伍德里奇计量经济学讲义5

合集下载

伍德里奇《计量经济学导论》(第6版)复习笔记和课后习题详解OLS用于时间序列数据的其他问题

伍德里奇《计量经济学导论》(第6版)复习笔记和课后习题详解OLS用于时间序列数据的其他问题

伍德里奇《计量经济学导论》(第6版)复习笔记和课后习题详解OLS用于时间序列数据的其他问题第11章OLS用于时间序列数据的其他问题11.1复习笔记考点一:平稳和弱相关时间序列★★★★1.时间序列的相关概念(见表11-1)表11-1时间序列的相关概念2.弱相关时间序列(1)弱相关对于一个平稳时间序列过程{x t:t=1,2,…},随着h的无限增大,若x t和x t+h“近乎独立”,则称为弱相关。

对于协方差平稳序列,如果x t和x t+h之间的相关系数随h的增大而趋近于0,则协方差平稳随机序列就是弱相关的。

本质上,弱相关时间序列取代了能使大数定律(LLN)和中心极限定理(CLT)成立的随机抽样假定。

(2)弱相关时间序列的例子(见表11-2)表11-2弱相关时间序列的例子考点二:OLS的渐近性质★★★★1.OLS的渐近性假设(见表11-3)表11-3OLS的渐近性假设2.OLS的渐近性质(见表11-4)表11-4OLS的渐进性质考点三:回归分析中使用高度持续性时间序列★★★★1.高度持续性时间序列(1)随机游走(见表11-5)表11-5随机游走(2)带漂移的随机游走带漂移的随机游走的形式为:y t=α0+y t-1+e t,t=1,2,…。

其中,e t(t=1,2,…)和y0满足随机游走模型的同样性质;参数α0被称为漂移项。

通过反复迭代,发现y t的期望值具有一种线性时间趋势:y t=α0t+e t+e t-1+…+e1+y0。

当y0=0时,E(y t)=α0t。

若α0>0,y t的期望值随时间而递增;若α0<0,则随时间而下降。

在t时期,对y t+h的最佳预测值等于y t加漂移项α0h。

y t的方差与纯粹随机游走情况下的方差完全相同。

带漂移随机游走是单位根过程的另一个例子,因为它是含截距的AR(1)模型中ρ1=1的特例:y t=α0+ρ1y t-1+e t。

2.高度持续性时间序列的变换(1)差分平稳过程I(1)弱相关过程,也被称为0阶单整或I(0),这种序列的均值已经满足标准的极限定理,在回归分析中使用时无须进行任何处理。

计量经济学课件英文版 伍德里奇

计量经济学课件英文版 伍德里奇

Two methods to estimate
2016/9/22 Department of Statistics-Zhaoliqin 17
Some Terminology, cont.
β0 :intercept parameter β1 :slope parameter means that a one-unit increase in x changes the expected value of y by the amount β1,holding the other factors in u fixed.
Department of Statistics-Zhaoliqin 16
2016/9/22
Some Terminology, cont.
y = β0 + β1x + u, E [u|x] = 0. β0 + β1x is the systematic part of y. u is the unsystematic part of y. u is denoted the error term. Other terms for u : error shock disturbance residual (sometimes in reference to fitted error term)
6
2016/9/22
Department of Statistics-Zhaoliqin
7
Hence, we are interested in studying is the mean of wages given the years of Education that will be denoted as E [Wages|Education] Following economic theory, we assume a specific model for E[Wages|Education]

计量经济学课件英文版 伍德里奇

计量经济学课件英文版 伍德里奇
atistics by Zhaoliqin
20
1.3 The Structure of Economic Data
Cross Sectional Time Series Panel
Department of Statistics by Zhaoliqin
21
Types of Data – Cross Sectional
Department of Statistics by Zhaoliqin 10
Why study Econometrics?
An empirical analysis uses data to test a theory or to estimate a relationship
A formal economic model can be tested
Theory may be ambiguous as to the effect of some policy change – can use econometrics to evaluate the program
Department of Statistics by Zhaoliqin 11
1.2 steps in empirical economic analysis
Welcome to Econometrics
Department of Statistic:赵丽琴 liqinzhao_618@
Department of Statistics by Zhaoliqin
1
About this Course
Textbook: Jeffrey M. Wooldridge, Introductory Econometrics—A Modern Approach. Main Software: Eviews. Sample data can be acquired from internet. If time permitted, R commands will be introduced.

