1B. a ≤ -1C. a > 0D. a ≤ 02. 已知函数g(x) = x^3 - 6x^2 + 9x,则g'(x)的正确表达式是:A. 3x^2 - 12x + 9B. 3x^2 + 12x - 9C. 6x^2 - 12x + 9D. 6x - 123. 设向量a = (2, 3),向量b = (-1, 2),则向量a与向量b的点积为:A. -7B. 7C. -5D. 54. 已知等差数列的前5项和为35,公差为3,首项为:A. 5B. 6C. 7D. 85. 若复数z = 3 + 4i的模为5,则复数z的辐角主值为:A. π/4B. π/2C. 3π/4D. π二、填空题(每题5分,共25分)1. 若函数f(x) = x^3 - 6x在区间(-∞,2)内单调递减,则实数a的取值范围是______。
2. 已知函数g(x) = x^3 - 6x^2 + 9x,则g'(x)的正确表达式是______。
3. 设向量a = (2, 3),向量b = (-1, 2),则向量a与向量b的点积为______。
4. 已知等差数列的前5项和为35,公差为3,首项为______。
5. 若复数z = 3 + 4i的模为5,则复数z的辐角主值为______。
三、解答题(每题10分,共50分)1. (10分)已知函数f(x) = x^3 - 6x^2 + 9x,求f'(x)并讨论f(x)的单调性。
2. (10分)已知等差数列的首项为a,公差为d,前n项和为S,求证:S = n/2 * (2a + (n - 1)d)。
3. (10分)解方程:x^2 + (a - 2)x + 1 = 0,讨论方程的实数根情况。
4. (10分)已知复数z = a + bi(a, b为实数),且|z| = 5,求复数z的模和辐角主值。
高二数学上学期期末考试试题(及答案)

高二数学上学期期末考试试题(及答案)高二数学上学期期末考试试题及答案第I卷(选择题)1.在三角形ABC中,已知a+b=c-2ab,则C=()。
A。
2π/3 B。
π/3 C。
π D。
3π/4改写:在三角形ABC中,已知a+b=c-2ab,求C的大小。
答案:B2.在三角形ABC中,已知cosAcosB=p,求以下条件p的充要条件。
A。
充要条件B。
充分不必要条件C。
必要不充分条件D。
既非充分也非必要条件改写:在三角形ABC中,已知cosAcosB=p,求p的充要条件。
答案:B3.已知等比数列{an}中,a2a10=6a6,等差数列{bn}中,b4+b6=a6,则数列{bn}的前9项和为()。
A。
9 B。
27 C。
54 D。
72改写:已知等比数列{an}和等差数列{bn}的一些条件,求{bn}的前9项和。
答案:C4.已知数列{an}的前n项和Sn=n+2n,则数列{a1}的前n 项和为()。
A。
n^2/(n-1) B。
n(n+1)/(2n+1) C。
3(2n+3)/(2n+1) D。
3(n+1)/(n-1)改写:已知数列{an}的前n项和Sn=n+2n,求数列{a1}的前n项和。
答案:B5.设 2x-2y-5≤2,3x+y-10≥3,则z=x+y的最小值为()。
A。
10 B。
8 C。
5 D。
2改写:已知不等式2x-2y-5≤2和3x+y-10≥3,求z=x+y的最小值。
答案:C6.对于曲线C:x^2/4+y^2/k^2=1,给出下面四个命题:①曲线C不可能表示椭圆;②“14”的必要不充分条件;④“曲线C表示焦点在x轴上的椭圆”是“1<k<5”的充要条件。
其中真命题的个数为()。
A。
0个 B。
1个 C。
2个 D。
3个改写:对于曲线C:x^2/4+y^2/k^2=1,判断下列命题的真假,并统计真命题的个数。
答案:C7.对于曲线C:x^2+y^2=1与直线y=k(x+3)交于点A,B,则三角形ABM的周长为()。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
15.利用计算机产生0~1之间的均匀机数 ,则使关于 的一元二次方程 无实根的概率为______.
16.如图所示,在边长为1的正方形OABC中任取一点M.则点M恰好取自阴影部分的概率是.
附: ,其中 .
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.C
解析:C
【解析】
【分析】
直接根据程序框图依次计算得到答案.
【详解】
模拟执行程序,可得
,
不满足条件 , ,满足条件 ,
不满足条件 , ,满足条件 ,
满足条件 , ,满足条件 ,
满足条件 , ,不满足条件 ,退出循环,输出t的值为7.
