最新区间的概念(教学设计)

合集下载

高中数学概念类教案模板

高中数学概念类教案模板

高中数学概念类教案模板
教学内容:概念理解与运用
教学目标:通过本节课的学习,学生能够掌握相关数学概念的定义、性质和运用方法,提高数学思维能力和解决问题的能力。

教学流程:
1. 导入:通过提出一个具体问题或引发学生思考的情境引入本节课的主题,激发学生学习的兴趣。

2. 概念讲解:讲解本节课所涉及的数学概念的定义和性质,并引导学生理解其内涵及逻辑关系。

3. 示例分析:通过实际例题以及应用题的分析,引导学生掌握概念的具体运用方法和解题技巧。

4. 教学练习:设计一定数量和难度的练习题目,让学生巩固所学知识,并帮助他们更好地理解和应用所学概念。

5. 拓展延伸:对于学生能力较强的同学,设计一些拓展性练习或延伸阅读材料,引导他们深入思考和拓展知识面。

6. 总结归纳:对本节课所学内容进行总结和归纳,强化学生对概念的理解和记忆。

教学方法:讲授与练习相结合、理论与实践相结合、个别辅导与集体讨论相结合。

教学资源:教材、教辅资料、多媒体教学辅助工具等。

布置作业:布置适量的作业,巩固学生所学知识,帮助他们加深对概念的理解和运用。

教学反馈:通过作业批阅和课堂检测等方式,及时了解学生掌握情况,对学习效果进行评估和反馈。

教学评价:根据学生的学习表现和自身的教学实践情况,不断调整教学策略和方法,总结经验,不断提升教学效果。

高中数学教学课例《函数的概念》课程思政核心素养教学设计及总结反思

高中数学教学课例《函数的概念》课程思政核心素养教学设计及总结反思
接下来引导学生思考通过对上述实例的共同点并 结合课本归纳函数的概念。组织学生阅读课本,在阅读 过程中注意思考以下问题
问题 1:函数的概念是什么初中与高中对函数概念 的定义的异同点是什么符号“”的含义是什么
问题 2:构成函数的三要素是什么 问题 3:区间的概念是什么区间与集合的关系是什 么在数轴上如何表示区间给学生十分钟的时间,组织学 生进行全班交流。 设计意图:以问题串的形式来探索新知,引起学生 的认知冲突,使学生对旧知识产生质疑,从而激发学生 的学习动机和求知欲。 根据学生的回答,可能得到以下的预设:①函数的 概念:给定两个非空数集 A 和 B,如果按照某个对应关 系 f,对于集合 A 中任何一个数 x,在集合 B 中都存在
(三)情感态度价值观 在自主探究,合作交流中,感受到探索的乐趣和成 功的体验,体会到数学的逻辑性和严谨性,逐步养成良 好的学习习惯,增强合作意识。 新课标指出学生是教学的主体,所以要成为符合新 课标要求的教师,首先就要深入了解所面对的学生。本 阶段的学生已经具备了一定的分析能力,以及逻辑推理 学生学习能 能力,在此之前,他们已经学会了函数的概念,函数的 力分析 图像和表示方法,对函数性质有了初步的认识,这就为 本节课内容的学习奠定了基础,但是对于用数学的语言 来描述函数的图像性质关系的理解,学生可能会产生一 定的困难。 新课标理念认为,在教学过程中,学生是学习的主 体,教师是学习的组织者、引导者,教学的一切活动都 教学策略选 必须以强调学生的主动性、积极性为出发点。根据这一 择与设计 教学理念,结合本节课的内容特点和学生的心理特征与 认知规律,我采用启发法、讲授法、小组合作、自主探 究等教学方法。
引导学生分析归纳以上三个实例,他们之间有什么 共同点,并根据初中所学函数的概念,判断各个实例中 的两个变量之间的关系是否为函数关系。