伍德里奇计量经济学知识点总结

伍德里奇计量经济学知识点总结

【伍德里奇计量经济学知识点总结】1. 基本概念伍德里奇计量经济学是指利用数学、统计学和计量经济学的方法对经济现象进行定量分析和预测的一门学科。

它是经济学的重要分支,通过建立数学模型和使用实证数据进行检验,可以揭示经济规律和进行政策分析。

2. 经典假定在伍德里奇计量经济学中,有一些经典的假定是非常重要的。

首先是线性假定,即假定经济关系是线性的;其次是随机抽样假定,即样本是随机抽取的,能够代表总体;还有就是无多重共线性、异方差和自相关等假定。

3. 模型建立在进行伍德里奇计量经济学的研究时,首先需要建立适当的计量经济模型。

常见的模型包括线性回归模型、多元回归模型、时间序列模型和横断面数据模型等。

在建立模型时,需要考虑模型的选择、变量的设定和函数形式的确定等问题。

4. 参数估计一旦模型建立完成,接下来就需要进行参数估计。

通常使用最小二乘法进行参数估计,通过最小化残差平方和来确定参数的估计值。

在进行参数估计时,需要考虑参数的一致性、有效性和假设检验等问题。

5. 模型诊断模型诊断是伍德里奇计量经济学中的重要环节,通过对模型的有效性、稳健性和适用性进行诊断,可以确保模型的准确性和可靠性。

模型诊断包括多重共线性、异方差、自相关和样本外验证等内容。

6. 预测和政策分析在进行伍德里奇计量经济学的研究时,需要对模型进行预测和政策分析。

通过对模型的预测能力和政策效应进行分析,可以为决策者提供重要的参考信息,并对经济现象进行深入理解和解释。

在我看来,伍德里奇计量经济学是一门非常有趣且重要的学科,它不仅可以帮助我们理解经济现象背后的规律,还可以为政策制定提供重要参考。

通过建立数学模型和使用实证数据进行检验,我们能够更加深入地探讨经济问题并作出合理的判断。

我也深刻意识到在进行伍德里奇计量经济学研究时,需要综合运用数学、统计学和经济学知识,这对我们的综合能力提出了更高的要求。

总结回顾起来,伍德里奇计量经济学是一门综合性强、逻辑性强的学科,在研究过程中需要我们对经济现象有着深刻的理解和分析能力。

伍德里奇《计量经济学导论》(第4版)笔记和课后习题详解-第5~9章【圣才出品】

伍德里奇《计量经济学导论》(第4版)笔记和课后习题详解-第5~9章【圣才出品】
2.推导 OLS 的不一致性 误差项和 x1,x2,…,xk 中的任何一个相关,通常也会导致所有的 OLS 估计量都失去 其一致性。 总结为:如果误差与任何一个自变量相关,那么 OLS 就是有偏而又不一致的估计。它 就意味着,随着样本容量的增加,偏误将继续存在。
βˆ1 的不一致性为:
plimβˆ1 β Cov x1,u /Var x1
圣才电子书 十万种考研考证电子书、题库视频学习平台

第 5 章 多元回归分析:OLS 的渐近性
5.1 复习笔记
一、一致性
1.定理 5.1:OLS 的一致性
在假定 MLR.1~MLR.4 下,对所有的 j=0,1,2,…,k,OLS 估计量 βˆ j 都是 βj 的一
致估计。
其次,零条件均值假定意味着已经正确地设定了总体回归函数(PRF)。也就是说,在 假定 MLR.4 下,可以得到解释变量对 y 的平均值或期望值的偏效应。如果只使用假定 MLR.4',那么,β0+β1x1+β2x2+…+βkxk 就不一定代表了总体回归函数,也就面临着 xj 的某些非线性函数可能与误差项相关的可能性。
三、OLSHale Waihona Puke 的渐近有效性4 / 162
圣才电子书

