概率论与数理统计第七章。

合集下载

概率论与数理统计复习7章

概率论与数理统计复习7章

( n − 1) S 2 ( n − 1) S 2 = 1 − α 即P 2 <σ2 < 2 χα 2 ( n − 1) χ1−α 2 ( n − 1) ( n − 1) S 2 ( n − 1) S 2 置信区间为: 2 , χα 2 ( n − 1) χ12−α 2 ( n − 1)
则有:E ( X v ) = µv (θ1 , θ 2 ,⋯ , θ k ) 其v阶样本矩是:Av = 1 ∑ X iv n i =1
n
估计的未知参数,假定总体X 的k阶原点矩E ( X k ) 存在,
µ θ , θ ,⋯ , θ = A k 1 1 1 2 µ2 θ1, θ 2 ,⋯ , θ k = A2 用样本矩作为总体矩的估计,即令: ⋮ µ θ , θ ,⋯ , θ = A k k k 1 2 ɵ ɵ ˆ 解此方程即得 (θ1 , θ 2 ,⋯ , θ k )的一个矩估计量 θ 1 , θ 2 ,⋯ , θ k
+∞
−∞
xf ( x ) dx = ∫ θ x θ dx =
1 0
令E ( X ) = X ⇒
θ +1
θ
ˆ = X ⇒θ =
( )
X 1− X
θ +1
2
θ
7.2极大似然估计法
极大似然估计法: 设总体X 的概率密度为f ( x,θ ) (或分布率p( x,θ )),θ = (θ1 ,θ 2 ,⋯ ,θ k ) 为 未知参数,θ ∈ Θ, Θ为参数空间,即θ的取值范围。设 ( x1 , x2 ,⋯ , xn ) 是 样本 ( X 1 , X 2 ,⋯ , X n )的一个观察值:
i =1 n

概率论与数理统计第7章参数估计PPT课件

概率论与数理统计第7章参数估计PPT课件
5
a1(1, ,k )=v1
1 f1(v1, ,vk )
假定方程组a2(1, ,k ) v2 ,则可求出2 f2(v1, ,vk )
ak (1, ,k ) vk
k fk (v1, ,vk )
则x1 xn为X的样本值时,可用样本值的j阶原点矩Aj估计vj,其中
Aj
1 n
n i1
xij ( j
L(x1, ,xn;ˆ)maxL(x1, ,xn;),则称ˆ(x1, ,xn)为
的一种参数估计方法 .
它首先是由德国数学家
高斯在1821年提出的 ,然而, 这个方法常归功于英国统
Gauss
计学家费歇(Fisher) . 费歇在1922年重新发现了
这一方法,并首先研究了这
种方法的一些性质 .
Fisher
10
极大似然估计是在已知总体分布形式的情形下的 点估计。
极大似然估计的基本思路:根据样本的具体情况
注:估计量为样本的函数,样本不同,估计量不 同。
常用估计量构造法:矩估计法、极大似然估计法。
4
7.1.1 矩估计法
矩估计法是通过参数与总体矩的关系,解出参数, 并用样本矩替代总体矩而得到的参数估计方法。 (由大数定理可知样本矩依概率收敛于总体矩, 且许多分布所含参数都是矩的函数)
下面我们考虑总体为连续型随机变量的情况:
n
它是的函数,记为L(x1, , xn; ) f (xi , ), i 1
并称其为似然函数,记为L( )。
注:似然函数的概念并不仅限于连续随机变量 ,
对于离散型随机变量,用 P {Xx}p(x,)
替代f ( x, )
即可。
14
设总体X的分布形式已知,且只含一个未知参数,

《概率论与数理统计》第七章假设检验.

《概率论与数理统计》第七章假设检验.

《概率论与数理统计》第七章假设检验.第七章假设检验学习⽬标知识⽬标:理解假设检验的基本概念⼩概率原理;掌握假设检验的⽅法和步骤。

能⼒⽬标:能够作正态总体均值、⽐例的假设检验和两个正态总体的均值、⽐例之差的假设检验。

参数估计和假设检验是统计推断的两种形式,它们都是利⽤样本对总体进⾏某种推断,然⽽推断的⾓度不同。

参数估计是通过样本统计量来推断总体未知参数的取值范围,以及作出结论的可靠程度,总体参数在估计前是未知的。

⽽在假设检验中,则是预先对总体参数的取值提出⼀个假设,然后利⽤样本数据检验这个假设是否成⽴,如果成⽴,我们就接受这个假设,如果不成⽴就拒绝原假设。

当然由于样本的随机性,这种推断只能具有⼀定的可靠性。

本章介绍假设检验的基本概念,以及假设检验的⼀般步骤,然后重点介绍常⽤的参数检验⽅法。

由于篇幅的限制,⾮参数假设检验在这⾥就不作介绍了。

第⼀节假设检验的⼀般问题关键词:参数假设;检验统计量;接受域与拒绝域;假设检验的两类错误⼀、假设检验的基本概念(⼀)原假设和备择假设为了对假设检验的基本概念有⼀个直观的认识,不妨先看下⾯的例⼦。