《3.1函数的概念》教学设计教学反思-2023-2024学年中职数学高教版21基础模块上册

《3.1函数的概念》教学设计教学反思-2023-2024学年中职数学高教版21基础模块上册

《函数的概念》教学设计方案(第一课时)一、教学目标1. 理解函数的概念,掌握函数的三要素。

2. 能够正确描述函数关系,理解自变量和因变量的关系。

3. 培养运用函数观点看待问题的意识。

二、教学重难点1. 教学重点:理解函数的概念,掌握描述函数关系的方法。

2. 教学难点:理解自变量和因变量的关系,掌握函数的三要素。

三、教学准备1. 准备教学用具:黑板、白板、笔、函数图表等。

2. 准备教学内容:设计案例,帮助学生理解函数概念。

3. 复习相关知识:在讲授新课前,简要复习方程、等式、变量等预备知识。

4. 确定教学方法:采用案例教学、小组讨论、课堂互动等方法,引导学生积极参与,加深理解。

四、教学过程:本节课的主要教学目标是帮助学生理解函数的概念,培养他们的数学思维能力和抽象思维能力。

在教学过程中,我们将通过以下几个环节来实施:1. 引入环节:首先,我们会通过一些具体的实例,让学生直观地了解函数的概念和性质。

这些实例可以包括商品价格与时间的关系、路程与时间的关系等等。

通过这些实例,学生可以初步感受到函数在现实生活中的应用,从而激发他们的学习兴趣。

2. 讲解环节:在引入环节之后,我们将进入讲解环节。

在这个环节中,我们会详细解释函数的定义,包括定义域、值域、对应法则等概念。

同时,我们还会引导学生理解函数的三要素,即定义域、值域和对应法则。

通过这些讲解,学生可以更加深入地理解函数的概念。

3. 探究环节:为了帮助学生更好地理解和掌握函数的概念,我们将组织学生进行探究活动。

这些活动可以包括小组讨论、案例分析等等。

通过这些活动,学生可以更加深入地思考函数的问题,从而培养他们的数学思维能力和抽象思维能力。

4. 反馈与评价:在教学过程中,我们会及时收集学生的反馈,了解他们对知识的掌握情况。

同时,我们还会通过课堂小测验、课后作业等方式,对学生的掌握情况进行评估。

根据学生的反馈和评估结果,我们会及时调整教学策略,确保教学效果的优化。

区间教学设计(共8篇)

区间教学设计(共8篇)

区间教学设计〔共8篇〕第1篇:《乡下人间》教学设计学习目标:1.认识“檐〞、“饰〞等五个生字。

会写“棚〞“饰〞“冠〞等十四个生字。

正确读写“装饰〞“和谐〞等词语。

2.正确、流利、有感情地朗读课文。

3.了解课文内容,走近乡下人家,感受田园诗情,激发学生对农村生活的兴趣和热爱。

4.带着学生品味优美语言,积累精彩句段。

5.围绕“走进田园,热爱乡村〞开展一次综合性学习活动。

课前准备:1.生字、词语卡片。

2.课文插图的挂图及投影片。

3.搜集有关农村生活的资料。

第一课时教学过程:一、导入:1.出示两组投影片:第一组:林立的高楼、漂亮的汽车、热闹的广场第二组:低矮的砖瓦房、小河里畅游的鸭鹅、穿着朴素的人们〔也可以用书上的几幅插图代替〕提问:看到这两组图片,你想到了什么?2.请学生结合自己的生活实际,说说你所了解到的乡下生活是怎样的。

3.有一位叫做陈醉云的作家用非常细腻、优美的笔触为我们具体的描述了乡下人家的生活,你们想去看看吗?今天就让我们一起来学习第21课,一起走进乡村生活,一起领略它那份独特的美。