1.简单回归模型
标准正态分布在式中出现的方式与 tn-k-1 分布不同。这是因为这个分布只是一个近似。
实际上,由于随着自由度的变大,tn-k-1 趋近于标准正态分布,所以如下写法也是合理的:
βˆj βj
/ se
βˆ j
a
~ tnk 1
2.其他大样本检验:拉格朗日乘数统计量
(1)包含 k 个自变量的多元回归模型
①假定 MLR.4'是一个更自然的假定,因为它直接得到普通最小二乘估计值。

伍德里奇计量经济学第六版答案Chapter 5

伍德里奇计量经济学第六版答案Chapter 5

CHAPTER 5TEACHING NOTESChapter 5 is short, but it is conceptually more difficult than the earlier chapters, primarily because it requires some knowledge of asymptotic properties of estimators. In class, I give a brief, heuristic description of consistency and asymptotic normality before stating the consistency and asymptotic normality of OLS. (Conveniently, the same assumptions that work for finite sample analysis work for asymptotic analysis.) More advanced students can follow the proof of consistency of the slope coefficient in the bivariate regression case. Section E.4 contains a full matrix treatment of asymptotic analysis appropriate for a master’s level course.An explicit illustration of what happens to standard errors as the sample size grows emphasizes the importance of having a larger sample. I do not usually cover the LM statistic in a first-semester course, and I only briefly mention the asymptotic efficiency result. Without full use of matrix algebra combined with limit theorems for vectors and matrices, it is difficult to prove asymptotic efficiency of OLS.I think the conclusions of this chapter are important for students to know, even though they may not fully grasp the details. On exams I usually include true-false type questions, with explanation, to test the students’ understanding of asymptotics. [For example: “In large samples we do not have to worry about omitted variable bias.” (False). Or “Even if the error term is not normally distributed, in large samples we can still compute approximately valid confidence intervals under the Gauss-Markov assumptions.” (True).]SOLUTIONS TO PROBLEMS5.1 Write y = 0β + 1βx 1 + u , and take the expected value: E(y ) = 0β + 1βE(x 1) + E(u ), or µy = 0β + 1βµx since E(u ) = 0, where µy = E(y ) and µx = E(x 1). We can rewrite this as 0β = µy - 1βµx . Now, 0ˆβ = y - 1ˆβ1x . Taking the plim of this we have plim(0ˆβ) = plim(y - 1ˆβ1x ) = plim(y ) – plim(1ˆβ)⋅plim(1x ) = µy - 1βµx , where we use the fact that plim(y ) = µy and plim(1x ) = µx by the law of large numbers, and plim(1ˆβ) = 1β. We have also used the parts of Property PLIM.2 from Appendix C.5.2 A higher tolerance of risk means more willingness to invest in the stock market, so 2β > 0.By assumption, funds and risktol are positively correlated. Now we use equation (5.5), where δ1 > 0: plim(1β) = 1β + 2βδ1 > 1β, so 1β has a positive inconsistency (asymptotic bias). This makes sense: if we omit risktol from the regression and it is positively correlated with funds , some of the estimated effect of funds is actually due to the effect of risktol .5.3 The variable cigs has nothing close to a normal distribution in the population. Most people do not smoke, so cigs = 0 for over half of the population. A normally distributed randomvariable takes on no particular value with positive probability. Further, the distribution of cigs is skewed, whereas a normal random variable must be symmetric about its mean.5.4 Write y = 0β + 1βx + u , and take the expected value: E(y ) = 0β + 1βE(x ) + E(u ), or µy = 0β + 1βµx , since E(u ) = 0, where µy = E(y ) and µx = E(x ). We can rewrite this as 0β = µy - 1βµx . Now, 0β = y - 1βx . Taking the plim of this we have plim(0β) = plim(y - 1βx ) = plim(y ) – plim(1β)⋅plim(x ) = µy - 1βµx , where we use the fact that plim(y ) = µy and plim(x ) = µx by the law of large numbers, and plim(1β) = 1β. We have also used the parts of the Property PLIM.2 from Appendix C.SOLUTIONS TO COMPUTER EXERCISESC5.1 (i) The estimated equation iswage = -2.87 + .599 educ + .022 exper + .169 tenure (0.73) (.051) (.012) (.022)n = 526, R 2 = .306, ˆσ= 3.085.Below is a histogram of the 526 residual, ˆi u, i = 1, 2 , ..., 526. The histogram uses 27 bins, which is suggested by the formula in the Stata manual for 526 observations. For comparison, the normal distribution that provides the best fit to the histogram is also plotted.log()wage = .284 + .092 educ+ .0041 exper+ .022 tenure(.104) (.007) (.0017) (.003)n = 526, R2 = .316, ˆ = .441.The histogram for the residuals from this equation, with the best-fitting normal distributionoverlaid, is given below:(iii) The residuals from the log(wage) regression appear to be more normally distributed.Certainly the histogram in part (ii) fits under its comparable normal density better than in part (i),and the histogram for the wage residuals is notably skewed to the left. In the wage regressionthere are some very large residuals (roughly equal to 15) that lie almost five estimated standard deviations (ˆσ = 3.085) from the mean of the residuals, which is identically zero, of course. Residuals far from zero does not appear to be nearly as much of a problem in the log(wage)regression.C5.2 (i) The regression with all 4,137 observations iscolgpa= 1.392 - .01352 hsperc+ .00148 sat(0.072) (.00055) (.00007)n = 4,137, R2 = .273.