2-3.1(k阶子式、余子式、代数余子式)--线性代数PPT
线性代数课件PPT

目录 CONTENT
• 线性代数简介 • 线性方程组 • 向量与矩阵 • 特征值与特征向量 • 行列式与矩阵的逆 • 线性变换与空间几何
01
线性代数简介
线性代数的定义和重要性
1
线性代数是数学的一个重要分支,主要研究线性 方程组、向量空间、矩阵等对象和性质。
2
线性代数在科学、工程、技术等领域有着广泛的 应用,如物理、计算机科学、经济学等。
逆矩阵来求解特征多项式和特征向量等。
06
线性变换与空间几何
线性变换的定义和性质
线性变换的定义
线性变换是向量空间中的一种变换, 它将向量空间中的每一个向量映射到 另一个向量空间中,保持向量的加法 和标量乘法的性质。
线性变换的性质
线性变换具有一些重要的性质,如线 性变换是连续的、可逆的、有逆变换 等。这些性质在解决实际问题中具有 广泛的应用。
特征值与特征向量的应用
总结词
特征值和特征向量的应用非常广泛,包括物理、工程、经济等领域。
详细描述
在物理领域,特征值和特征向量可以描述振动、波动等现象,如振动模态分析、波动分析等。在工程 领域,特征值和特征向量可以用于结构分析、控制系统设计等。在经济领域,特征值和特征向量可以 用于主成分分析、风险评估等。此外,在机器学习、图像处理等领域也有广泛的应用。
经济应用
线性方程组可用于解决经济问题,如投入产出分析、 经济预测等。
03
向量与矩阵
向量的基本概念
向量的模
表示向量的长度或大小,记作|向量|。
ቤተ መጻሕፍቲ ባይዱ
向量的方向
由起点指向终点的方向,可以通过箭头表示。
向量的分量
表示向量在各个坐标轴上的投影,记作x、y、 z等。
线性代数代数余子式的计算

线性代数代数余子式的计算线性代数中,代数余子式是一类有用的工具,用于求解线性方程组的解。
它的形式是一个矩阵,可以用来简单的来判断线性方程组的解的性质。
它可以使我们更容易的求解和分析线性方程组的解。
在线性代数中,假设有一组线性方程组:Ax=b,其中A为m×n系数矩阵,x=(x_1,x_2,…,x_m)^T为当前求解变量,b=(b_1,b_2,…,b_n)^T为未知数向量。
当方程组有唯一解时,由Cramer法可知,该方法具有某种特殊性质,也就是说,可以根据所给定的A,来求出该系统的解。
而这种特殊性质是通过代数余子式来实现的。
首先,我们可以把A定义为m×n系数矩阵,其列向量的形式如下:A=[a_1, a_2, ..., a_n],在这里,a_i表示A的第i列向量。
在矩阵A上,可以通过对应对角线元素交换,得到另外一个矩阵B,称为A的代数余子式,形式如下:B=[b_1, b_2, ..., b_n],在这里,b_i表示A的第i列向量的代数余子式,也就是说,元素b_i的每一个分量是A的第i列向量的除第i个元素外的其他元素的交叉积。
定理2.6 证明:A的解x可以用代数余子式的方法求得。
证明:假设Ax=b,令A的解为x=(x_1,x_2,...x_n)^T用代数余子式的方法,可以得到x=(x_1,x_2,...x_n)^T,其中:X_i=b_1 b_2 … b_{i-1} b_{i+1}…b_n det(A)^{-1},(1 ≤i ≤ n)而det(A)是A的行列式,也就是说,它可以通过代数余子式法来求解线性方程组的解。
以上就是关于线性代数中代数余子式的介绍,它可以帮助我们更容易的求解线性方程组的解,使我们可以更好的分析和研究线性系统。
在现实中,线性代数的应用十分广泛,它可以帮助我们从好的方面了解现实形势,从而更好的把握解决实际问题的方法。
一、k 级子式 余子式 代数余子式

中所在的行、 若 k 级子式 M 在 D 中所在的行、列指标分别是
i1 , i2 ,L , ik ; j1 , j2 ,L , jk ,则在 M 的余子式 M ′ 前
( −1)i1 + i2 +L+ ik + j1 + j2 +L+ jk 后称之为 M 的代数 后称之为 加上符号
余子式, 余子式,记为 A = ( −1)
c d −a −b b −a d −c
d −c b −a c −d −a b d c −b −a
a2 +b2 +c2 +d2 0 0 0 0 0 0 a2 +b2 +c2 +d2 = 0 0 a2 +b2 +c2 +d2 0 a2 +b2 +c2 +d2 0 0 0
§2.8 Laplace定理 Laplace定理
§2.8 Laplace定理 Laplace定理
Laplace 定理
设在行列式 D 中任意取 k ( 1 ≤ k ≤ n − 1 )行, 行 元素所组成的一切k级子式与它们的 由这 k 行元素所组成的一切 级子式与它们的 代数余子式的乘积和等于 D.即 . 若 D 中取定 k 行后,由这 k 行得到的 k 级子式 行后, 为 M 1 , M 2 ,L , M t ,它们对应的代数余子式分别为 它们对应的代数余子式分别为
M 3 = 1 4 = −1, 1 3 M 5 = 2 4 = 6, 0 3
它们的代数余子式为
§2.8 Laplace定理 Laplace定理
2 1 = 2, M4 = 0 1 M 6 = 1 4 = −1 1 3
A1 = ( −1)
线性代数总复习PPT 很全!.ppt