二、自学生字、新词,初读课文,整体感知。

出示“自学指导〞:1.自由读课文,借助拼音读准字音,对不理解的词语、句子作上记号。

2.练习将课文读通顺。

3.默读课文,找找课文哪一小节概括了乡下人家的特点?用铅笔作上记号。

〔或者这样设计问题:“课文围绕这哪一小节展开描写?〞〕三、汇报交流,了解自学情况。

1.指明认读生字、生词。

注意“饰〞不要读成“shì〞,“巢〞不要读成“c áo〞,冠字在本文的“鸡冠花〞一词中读“guān〞。

2.指名局部同学读自己喜欢的段落,注意读准字音,把课文尽量读通顺。

3.交流默读所得,找出全文的中心段落〔最后一节〕。

四、全班齐读最后一节,理解“独特〞“迷人〞的含义,进而理解整段话的含义。

学生讨论后师小结:“独特〞是指“独有的,与众不同的〞;“迷人〞是说“吸引人〞,这句话是说乡下人家,在任何时候,在任何季节都有着自己独特的、很吸引人的美。

不等式的解集与区间教学设计人教版

不等式的解集与区间教学设计人教版
4.教室布置:根据教学需要,对教室进行适当的布置。可以设置分组讨论区,让学生在小组内进行讨论和合作解决问题。同时,可以布置一些实验操作台,供学生进行实验和实践操作。
此外,还需要准备一些教学工具,如黑板、粉笔、投影仪等,以便进行课堂教学的演示和讲解。同时,确保每位学生都有足够的学习空间,可以准备一些桌椅,以适应不同的教学活动需求。
二、新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解不等式的解集和区间的基本概念。不等式的解集是……(详细解释概念),它能够表示所有满足不等式的实数构成的集合。区间是……(解释其概念和表示方法),它用于表示不等式解集的一种图形化表示方法。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了不等式的解集和区间在实际中的应用,以及它们如何帮助我们解决问题。
5.请将不等式2x^2+x+1<0的解集用区间表示出来。
答案:
1.解集为{x | x>3或x<1}
2.解集为{x | x<1或x>2}
3.解集为{x | 1<x<3}
4.解集为{x | x>-1或x<-3}
5.解集为{x | -1<x<-3}
不等式的解集与区间教学设计人教版
授课内容
授课时数
授课班级
授课人数
授课地点
授课时间
教材分析
本节课的教学内容是“不等式的解集与区间教学设计”,所使用的是人教版教材。本节课的主要内容是让学生理解不等式的解集及其表示方法,掌握区间的概念及其表示方法,能够将实际问题转化为不等式,并求出其解集和区间。
本节课的教学对象是初中二年级的学生,他们已经掌握了不等式的基本性质,具备了一定的代数基础。在学习本节课的内容时,他们需要将已有的知识与新的知识进行整合,形成系统的不等式知识体系。

统编人教A版数学高中必修第一册《3.1 函数的概念及其表示》优秀教案教学设计

统编人教A版数学高中必修第一册《3.1 函数的概念及其表示》优秀教案教学设计
2≤2,则 y∈(-1,1].
1+x
所以所求函数的值域为(-1,1].
五、课堂小结
让学生总结本节课所学主要知识及解题技巧
六、板书设计
1.定义
3.1.1 函数的概念
例1 例2
例3 例4
例5
2.区间
七、作业
课本 67 页练习、72 页 1-5
本节课主要通过从实际问题中抽象概括出函数概念的活动,培养学生从“特殊到一般”的分析问题的
题型三
区间
例 3 已知集合 A={x|5-x≥0},集合 B={x||x|-3≠0},则 A∩B 用区间可表示为
.
【答案】(-∞,-3)∪(-3,3)∪(3,5]
【解析】∵A={x|5-x≥0},∴A={x|x≤5}.
∵B={x||x|-3≠0},∴B={x|x≠±3}.
∴A∩B={x|x<-3 或-3<x<3 或 3<x≤5},
.
x+1
x+1
x+1
6

4
≠0,∴y≠3,
x+1
3x-1
∴y=
的值域为{y|y∈R 且 y≠3}.
x+1
12 15
2
2
④(换元法)设 t= x-1,则 t≥0 且 x=t +1,所以 y=2(t +1)-t=2 t- + ,由 t≥0,再结合函
4 8
15

数的图象(如图),可得函数的值域为 ,+∞.
1.试判断以下各组函数是否表示同一函数: ①f(x)=
√x
x
x
,g(x)=x-1;
x
②f(x)= ,g(x)= ;
√x
2
③f(x)=√(x + 3) ,g(x)=x+3;

新版高一数学必修第一册第三章全部教学设计

新版高一数学必修第一册第三章全部教学设计

新版高一数学必修第一册第三章全部教学设计3.1.1 函数的概念本节课选自《普通高中课程标准数学教科书-必修一》(人教A版)第三章《函数的概念与性质》,本节课是第1课时。

函数的基本知识是高中数学的核心内容之一,函数的思想贯穿于整个初中和高中数学.对于高一学生来说,函数不是一个陌生的概念。

但是,由于局限初中阶段学生的认知水平;学生又善未学习集合的概念,只是用运动变化的观点来定义函数,通过对正比例函数、反比例函数、一次和二次函数的学习来理解函数的意义,对于函数的概念理解并不深刻.高一学生学习集合的概念之后,进一步运用集合与对应的观点来刻画函数,突出了函数是两个集合之间的对应关系,领会集合思想、对应思想和模型思想。

所以把第一课时的重点放在函数的概念理解,通过生活中的实际事例,引出函数的定义,懂得数学与人类生活的密切联系,通过对函数三要素剖析,进一步理解充实函数的内涵。

所以在教学过程中分别设计了不同问题来理解函数的定义域、对应法则、函数图象的特征、两个相同函数的条件等问题.学生在初中阶段,已经知道函数的定义域是使函数解析式有意义、实际问题要符合实际意义的自变量的范围,所以在教学中进一步强调定义域的集合表示.A.通过丰富的买例进一步体会函数是描述变量之间的依赖关系的重要数学模型;B.用集合与对应的思想理解函数的概念;C.理解函数的三要素及函数符号的深刻含义;1.教学重点:函数的概念,函数的三要素;2.教学难点:函数的概念及符号()y f x 的理解。

多媒体(单位:元)是他工作天数d 的函数吗?【答案】是函数,对应关系为w=350d,其中},6,5,4,3,2,1{2=∈A d}2100,1750,1400,1050,700,350{2=∈B w 。