例7.1 某⼚⽣产⼀种⽇光灯管,其寿命X 服从正态分布)200 ,(2µN ,从过去的⽣产经验看,灯管的平均寿命为1550=µ⼩时,。

现在采⽤新⼯艺后,在所⽣产的新灯管中抽取25只,测其平均寿命为1650⼩时。

问采⽤新⼯艺后,灯管的寿命是否有显著提⾼?这是⼀个均值的检验问题。

灯管的寿命有没有显著变化呢?这有两种可能:⼀种是没有什么变化。

即新⼯艺对均值没有影响,采⽤新⼯艺后,X 仍然服从)200 ,1550(2N 。

另⼀种情况可能是,新⼯艺的确使均值发⽣了显著性变化。

这样,1650=X 和15500=µ之间的差异就只能认为是采⽤新⼯艺的关系。

究竟是哪种情况与实际情况相符合,这需要作检验。

假如给定显著性⽔平05.0=α。

在上⾯的例⼦中,我们可以把涉及到的两种情况⽤统计假设的形式表⽰出来。

概率论与数理统计-参数估计

概率论与数理统计-参数估计

第七章 参数估计
例:
引言
设总体 X 是服从参数为 的指数分布,其中参数
未 知 ,
0 .X1 ,,
X
是总体
n
X
的一个样本,
我们的任务是根据样本,来估计 的取值,从
而估计总体的分布.
这 是 一 个 参 数 估 计 问 题.
第七章 参数估计
§1 点估计 §2 估计量的评选标准 §3 区间估计
第七章 参数估计 §1 点估计
2

A1
A2
, (
2
1)
.
第七章 参数估计
例6(续)
解此方程组,得
§1 点估计
ˆ
A1 2 A2 A12
,
ˆ
A2
A1 A12
.
ˆ X 2 ,

B2
ˆ X .
B2
其中 B2
1 n
n i 1
Xi X
2 为样本的二阶中心矩.
第七章 参数估计(第二十二讲) 三、 极大似然法
§1 点估计
1
第七章 参数估计
例6(续)
EX 2 x 2 f
x dx x 2
x 1e x dx
0
§1 点估计
2 2 x ( e 2)1 x dx
2 0 2
2 2
1 2
1
2
因此有
EX
,
EX
2
1 .
⑵ 在不引起混淆的情况下,我们统称估计量
与估计值为未知参数 的估计.
第七章 参数估计
二、 矩估计法
§1 点估计
设X为连续型随机变量,其概率密度为
f ( x;1 ,, k ), X为离散型随机变量,其分布列为

《概率论与数理统计》7

《概率论与数理统计》7

未知参数 , ,, 的函数.分别令
12
k
L(1,,k ) 0,(i 1,2,...,k)
或令
i
ln L(1,,k ) 0,(i 1,2,...,k)
i
由此方程组可解得参数 i 的极大似然估计值 ˆi.
例5 设X~b(1,p), X1, X2 , …,Xn是来自X的一个样本,
求参数 p 的最大似然估计量.
解 E( X ) ,E( X 2 ) D( X ) [E( X )]2 2 2
由矩估计法,
【注】
X
1
n
n i 1
X
2 i
2
2
ˆ X ,
ˆ
2
1 n
n i 1
(Xi
X )2
对任何总体,总体均值与方差的矩估计量都不变.
➢常见分布的参数矩估计量
(1)若总体X~b(1, p), 则未知参数 p 的矩估计量为
7-1
第七章
参数估计
统计 推断
的 基本 问题
7-2
参数估 计问题
(第七章)
点估计 区间估 计
假设检 验问题 (第八章)
什么是参数估计?
参数是刻画总体某方面概率特性的数量.
当此数量未知时,从总体抽出一个样本, 用某种方法对这个未知参数进行估计就 是参数估计.
例如,X ~N ( , 2),
若, 2未知, 通过构造样本的函数, 给出
k = k(A1, A2 , …, A k)
用i 作为i的估计量------矩估计量.
例1 设总体X服从[a,b]上的均匀分布,a,b未知,
X1, X2 , …,Xn为来自总体X的样本,试求a,b的 矩估计量.
解 E(X ) a b , D(X ) (b a)2