x11 x22 xmm 0有非零解
线性方程组1,2 ,
,m
x1
0非零解
xm
R1,2, ,m m m是向量个数
判别法 1
n个n元1,2 ,
,
线性
n
相关
1,2 ,
,n
0
r1,2 , ,n n
n个n元1,2 ,
,
线性无关
n
1,2 ,
,n
0
r1,2 , ,n n
判别法 2
n阶方阵A可逆 A 0 A E
存在方阵B,使AB E,或BA E 秩 Ann n
A的行(列)向量组线性无关。 齐次线性方程组Ann X 0仅有零解 A的特征值全部 0
可逆矩阵的性质
设A,B都是n阶可逆矩阵,k是非零数,则
1
A1 1 A,
3 AB 1 B 1 A1
线性相关,则必可由1,2 ,
,
线性
m
表示,
并且表法惟一。
3、秩(A)= 列向量组的秩 = 行向量组的秩
定理
向量
可由1,2 ,
,
线性表示
m
x11 x22 xmm 有解
线性方程组1,2 ,
,m
x1
有解
xm
R1,2 , ,m R1,2 , ,m,
定理
向量组1,2 ,
,
线性相关
证明 设 x11 x22 x33 0
1.
即
x11 2 3 x21 2 x32 3 0
x1 x2 1 x1 x2 x3 2 x1 x3 3 0
因为1
,2
,3
线性无关,所以
x1 x1
x2 x2
x3
线性代数第二章矩阵及其运算2-3PPT课件

CHAPTER 02
矩阵的乘法
矩阵乘法的定义
01
矩阵乘法是将两个矩阵对应位置的元素相乘,得到一个新的矩 阵。
02
矩阵乘法的结果是一个矩阵,其行数等于左矩阵的行数,列数
等于右矩阵的列数。
矩阵乘法的操作顺序是先进行行操作,再进行列操作。
CHAPTER 05
矩阵的秩
秩的定义
秩的定义
矩阵的秩是其行向量组或列向量 组的一个极大线性无关组中向量 的个数。
秩的Байду номын сангаас质
矩阵的秩是唯一的,且其值满足 特定的性质,如对于任何矩阵A, r(A)≤min(m,n),其中m和n分别 为矩阵A的行数和列数。
秩的计算方法
可以通过多种方法计算矩阵的秩, 如高斯消元法、行变换法、初等 行变换法等。
线性代数第二章矩阵及 其运算2-3ppt课件
CONTENTS 目录
• 矩阵的加法与数乘 • 矩阵的乘法 • 逆矩阵与伴随矩阵 • 矩阵的行列式 • 矩阵的秩 • 矩阵的应用
CHAPTER 01
矩阵的加法与数乘
矩阵的加法
矩阵加法定义
两个矩阵A和B的和记作A+B,定义 为满足以下条件的矩阵C,即C的元 素Cij=Aij+Bij(i,j=1,2,…,n)。
03
矩阵乘法的性质
1 2
结合律
$(AB)C=A(BC)$,即矩阵乘法满足结合律。
分配律
$A(B+C)=AB+AC$,即矩阵乘法满足分配律。
3
单位元
存在一个单位矩阵,使得任意矩阵与单位矩阵相 乘都等于原矩阵。
线性代数及其应用第二版第一章PPT

解: A14 A24 A34 A44
1 A14 1 A24 1 A34 1 A44 a12 A14 a22 A24 a32 A34 a42 A44 0
小
结
1. 行列式按行(列)展开法则是把高阶行列 式的计算化为低阶行列式计算的重要工具.
n
D ,当 i j,
2.
aki Akj
D ai1 Ai1 ai2 Ai2 ain Ain 按 i 行展开
i 1,2,,n
a1 j A1 j a2 j A2 j anj Anj
按 j 列展开
j 1,2,,n
a11 D ai1
an1
a12 ai 2 an2
...
a12
...
...
ain
...
...
ann
证明 a11
an1 an2 ann an1 an2 ann
an1 an2 ann
ai1 Ai1 ai 2 Ai 2 ain Ain i 1,2,, n
按 j 列展开证明类似
3 5 3
例1. 计算行列式 D 0 1 0
7 72
解: 按第一行展开,得
D (3) (1)11 1 0
72
(5) (1)12 0 7
---------Tagore
第一章 行 列 式
第二节 行列式的展开定理
一、余子式与代数余子式
在n 阶行列式中,把元素 aij 所在的第 i 行和第 j 列划去后,留下来的 n 1 阶行列式叫做元素aij 的余子式,记作 M ij .
a a a a 11
12
13
14
D a21 a22 a23 a24
a12
D
a 0... 0 i1
线性代数 幻灯片PPT