(ii) Using only the first 2,070 observations givescolgpa= 1.436 - .01275 hsperc+ .00147 sat(0.098) (.00072) (.00009)n = 2,070, R2 = .283.(iii) The ratio of the standard error using 2,070 observations to that using 4,137 observationsis about 1.31. From (5.10) we compute ≈ 1.41, which is somewhat above the C5.3 We first run the regression colgpa on cigs, parity, and faminc using only the 1,191 observations with nonmissing observations on motheduc and fatheduc. After obtaining these residuals,iu, these are regressed on cigs i, parity i, faminc i, motheduc i, and fatheduc i, where, of course, we can only use the 1,197 observations with nonmissing values for both motheduc andfatheduc. The R-squared from this regression,2uR, is about .0024. With 1,191 observations, thechi-square statistic is (1,191)(.0024) ≈ 2.86. The p-value from the 22χ distribution is about .239, which is very close to .242, the p-value for the comparable F test.C5.4 (i) The measure of skewness for inc is about 1.86. When we use log(inc), the skewness measure is about .360. Therefore, there is much less skewness in log of income, which means inc is less likely to be normally distributed. (In fact, the skewness in income distributions is a well-documented fact across many countries and time periods.)(ii) The skewness for bwght is about -.60. When we use log(bwght), the skewness measure is about -2.95. In this case, there is much more skewness after taking the natural log.(iii) The example in part (ii) clearly shows that this statement cannot hold generally. It is possible to introduce skewness by taking the natural log. As an empirical matter, for many economic variables, particularly dollar values, taking the log often does help to reduce or eliminate skewness. But it does not have to.(iv) For the purposes of regression analysis, we should be studying the conditional distributions; that is, the distributions of y and log(y) conditional on the explanatory variables,1, ...,kx x. If we think the mean is linear, as in Assumptions MLR.1 and MLR.3, then this is equivalent to studying the distribution of the population error, u. In fact, the skewness measure studied in this question often is applied to the residuals from and OLS regression.C5.5 (i) The variable educ takes on all integer values from 6 to 20, inclusive. So it takes on 15 distinct values. It is not a continuous random variable, nor does it make sense to think of it as approximately continuous. (Contrast a variable such as hourly wage, which is rounded to two decimal places but takes on so many different values it makes sense to think of it as continuous.) (ii) With a discrete variable, usually a histogram has bars centered at each outcome, with the height being the fraction of observations taking on the value. Such a histogram, with a normal distribution overlay, is given below.Even discounting the discreteness, the best fitting normal distribution (matching the sample mean and variance) fits poorly. The focal point at educ = 12 clearly violates the notion of a smooth bell-shaped density.(iv) Given the findings in part (iii), the error term in the equation201234educ motheduc fatheduc abil abil u βββββ=+++++cannot have a normal distribution independent of the explanatory variables. Thus, MLR.6 is violated. In fact, the inequality 0educ ≥ means that u is not even free to vary over all values given motheduc , fatheduc , and abil . (It is likely that the homoskedasticity assumption fails, too, but this is less clear and does not follow from the nature of educ .)(v) The violation of MLR.6 means that we cannot perform exact statistical inference; we must rely on asymptotic analysis. This in itself does not change how we perform statistical inference: without normality, we use exactly the same methods, but we must be aware that our inference holds only approximately.d e n s i t y。