《概率论与数理统计》第七章

《概率论与数理统计》第七章
i 1
n
n
ln xi
(4)的极大似然估计量为:ˆ
n
n2 i1
lnX
i
2
i1
第七章 参数估计 ‹#›
例 9 设X~b(1,p), X1,X2,…,Xn是来自X的一个样本, 试求参数p的最大似然估计量
解: 设x1, x2,, xn,是相应于样本X1,X2,…,Xn 的一个样本值,X
的分布律为:
(3)以样本各阶矩A1, ,Ak代替总体各阶矩1,
得各参数的矩估计
ˆi gi(A1, ,Ak ), i 1, , k
, k,
第七章 参数估计 ‹#›
注意:
在实际应用时,为求解方便,也可以用
中心矩 i 代替原点矩i,相应地以样本中心矩Bi 估计 i.
(二)最大似然估计法
最(极)大似然估计的原理介绍
第七章
参数估计
目录/Contents
第1章 随机事件与 2 概率
§ 1 点估计
§3
估计量的评选标准
第七章 参数估计 ‹#›
问题的提出:
在实际进行统计时,有不少总体的(我们关心的某 确定指标)概率分布是已知的。比如
例 1 产品寿命服从的分布
X~
f
(
x)
1
x
e
x0
0
其他
但其中有参数是未知的: θ
n
似然函数 L f xi , 。 i 1
, xn ,
极大似然原理:L(ˆ( x1 ,
,
xn
))
max
L(
).
计算简化方法:
在求L 的最大值时,通常转换为求:lnL 的最大值,
lnL 称为对数似然函数.
利用

概率论与数理统计课后习题答案 第七章


习题 7.2 1. 证明样本均值 是总体均值
证:
的相合估计
由定理
知 是 的相合估计
2. 证明样本的 k 阶矩
是总体 阶矩
证:
的相合估计量
3. 设总体 (1)
(2)

的相合估计
为其样品 试证下述三个估计量
(3)
都是 的无偏估计,并求出每一估计量的方差,问哪个方差最小? 证:
都是 的无偏估计
故 的方差最小.
大?(附
)
解: (1) 的置信度为 的置信区间为
(2) 的置信度为 故区间长度为
的置信区间为
解得
四、某大学从来自 A,B 两市的新生中分别随机抽取 5 名与 6 名新生,测其身高(单位:厘米)后,算的
.假设两市新生身高分别服从正态分布:
,
其中 未知 试求
的置信度为 0.95 的置信区间.(附:
解:
.从该车床加工的零件中随机抽取
4 个,测得长度分别为:12.6,13.4,12.8,13.2.
试求: (1)样本方差 ;(2)总体方差 的置信度为 95%的置信区间.
(附:
解: (1)
(2) 置信度 的置信区间为
三、设总体
抽取样本
为样本均值
(1) 已知
求 的置信度为 的置信区间
(2) 已知
问 要使 的置信度为 的置信区间长度不超过 ,样本容量 n 至少应取多
施磷肥的
620 570 650 600 630 580 570 600 600 580
设不施磷肥亩产和施磷肥亩产均服从正态分布,其方差相同.试对施磷肥平均亩产与不施磷肥平均
亩产之差作区间估计(
).
解:
查表知

概率论和数理统计(第三学期)第7章数理统计的基本概念


n i1
i
1 n
n
Ei
i1
D
D 1 n
n i 1
i
1 n2
n
Di
i 1
2
n
2
S~ 1 n
n i 1
i
2
1 n
n i 1
i2 2i
2
1 n
n
i2
i 1
2
n
i
i 1
n
2
1 n
n
i2
i 1
2
2
2
1 n
n
i2
i 1
2
E S~2
E
1 n
n
i2
i 1
23
.209
2
2 0.95
20

10
.851
当自由度n 45时,可用下面近似公式去求2 n:
x2 n
1 2
u
2
2n 1
例3

2 0.05
60 .