2.思考:在问题1和问题2中的函数有相同的对应关系,你认为它们是同一个函数吗?为什么?【答案】不是。

自变量的取值范围不一样。

问题3 如图,是北京市2016年11月23日的空气质量指数变化图。

函数的概念(第2课时)(教学设计)高一数学系列(人教A版2019)

函数的概念(第2课时)(教学设计)高一数学系列(人教A版2019)

重点:理解函数的三要素:定义域、对应法则及值域,会求函数的定义域与函数值,在此过程中培养学生的逻辑推理、数据分析、数学运算的素养。

难点:进一步理解函数的对应关系f,体会函数相等的概念。

学生在第一课时已经学习过函数的概念,并对函数的概念有了深刻的理解。

在此基础上让学生理解函数的三要素、判断两个函数相等,求函数的定义域及值域相对好理解,但是抽象函数的定义域对学生是一个考验。

注意:1、区间是集合的另一种表示形
式,注意与不等式的区别。

如:x ≥-1与[-1,+∞)是完全不同的 2、写区间的端点时,一定注意书写准确
根据具体实例结合数形结合让学
生加深对区间的
理解,使实例成
为理解概念的一
种思维载体。

【练一练】 (1)用区间表示{x |x ≥0且x ≠2}注意区间左端点
【例1】 把下列数集用区间表示: (1){x |x ≥-1}; (2){x |x <0};
(3){x |-1<x <1}; (4){x |0<x <1或2≤x ≤4}.

量的值求对应的
函数值,提高学
生数学运算的核
心素养,为求函
数的值域打好基.
础。

通过函数的定义,学生自主归纳出两个函数是同一个函数的概念,培养学生数学抽象的核心素养。

通过具体的例子,使学生掌握同一函数的判断方法.
通过课堂练习,巩固本节学习的内容。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

区间的概念
【教学目标】
1. 理解区间的概念,掌握用区间表示不等式解集的方法,并能在数轴上表示出来.
2. 通过教学,渗透数形结合的思想和由一般到特殊的辩证唯物主义观点.
3. 培养学生合作交流的意识和乐于探究的良好思维品质,让学生从数学学习活动中获得成功的体验,树立自信心.
【教学重点】
用区间表示数集.
【教学难点】
对无穷区间的理解.
【教学方法】
本节课主要采用数形结合法与讲练结合法.通过不等式介绍闭区间的有关概念,并与学生一起在数轴上表示两种不同的区间,学生类比得出其它区间的记法.在此基础上引导学生用区间表示不等式的解集,为学习用区间法求不等式组的解集打下坚实的基础.【教学过程】
新课区间不包括端点,则端点用空心点表示.
全体实数也可用区间表示为(-∞,+∞),符
号“+∞”读作“正无穷大”,“-∞”读作“负无
穷大”.
例1用区间记法表示下列不等式的解集:
(1) 9≤x≤10;(2) x≤0.4.
解(1) [9,10];(2) (-∞,0.4].
练习1用区间记法表示下列不等式的解集,
并在数轴上表示这些区间:
(1) -2≤x≤3;(2) -3<x≤4;
(3) -2≤x<3;(4) -3<x<4;
(5) x>3;(6) x≤4.
例2用集合的性质描述法表示下列区间:
(1) (-4,0);(2) (-8,7].
解(1) {x | -4<x<0};(2) {x | -8<x≤7}.
练习2用集合的性质描述法表示下列区间,
并在数轴上表示这些区间:
(1) [-1,2);(2) [3,1].
例3在数轴上表示集合{x|x<-2或x≥1}.
解如图所示.
用表格呈现相应的
区间,便于学生对比记
忆.
教师强调“∞”只是
一种符号,不是具体的
数,不能进行运算.
学生在教师的指导
下,得出结论,师生共
同总结规律.
学生抢答,巩固区
间知识.
学生代表板演,其
它学生练习,相互评价.
了铺垫.
学生理解无
穷区间有些难
度,教师要强调
“∞”只是一种
符号,并结合数
轴多加练习。

三个例题
之间,穿插类似
的练习题组,使
学生掌握不等
式记法,区间记
法,数轴表示三
者之间的相互
转化.逐层深
入,及时练习,
使学生熟悉区
间的应用.
x
01
-1
-2
1.Wing Shaping for Optimum Roll PerformanceUsing Independent
Modal-Space Control Technique Proceedings of SPIE Vol. 3984 (2000) 2. DESIGN OF AN OPTIMUM SMART WING TO ENHANCE ROLL PERFORMANCE March 1999 SPIE Vol. 3667
Rolling Aircraft with Twisted Wings
3. Design, fabrication and testing of a new twist-active wing design March 1998 SPIE Vol.3329.
Root-Twist Active Wing General Arrangement and During Final Assembly。

相关文档
最新文档