(1)求 的值;
(2)根据已知条件完成下面的 列联表,并判断是否有 以上的把握认为“读书之星”与性别有关?
非读书之星
读书之星
总计
男
女
总计
(3)将上述调查所得到的频率视为概率,现从该地区大量学生中,随机抽取 名学生,每次抽取 名,已知每个人是否被抽到互不影响,记被抽取的“读书之星”人数为随机变量 ,求 的分布列和期望
14.【解析】【分析】将所有的基本事件全部列举出来确定基本事件的总数并确定所求事件所包含的基本事件数然后利用古典概型的概率公式求出答案【详解】所有的基本事件有:(甲乙丙)(乙甲丙)(丙甲乙)(甲乙丙)(甲
解析:
【解析】
【分析】
将所有的基本事件全部列举出来,确定基本事件的总数,并确定所求事件所包含的基本事件数,然后利用古典概型的概率公式求出答案.
7.B
解析:B
【解析】
由题意可得:初如值S=2,k=2015,
S=-1,k=2016<2018
S= ,k=2017<2018
输出2,选C.
8.C
解析:C
【解析】
【分析】
根据系统抽样知,组距为 ,即可根据第一组所求编号,求出各组所抽编号.
【详解】
学生60名,用系统抽样的方法,抽取一个容量为4的样本,所以组距为 ,
【常考题】高二数学上期末试题及答案
一、选择题
1.执行如图的程序框图,若输入 ,则输出t的值等于( )
A.3B.5C.7D.15
2.如图, 和 都是圆内接正三角形,且 ,将一颗豆子随机地扔到该圆内,用 表示事件“豆子落在 内”, 表示事件“豆子落在 内”,则 ( )
A. B. C. D.
3.气象意义上的春季进入夏季的标志为连续5天的日平均温度不低于 .现有甲、乙、丙三地连续5天的日平均气温的记录数据(记录数据都是正整数):
【详解】
各数据为:122031323445454547474850506163,
最中间的数为:45,所以,中位数为45.
本题选择A选项.
【点睛】
本题主要考查茎叶图的阅读,中位数的定义与计算等知识,意在考查学生的转化能力和计算求解能力.
6.C
解析:C
【解析】
根据平均数的概念,其平均数为 ,方差为 ,故选C.
【详解】
所有的基本事件有:(甲、乙丙)、(乙,甲丙)、(丙、甲乙)、(甲乙、丙)、(甲丙、乙)、(乙丙、甲)(其中前面的表示派往大武口区调研的专家),共 个,
故选:C.
【点睛】
本题考查了程序框图,意在考查学生的计算能力和理解能力.
2.D
解析:D
【解析】
如图所示,作三条辅助线,根据已知条件,这些小三角形全等, 包含 个小三角形,同时又在 内的小三角形共有 个,所以 ,故选D.
3.B
解析:B
【解析】
试题分析:由统计知识①甲地: 个数据的中位数为 ,众数为 可知①符合题意;而②乙地: 个数据的中位数为 ,总体均值为 中有可能某一天的气温低于 ,故不符合题意,③丙地: 个数据中有一个数据是 ,总体均值为 ,总体方差为 .若由有某一天的气温低于 则总体方差就大于 ,故满足题意,选C
5.2018年12月12日,某地食品公司对某副食品店某半月内每天的顾客人数进行统计得到样本数据的茎叶图如图所示,则该样本的中位数是( )
A.45B.47C.48D.63
6.如果数据 的平均数为 ,方差为 ,则 , ,…, 的平均数和方差分别为( )
A. , B. , C. , D. ,
7.执行如图的程序框图,那么输出的S的值是( )
12.B
解析:B
【解析】
【分析】
由 ,求出 ,计算出数据落在区间 内的频率,即可求解.
【详解】
由 ,
解得 ,
所以数据落在区间 内的频率为 ,
所以数据落在区间 内的频数 ,
故选B.
【点睛】
本题主要考查了频率分布直方图,频率、频数,属于中档题.
二、填空题
13.【解析】【分析】先利用辅助角公式将函数的解析式化简根据三角函数的变化规律求出函数的解析式即可计算出的值【详解】由题意可得因此故答案为【点睛】本题考查辅助角公式化简三角函数图象变换在三角图象相位变换的
解析:
【解析】
【分析】
先利用辅助角公式将函数 的解析式化简,根据三角函数的变化规律求出函数 的解析式,即可计算出 的值.