伍德里奇 计量经济学导论

伍德里奇 计量经济学导论

伍德里奇计量经济学导论摘要:I.计量经济学的性质与经济数据A.计量经济学的定义B.经济数据的特点和来源II.简单回归模型A.回归模型的基本概念B.线性回归模型的建立与估计C.线性回归模型的检验III.多元回归分析A.多元回归模型的基本概念B.多元回归模型的建立与估计C.多元回归模型的检验IV.回归模型的应用与拓展A.回归模型在经济学研究中的应用B.回归模型的拓展与修正正文:伍德里奇在《计量经济学导论》一书中,对计量经济学的基本概念、方法和应用进行了系统性的介绍。

首先,他明确了计量经济学的定义,即在一定的经济理论基础之上,采用数学与统计学的工具,通过建立计量经济模型对经济变量之间的关系进行定量分析的学科。

为了更好地进行计量分析,书中详细阐述了经济数据的特点和来源,以及如何有效地利用这些数据。

在简单回归模型部分,伍德里奇介绍了回归模型的基本概念,以及如何建立和估计线性回归模型。

他详细地说明了最小二乘法(Least Squares Method)在回归模型估计中的运用,并通过实例展示了线性回归模型的检验方法。

在多元回归分析部分,伍德里奇进一步阐述了多元回归模型的基本概念,以及如何建立和估计多元回归模型。

他详细地介绍了矩阵代数在多元回归模型估计中的应用,并通过实例展示了多元回归模型的检验方法。

此外,他还介绍了如何通过回归模型对经济变量之间的关系进行解释和预测。

在回归模型的应用与拓展部分,伍德里奇通过实例展示了回归模型在经济学研究中的具体应用,包括对产出、消费、投资等经济变量的分析。

他还介绍了如何对回归模型进行拓展和修正,以更好地反映现实经济中的复杂关系。

伍德里奇《计量经济学导论》(第6版)复习笔记和课后习题详解-模型设定和数据问题的深入探讨【圣才出品】

伍德里奇《计量经济学导论》(第6版)复习笔记和课后习题详解-模型设定和数据问题的深入探讨【圣才出品】

第9章模型设定和数据问题的深入探讨9.1复习笔记考点一:函数形式设误检验(见表9-1)★★★★表9-1函数形式设误检验考点二:对无法观测解释变量使用代理变量★★★1.代理变量代理变量就是某种与分析中试图控制而又无法观测的变量相关的变量。

(1)遗漏变量问题的植入解假设在有3个自变量的模型中,其中有两个自变量是可以观测的,解释变量x3*观测不到:y=β0+β1x1+β2x2+β3x3*+u。

但有x3*的一个代理变量,即x3,有x3*=δ0+δ3x3+v3。

其中,x3*和x3正相关,所以δ3>0;截距δ0容许x3*和x3以不同的尺度来度量。

假设x3就是x3*,做y对x1,x2,x3的回归,从而利用x3得到β1和β2的无偏(或至少是一致)估计量。

在做OLS之前,只是用x3取代了x3*,所以称之为遗漏变量问题的植入解。

代理变量也可以以二值信息的形式出现。

(2)植入解能得到一致估计量所需的假定(见表9-2)表9-2植入解能得到一致估计量所需的假定2.用滞后因变量作为代理变量对于想要控制无法观测的因素,可以选择滞后因变量作为代理变量,这种方法适用于政策分析。

但是现期的差异很难用其他方法解释。

使用滞后被解释变量不是控制遗漏变量的唯一方法,但是这种方法适用于估计政策变量。

考点三:随机斜率模型★★★1.随机斜率模型的定义如果一个变量的偏效应取决于那些随着总体单位的不同而不同的无法观测因素,且只有一个解释变量x,就可以把这个一般模型写成:y i=a i+b i x i。

上式中的模型有时被称为随机系数模型或随机斜率模型。

对于上式模型,记a i=a+c i和b i=β+d i,则有E(c i)=0和E(d i)=0,代入模型得y i=a+βx i+u i,其中,u i=c i+d i x i。