2 0.05
60
1 2
u0.05
2
2 60 1
1 1.645
2
119 78.798
2
3、t分布的上侧分位点
对于给定的α(0<α<1),使
2
e
xi 2 2
2
(2
) e 2
n 2
1
2 2
n i1
xi 2
在数理统计中,总体的分布往往是未知的,需 要通过样本找到一个分布来近似代替总体分布。
§7.3 分布的估计
频率分布 例 某炼钢厂生产的钢由于各种因素的影响,各炉
钢的含硅量可以看作是一个随机变量,现记录了 120炉钢的含硅量百分数,求出这个样本的频数分 布与频率分布。

概率论与数理统计教程第七章答案

.第七章假设检验7.1设总体J〜N(4Q2),其中参数4, /为未知,试指出下面统计假设中哪些是简洁假设,哪些是复合假设:(1) W o: // = 0, σ = 1 ;(2) W o√∕ = O, σ>l5(3) ∕70:// <3, σ = 1 ;(4) % :0< 〃 <3 ;(5)W o :// = 0.解:(1)是简洁假设,其余位复合假设7.2设配么,…,25取自正态总体息(19),其中参数〃未知,无是子样均值,如对检验问题“0 :〃 = 〃o, M :4工从)取检验的拒绝域:c = {(x1,x2,∙∙∙,x25)r∣x-χ∕0∖≥c},试打算常数c ,使检验的显著性水平为0. 05_ Q解:由于J〜N(〃,9),故J~N(",二)在打。

成立的条件下,一/3 5cP o(∖ξ-^∖≥c) = P(∖ξ-μJ^∖≥-)=2 1-Φ(y) =0.05Φ(-) = 0.975,-= 1.96,所以c=L176°3 37. 3 设子样。

,乙,…,25取自正态总体,cr:已知,对假设检验%邛=μ0, H2> /J。

,取临界域c = {(X[,w,…,4):片>9)},(1)求此检验犯第一类错误概率为α时,犯其次类错误的概率夕,并争论它们之间的关系;(2)设〃o=0∙05, σ~=0. 004, a =0.05, n=9,求"=0.65 时不犯其次类错误的概率。

解:(1)在儿成立的条件下,F~N(∕o,军),此时a = P^ξ≥c^ = P0< σo σo )所以,包二为册=4_,,由此式解出c°=窄4f+为% ∖∣n在H∣成立的条件下,W ~ N",啊 ,此时nS = %<c°) = AI。

气L =①(^^~品)二①匹%=①(2δξ^历σoA∣-σ+A)-A-------------- y∕n)。

东华大学《概率论与数理统计》课件 第七章 假设检验


1. 2为已知, 关于的检验(U 检验 )
在上节中讨论过正态总体 N ( , 2 ) 当 2为已知时, 关于 = 0的检验问题 :
假设检验 H0 : = 0 , H1 : 0 ;
我们引入统计量U
=
− 0 0
,则U服从N(0,1)
n
对于给定的检验水平 (0 1)
由标准正态分布分位数定义知,
~
N (0,1),
由标准正态分布分位点的定义得 k = u1− / 2 ,
当 x − 0 / n
u1− / 2时, 拒绝H0 ,
x − 0 / n
u1− / 2时,
接受H0.
假设检验过程如下:
在实例中若取定 = 0.05, 则 k = u1− / 2 = u0.975 = 1.96, 又已知 n = 9, = 0.015, 由样本算得 x = 0.511, 即有 x − 0 = 2.2 1.96,
临界点为 − u1− / 2及u1− / 2.
3. 两类错误及记号
假设检验是根据样本的信息并依据小概率原
理,作出接受还是拒绝H0的判断。由于样本具有 随机性,因而假设检验所作出的结论有可能是错
误的. 这种错误有两类:
(1) 当原假设H0为真, 观察值却落入拒绝域, 而 作出了拒绝H0的判断, 称做第一类错误, 又叫弃
设 1,2, ,n 为来自总体 的样本,
因为 2 未知, 不能利用 − 0 来确定拒绝域. / n
因为 Sn*2 是 2 的无偏估计, 故用 Sn* 来取代 ,
即采用 T = − 0 来作为检验统计量.
Sn* / n
当H0为真时,
− 0 ~ t(n −1),
Sn* / n
由t分布分位数的定义知
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