【详解】
,
由题意可得 ,
因此, ,
故答案为 .
【点睛】
本题考查辅助角公式化简、三角函数图象变换,在三角图象相位变换的问题中,首先应该将三角函数的解析式化为 (或 )的形式,其次要注意左加右减指的是在自变量 上进行加减,考查计算能力,属于中等题.
三、解答题
21.为了了解某省各景区在大众中的熟知度,随机从本省 岁的人群中抽取了 人,得到各年龄段人数的频率分布直方图如图所示,现让他们回答问题“该省有哪几个国家 级旅游景区?”,统计结果如下表所示:
组号
分组
回答正确的人数
回答正确的人数占本组的频率
第 组
第 组
第 组
第 组
第 组
(1)分别求出 的值;
年龄(岁)
频数
14
12
8
6
知道的人数
3
4
8
7
3
2
(1)求上表中的 的值,并补全右图所示的的频率直方图;
(2)在被调查的居民中,若从年龄在 的居民中各随机选取1人参加垃圾分类知识讲座,求选中的两人中仅有一人不知道垃圾分类方法的概率.
25.从装有大小相同的2个红球和6个白球的袋子中,每摸出2个球为一次试验,直到摸出的球中有红球(不放回),则实验结束
已知03号,18号被抽取,所以应该抽取 号,
故选C.
【点睛】
本题主要考查了抽样,系统抽样,属于中档题.
9.A
解析:A
【解析】
【分析】
根据图象即可看出,华为在每个季度的销量都最大,从而得出华为的全年销量最大,从而得出 正确;由于不知每个季度的销量多少,从而苹果、华为和三星在哪个季度的销量大或小是没法判断的,从而得出选项 , , 都错误.
考点:统计初步
4.A
解析:A
【解析】
【分析】
利用茎叶图、平均数的性质直接求解.
【详解】
由一组数据的茎叶图得:
该组数据的平均数为:
.
故选:A.
【点睛】
本题考查平均数的求法,考查茎叶图、平均数的性质等基础知识,考查运算求解能力,是基础题.
5.A
解析:A
【解析】
【分析】
由茎叶图确定所给的所有数据,然后确定中位数即可.
(2)从第 组回答正确的人中用分层抽样的方法抽取 人,求第 组每组抽取的人数;
(3)在(2)中抽取的 人中随机抽取 人,求所抽取的人中恰好没有年龄段在 的概率
22.在全国第五个“扶贫日”到来之前,某省开展“精准扶贫,携手同行”的主题活动,某贫困县调查基层干部走访贫困户数量.甲镇有基层干部60人,乙镇有基层干部60人,丙镇有基层干部80人,每人都走访了若干贫困户,按照分层抽样,从甲、乙、丙三镇共选20名基层干部,统计他们走访贫困户的数量,并将走访数量分成 , , , , 5组,绘制成如图所示的频率分布直方图.
(1)求这20人中有多少人来自丙镇,并估计甲、乙、丙三镇的基层干部走访贫困户户数的中位数(精确到整数位);
(2)如果把走访贫困户达到或超过35户视为工作出色,求选出的20名基层干部中工作出色的人数,并从中选2人做交流发言,求这2人中至少有一人走访的贫困户在 的概率.
23.某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四次试验,得到的数据如下:
【详解】
根据图象可看出,华为在每个季度的销量都最大,所以华为的全年销量最大;
每个季度的销量不知道,根据每个季度的百分比是不能比较苹果在第二季度和第三季度销量多少的,同样不能判断华为在哪个季度销量最大,三星在哪个季度销量最小; , , 都错误,故选 .
【点睛】
本题主要考查对销量百分比堆积图的理解.
10.A
A.﹣1B. C.2D.1
8.高二某班共有学生60名,座位号分别为01, 02, 03,···, 60.现根据座位号,用系统抽样的方法,抽取一个容量为4的样本.已知03号、18号、48号同学在样本中,则样本中还有一个同学的座位号是()
A.31号B.32号C.33号D.34号
9.如图是某手机商城2018年华为、苹果、三星三种品牌的手机各季度销量的百分比堆积图(如:第三季度华为销量约占50%,苹果销量约占20%,三星销量约占30%).根据该图,以下结论中一定正确的是( )
A. B. C. D.
12.有一个容量为200的样本,样本数据分组为 , , , , ,其频率分布直方图如图所示.根据样本的频率分布直方图估计样本数据落在区间 内的频数为( )