• 如果向量组A中每一个向量都能由向量组B 线性表示,那么称向量组A能由向量组B线 性表示.
53
线性代数
• 定理6 设有两个n维向量组
•证
出版社 科技分社
54
线性代数
出版社 科技分社
• 因为A组可由B组线性表示,所以存在矩阵
• 使 A=KB.
• 推论 等价的线性无关向量组所含向量个数 相等.
• 2.7 方 阵 的 • 定义12 对n阶方阵A,如果存在一个n阶方
阵B,使AB=BA=E,那么称A是可逆阵,称B 为A的逆阵,记为B=A-1. • 性质1 如果A可逆,那么逆阵惟一. • 证明 设A有两个逆阵B,C
43
线性代数
出版社 科技分社
44
线性代数
出版社 科技分社
45
线性代数
出版社 科技分社
• 定义11 由单位阵经过一次初等变换得到的 方阵称为初等方阵.
• 3种初等变换对应了3类初等方阵.
• 第1类初等方阵:对调E
39
线性代数
出版社 科技分社
40
线性代数
出版社 科技分社
41
线性代数
出版社 科技分社
42
线性代数
出版社 科技分社
• 定理3 设A=(aij)m×n,对A施行初等行变换, 相当于对A左乘相应的m阶初等方阵,对A施 行初等列变换,相当于对A右乘相应的n阶 初等方阵.
出版社 科技分社
线性代数 课件
本PPT课件仅供大家学习使用 请学习完及时删除处理 谢谢!
1
线性代数
出版社 科技分社
第1章 行列式
• 1.1 预 备 知 • 设有二元一次方程组
出版社 科技分社
西北工业大学《线性代数》课件-第三章 矩阵的初等变换

1 0 0 0
1 0 0 0
c2
1 4
1
1
0
0
c2 c1
0
1
0 0
3 2 0 0
1 2 0 0
列 最 简 形
定理秩3.为3 r的 矩阵m A,n 经过有限次初等变
换,总可化为如下等价标准形
O(
Er
mr
)r
Or(nr ) O(mr )(nr
)
mn
即有
A
Er O
O O
推论1 设A是n阶方阵,A满秩 A En
24
x1 x1
x2 2 x2
3x3 5x3
1 4
① ②
x1
x3 3 ③
②
2
①
2
x1
③
1①
2
x2
4x2
1 2
x2
3x3 1
x3 2
1 2
x3
5 2
①′ ②′ ③′
2 x1 x2 3x3 1 ①″
③'
1 8
②'
4 x2 x3 2 ②″
3 8
x3
9 4
③″
x1 x2
则称r为A的秩. 记做rank A r,或者 r(A) r.
规定:零矩阵的秩为0,即 rankO 0 .
➢ 矩阵秩的含义 A的所有r+1阶子式都为0
1 1 2
A
2
2
4
3
6
DAr的2 所?有r+2阶子式也都为0 1 1 2 3
A的所有大于r+2阶的子式也都为0
数r=rankA是矩阵A中子式不为0子式的最高阶数
0 0 1 1 3
A有一个三阶子式
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在A中划去S所在的k行、k列,余下的元按原来的 相对位置组成的n-k阶行列式M, 称为S的余子式.
S的代数余子式: 设S的各行位于A中第i1,…,ik, S的各列位于A中第 j1,…, jk列,称
A (1)(i1 ik )( j1 M jk )
为S的代数余子式.
§2.3 拉普拉斯展开定理
[结]
20 1 02 1 0 1 0 1
01 S1 1 1
A 0 1 1 2 1 0 2 2 1 2 0 1 1 1 1
101 M1 0 1 2
011
012 S2 1 1 1
2 2 2
A1 1 1 3 2 3 M1 M1 ,
10 M2 0 1
第二章 行列式
§2.3 拉普拉斯展开定理
一. k阶子式、余子式、代数余子式 二. 拉普拉斯定理
电子科技大学 黄廷祝
§2.3 拉普拉斯展开定理
一. k阶子式、余子式、代数余子式
k阶子式: 矩阵A中任取k行、k列,位于这k行、k列交点上的k2 个元按原来的相对位置组成的k阶行列式S, 称为A的 一个k阶子式.
A2 1 1 34 2 35 M 2 M 2 .
§2.3 拉普拉斯展开定理
例如,5阶行列式detA中,取子式
S a22 a52
a24 a54
则其代数余子式为
a11 a13 a15
(1)(25)(24) a31 a33 a35
a41 a43 a45
§2.3 拉普拉斯展开定理