矩法特点分析: 矩法的优点是简单易行,并不需要 事先知道总体是什么分布 . 缺点是,当总体类型已知时,没有 充分利用分布提供的信息 . 一般场合下, 矩估计量不具有唯一性 .
极大似然估计
例: 设一箱中装有若干个白色和黑色的球, 已知两种球的数目之比为3:1或1:3,现有放回 地任取3个球,有2个白球,问:白球所占的 比例p是多少?
1 ˆ 1 X X i n i 1 ˆ 2 ai X i , ( ai 1)
i 1 i 1 n n
n
一致性(相合性)
ˆ ˆ 设 n n ( X1,, X n ) 是参数 的估计量,若有 ˆ lim P(| n | ) 0 即
E( X )
由E ( X 2 ) D ( X ) [ EX ]2 2 2 可得
2 E( X 2 ) u2
X1 X n ˆ X n 1 n 1 n n 1 2 2 2 2 2 ˆ Xi X (Xi X ) S n i 1 n i 1 n
第7章
参数估计
参数估计只是参数统计分析中的一个分支,
背景:已知X~F(x, ),其中 为未知参数,
并取得总体X的一个样本 X1, X2,…, Xn 参数估计要解决的三大问题: 1. 未知参数 值的估计—点估计 矩估计,极大似然估计 2. 估计量优劣的评价标准 3. 未知参数 取值范围的估计—区间估计
E ( X ) gi (1 ,, k ), i 1,, k
i
(2)用样本i阶原点矩替换总体i阶原点矩
1 n g1 (1 , 2 ,..., k ) E ( X ) n X i , i 1 1 n 2 g 2 (1 , 2 ,..., k ) E ( X 2 ) X i , n i 1 ............ 1 n k g k (1 , 2 ,..., k ) E ( X k ) X i , n i 1
1 n ˆ n xi x i 1 1 n 2 2 ˆ ( xi x ) n i 1
ˆ X 2 n 1 2 ˆ S n
求极大似然估计量的步骤: (1) 根据f(x; θ),写出似然函数 L( ) f ( xi ; ) (2) 对似然函数取对数 ln L( ) ln f ( xi ; )
参数估计总体思路:
背景: 总体所服从的分布类型已知
抽样
构造 统计量
估计总体中未知的参数/特征等 注:参数估计可估计总体分布的某些参数 或 数字特征或与参数有关的函数g( ).
参数估计的应用 参数估计问题是利用从总体抽样得到的信息 来估计总体的某些未知参数.
估计新生儿的体重
估计废品率 估计湖中鱼数
n n
ˆ lim P(| n | ) 1
对于固定的样本观测值x1,x2,…,xn。如果有
ˆ ( x1 , x2 ,..., xn ) , 使得
ˆ ˆ L( ) max L( ), (或L( ) sup L( ))

ˆ 则称 ( x1 , x2 ,..., xn )为 的极大似然估计值
ˆ 称 ( X1 , X 2 ,..., X n )为极大似然估计量
rs ˆ ˆ g ( N ) 40 N 40 x
注意:频率估计概率,未知参数函数的估计
关于矩法估计的更一般表述:
1. 用样本矩代替总体矩,既可用
原点矩也可用中心矩。
2. 用样本矩函数代替总体矩函数 3. 用事件的频率代替事件的概率
关于矩法估计的计算技巧:
1. 单参数时用一阶原点矩
2. 双参数时用一阶原点矩和二阶中心矩
极大似然估计法
设总体X的分布律或概率密度为f(x; Ө), θ=(θ1, θ2,…, θk)是未知参数, X1,X2, …,Xn是 总体X的样本,则称X1,X2, …,Xn的联合分布 律或概率密度函数
L( x1 , x2 ,..., xn ; ) f ( xi ; )
i 1
n
为样本的似然函数,简记为L(θ)。
2
(2 ) ( 2 ) exp[

n 2

n 2
1 2 2
( xi ) 2 ]
i 1
n
n n 1 2 2 ln L( , ) ln( 2 ) ln 2 2 2 2
( xi ) 2
i 1
n
ln L 1 n 2 [ xi n ] 0 i 1 n ln L n 1 2 ( xi n ) 2 0 2 2 2 2 2( ) i 1
3(n 1) 2 ˆ 3(n 1) 2 ˆ aX S ,b X S n n
例4.某种鱼每条售价40元,鱼塘养殖户为了预 估今年鱼的收益,想了一个办法:他一次性从 湖中网出r 条鱼,做上记号后放回湖中,然后 再从湖中一次性网出s 条鱼,共发现其中有 x 条鱼有标记。至此你能给出他心中预估的收益 吗?
解:(1)矩估计
E( X )