2.保证OLS无偏(一致性)的条件(1)简单回归当u i=c i+d i x i时,无偏的充分条件就是E(c i|x i)=E(c i)=0和E(d i|x i)=E(d i)=0。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
16
Predictions (cont)
This standard error for the expected value is not the same as a standard error for an outcome on y We need to also take into account the variance in the unobserved error. Let the prediction error be
ˆ ˆ For b 1 0 and b 2 0 the turning point ˆ will be at x b 1
*
2 bˆ , which
2
is
ˆ ˆ the same as when b 1 0 and b 2 0
10
Interaction Terms
For a model of the form y = b0 + b1x1 + b2x2 + b3x1x2 + u we can’t interpret b1 alone as measuring the change in y with respect to x1, we need to take into account b3 as well, since
2
Beta Coefficients
Occasional you’ll see reference to a “standardized coefficient” or “beta coefficient” which has a specific meaning Idea is to replace y and each x variable with a standardized version – i.e. subtract mean and divide by standard deviation Coefficient reflects standard deviation of y for a one standard deviation change in x
4
Interpretation of Log Models
If the model is ln(y) = b0 + b1ln(x) + u b1 is the elasticity of y with respect to x If the model is ln(y) = b0 + b1x + u b1 is approximately the percentage change in y given a 1 unit change in x If the model is y = b0 + b1ln(x) + u b1 is approximately the change in y for a 100 percent change in x
14
Standard Errors for Predictions
Suppose we want to use our estimates to obtain a specific prediction? First, suppose that we want an estimate of E(y|x1=c1,…xk=ck) = q0 = b0+b1c1+ …+ bkck This is easy to obtain by substituting the x’s in our estimated model with c’s , but what about a standard error? Really just a test of a linear combination
15
Predictions (cont)
Can rewrite as b0 = q0 – b1c1 – … – bkck Substitute in to obtain y = q0 + b1 (x1 - c1) + … + bk (xk - ck) + u So, if you regress yi on (xij - cij) the intercept will give the predicted value and its standard error Note that the standard error will be smallest when the c’s equal the means of the x’s
6
Some Rules of Thumb
What types of variables are often used in log form? Dollar amounts that must be positive Very large variables, such as population What types of variables are often used in level form? Variables measured in years Variables that are a proportion or percent
y x1 b 1 b 3 x 2 , so to summarize
the effect of x1 on y we typically evaluate the above at x 2
11
Adjusted R-Squared
Recall that the R2 will always increase as more variables are added to the model The adjusted R2 takes into account the number of variables in a model, and may decrease
R
2
SSR n k 1 1 SST n 1
ˆ
2
1
SST n 1
12
Adjusted R-Squared (cont)
It’s easy to see that the adjusted R2 is just (1 – R2)(n – 1) / (n – k – 1), but most packages will give you both R2 and adj-R2 You can compare the fit of 2 models (with the same y) by comparing the adj-R2 You cannot use the adj-R2 to compare models with different y’s (e.g. y vs. ln(y))
ˆ ˆ ˆ y b 1 2 b 2 x x , so ˆ y x ˆ ˆ b1 2b 2 x


8
More on Quadratic Models
Suppose that the coefficient on x is positive and the coefficient on x2 is negative Then y is increasing in x at first, but will eventually turn around and be decreasing in x
0 0 0 0 ˆ0 ˆ0 ˆ e y y b 0 b 1 x1 b k x k u y 0
13
Goodness of Fit
Important not to fixate too much on adj-R2 and lose sight of theory and common sense If economic theory clearly predicts a variable belongs, generally leave it in Don’t want to include a variable that prohibits a sensible interpretation of the variable of interest – remember ceteris paribus interpretation of multiple regression
5
Why use log models?
Log models are invariant to the scale of the variables since measuring percent changes They give a direct estimate of elasticity For models with y > 0, the conditional distribution is often heteroskedastic or skewed, while ln(y) is much less so The distribution of ln(y) is more narrow, limiting the effect of outliers
3
Functional Form
OLS can be used for relationships that are not strictly linear in x and y by using nonlinear functions of x and y – will still be linear in the parameters Can take the natural log of x, y or both Can use quadratic forms of x Can use interactions of x variables
Multiple Regression Analysis
相关文档
最新文档