1 xf ( x)dx x( 1) x dx 0 2
1

1 X 2
ˆ 2 X 1 1 1 X
(2)极大似然估计
L( ) ( 1) ( xi )
n i 1 n

n
(0 xi 1)
有效性
ˆ ˆ ˆ ˆ 设 1 1( X1,, X n )和 2 2 ( X1,, X n )
都是参数 的无偏估计量,若有
ˆ ˆ D(1 ) D( 2 )
则称 ˆ1 较 ˆ2 有效 .
如果对固定的n, D(ˆ1 ) min( D(ˆ)) 则称ˆ 是ˆ的有效估计。
i 1
ln L( ) n ln( 1) ln xi
d ln L( ) 令 0 d
1
n
ln xi
i 1
n
ˆ2 1
n
ln x
i 1
n
i
作业:习题7: 2, 3, 5
§7.2
评价一个估计量的好坏,不能仅仅依 据一次试验的结果,而必须由多次试验结 果来衡量 . 即确定估计量好坏必须在大量 观察的基础上从统计的意义来评价。 常用的几条标准是: 1.无偏性 2.有效性 3.一致性
(3) 解方程组,得 θi=hi (X1, X2,…, Xn) (i=1,2,…,k); 则以hi (X1, X2,…, Xn)作为θi 的估计量 ,并 称hi(X1, X2,…, Xn)为θi 的矩法估计量,而称
hi(x1, x2,…, xn) 为θi 的矩法估计值。
例1. 设总体X的数学期望和方差分别是μ, σ2 ,求μ , σ2的矩估计量。
例:两个猎人,一个老手,一个菜鸟,上 山打猎。突然窜出一只野兔,砰的一枪,命 中野兔,你会认为是哪个猎人打中了野兔?
对例1:如果只知道0<p<1,并且 实测记录是X=k (0 ≤ k≤ n),又应 如何估计p呢?
若总体分布已知,对于样本值,选取适当 的参数,使样本值出现的概率最大,这种 估计方法就是极大似然估计法。
ˆ ˆ( x1 ,, xn )
关键问题:如何构造统计量
ˆ ˆ ( X1 ,, X n )
点估计

矩估计 极大似然估计
注:这两种方法具有优良的统计性质,常用且实用
矩法
总体k阶原点矩 样本k阶原点矩
k EX
k
1 n k Ak X i n i 1
K.皮尔逊
k
例3. 已知某产品的不合格率为p,有简单随机样本 X1 ,X2 ,…, Xn,求p的极大似然估计量。 若抽取100件产品,发现10件次品,试估计p.
例4. 设X1,X2,…,Xn为取自总体X~U(a, b)的样 本, 求a, b的极大似然估计量.
例5 设X1,X2,…Xn是取自总体X的一个样本 ( 1) x , 0 x 1 X ~ f ( x) 其中 >0, 0, 其它 求 的矩估计量和极大似然估计量.
X
大数定律: nlim P (|
i 1
n
k i
n
E ( X ) | ) 1
矩估计基本思想: 1.分布函数中的未知参数和总体矩有函数关系 2.用样本矩估计(代替)总体矩 .
设总体的分布函数中含有k个未知参数 1 ,, k (1)它的前k阶原点矩都是这k个参数的函数,记为:
解:E(X)=(a+b)/2, D(X)=(b-a)2/12.
1 1 1 n ˆ ˆ E ( X ) ( a b) ( a b ) X i X 2 2 n i 1 1 1 ˆ n 1 2 2 2 ˆ D( X ) (b a) (b a) M 2 S 12 12 n
§7.1
点估计
设有一个统计总体,总体的分布函数 为 F(x, ),其中 为未知参数 ( 可以是向量) . 现从该总体抽样,得到样本 X1,X2,…,Xn 从样本出发构造适当的统计量
ˆ ˆ ( X1 ,, X n )
作为参数 的估计量,即点估计。 将样本观测值 x1,, xn 代入,得到 的估计值
无偏性
ˆ 设 ( X1,, X n )是未知参数 的估计量,若
E (ˆ)
ˆ 则称 为 的无偏估计 .
例:总体X, 已知 EX , DX 判断 , 2 的矩法估计量是否是无偏估计。
2
例2:设总体X ~ P( ), X1 ,, X n为一组样本,判断下面 估计量是否为的无偏估计。 1 n 1 n 2 2 ˆ X, ˆ ˆ 1 ( X i X ) ,3 n 1 ( X i X ) 2 n i 1 i 1
相关文档
最新文档