添括号和去括号

合集下载

去括号和添括号的法则G

去括号和添括号的法则G
②100-(10+20+30)=100-10-20-30=40
③100-(30-10)=100-30+10=80
例2计算下面各题:
①100+10+20+30=100+(10+20+30)=100+
60=160
②100-10-20-30=100-(10+20+30)=100-60=40
③100-30+10=100-(30-10)=100-20=80

如果括号前面是“+”号,则不论去掉括号或添上括号,括号里
面的运算符号都不变;如果括号前面是“-”号,则不论去掉括号
或添上括号,括号里面的运算符号都要改变,“+”变“-”,“-”变“+”,
即:
a+(b+c+d)=a+b+c+d
a-(b+a+d)=a-b-c-d
a-(b-c)=a-b+c
例1
①100+(10+20+30)=100+10+20+30=160
①1320×500÷250=1320×(500÷250)=1320×2=2640
②4000÷125÷8=4000÷(125×8)=4000÷1000=4
③5600÷(28÷6)=5600÷28×6=200×6=1200
④372÷162×54=372÷(162÷54)=372÷3=124
⑤2997×729÷(81×81)=2997×729÷81÷81
注意:
带符号“搬家”
例3计算325+46-125+54=325-125+46+54
=(325-125)+(46+54)=200+100=300
注意:
每个数前面的运算符号是这个数的符号.如+46,
-125,+

添括号、去括号

添括号、去括号

去括号法则1.括号前是"+"号,把括号和它前面的"+"号去掉后,原括号里各项的符号都不改变。

2.括号前是"-"号,把括号和它前面的"-"号去掉后,原括号里各项的符号都要改变。

(改成与原来相反的符号,例:-(x-y)=-x+y注意问题1、要注意括号前面的符号,它是去括号后括号内各项是否变号的依据.2、去括号时应将括号前的符号连同括号一起去掉.3、要注意,括号前面是"-"时,去掉括号后,括号内的各项均要改变符号,不能只改变括号内第一项或前几项的符号,而忘记改变其余的符号.4、若括号前是数字因数时,应利用乘法分配律先将数与括号内的各项分别相乘再去括号,以免发生错误.5、遇到多层括号一般由里到外,逐层去括号,也可由外到里.数"-"的个数.6、乘除法去括号法则的依据实际是乘法分配律中的一种。

去括号法则记忆方法去括号要注意,关键要看连接号。

括号前是正号,去掉括号不变号。

括号前是负号,去掉括号都变号。

去括号、添括号知识讲解①关于去括号:去括号时,连同括号前的符号同时去掉,要特别注意括号前是“-”号时,去括号后括号里的各项的符号都改变.如8-(2-1+4)=8-2+1-4②关于添括号:一般要明确把哪些项放在括号内,以及括号前用什么样的符号,要特别注意把某些项括到前面带“-”号的括号内时,各项符号都改变;③关于去添括号,都改变了原来式子的形式,但不改变式子的值.二、去括号法则去括号的法则应注意两个方面:括号前为正号时,去掉括号后,不影响括号内“去”出来的各项的符号,即把括号连同前面的“+”号去掉以后,括号内的各项原原本本的“拿”出来,就算完成了去括号;而括号前如果是负号,就说明“要减去整个括号内的各项”,考虑应用符号法则,(减正等于加负、减负等于加正),再用省略加号的写法,也就完成了“括号前如果是负号,把括号和它前面的‘-’号去掉,要改变括号内各项的符号”的去括号过程.三、添括号法则添括号是根据实际需要而考虑进行的.需要添括号时,也分两类进行:添括号后,括号前是“+”号,就把需要括起来的那几项,括起来就行了;若添括号后,括号前是“-”号,要把括起来的各项都改变符号.如1+3-5+7=1+(3-5+7)=1+3-(5-7).去括号、添括号都存在一个“变号”与“不变号”的问题.正确的掌握“变号”与“不变号”是较难之处,添括号时这个难点更明显(易错).这些问题的关键是括号前的符号问题.若括号前面是“+”号,就出现“不变”之说,即去括号时,把括号里的各项“不变号”从括号里“解放”出来;添括号时,括号前添的是“+”号,被括起来的各项,也“不变号”进入括号就行了;若括号前面是“-”号,不论是去括号或是添括号,都会遇到“改变符号”的问题的.另外,不论是去或添括号,括号前面的符号和括号是一个整体,不能分割开来,顾此失彼.。

去括号和添加括号法则练习

去括号和添加括号法则练习

去括号添括号法则及练习一、去括号法则:1、括号前面有"+"号,把括号和它前面的"+"号去掉,括号里各项的符号不改变;字母表示:a +(b + c)= a + b + c例如:23+(77+56)=23+77+56a +(b - c)= a + b - c例如:38+(62-48)=38+62-482、括号前面是"-"号,把括号和它前面的"-"号去掉,括号里各项的符号都要改变为相反的符号;字母表示:a -(b + c)= a - b - c例如:159-(59+26)=159-59-26a -(b - c)= a - b + c例如:378-(78-39)=378-78+393、去括号时,应将括号前的符号连同括号一起去掉. 要注意,括号前面是"-"时,去掉括号后,括号内的各项均要改变符号,不能只改变括号内第一项或前几项的符号,而忘记改变其余的符号.x+(y-z)-(-y-z-x) =4、若括号前是数字因数时,应利用乘法分配律先将数与括号内的各项分别相乘再去括号,以免发生错误.a+3(2b+c-d)=5、遇到多层括号一般由里到外,逐层去括号,也可由外到里,数"-"的个数.24-(176+24)+[276-72-(134-72)+234]例题:4+(5+2) 4-(5+2)= =a+(b+c) a-(b+c)= =去括号练习:(1)a+(-b+c-d)=(2)a-(-b+c-d) =(3)-(p+q)+(m-n)=(4)(r+s)-(p-q) =(5)x+(y-z)-(-y-z-x) =(6)(2x-3y)-3(4x-2y)=下列去括号有没有错误?若有错,请改正:(1)a2-(2a-b+c) (2)-(x-y)+(xy-1)=a2-2a-b+c =-x-y+xy-1二、添括号法则:添上“+”号和括号,括到括号里的各项都不变号;添上“-”号和括号,括到括号里的各项都改变符号。

24.3 去括号和添括号课件 2024-2025-华东师大版(2024)数学七年级上册

24.3 去括号和添括号课件 2024-2025-华东师大版(2024)数学七年级上册
去掉,括号里的各项都不改变正负号. 2. 括号前面是“-”号,把括号和它前面的“-”号
去掉,括号里的各项都改变正负号.
典例精析
例1 去括号: (1) a + (b - c); (3) a + (-b + c);
(2) a - (b - c); (4) a - (-b - c).
解:(1) a + (b - c) = a + b - c. (2) a - (b - c) = a - b + c. (3) a + (-b + c) = a - b + c. (4) a - (-b - c) = a + b + c.
2. 所添括号前面是“-”号,括到括号里的各项都 改变正负号.
添括号与去括号的过程正好相反,添括号是否正确, 可以用去括号法则检验!
做一做
在括号内填入适当的项: (1) x2 - x + 1 = x2 - ( x - 1 ); (2) 2x2 - 3x - 1 = 2x2 + ( -3x - 1 ); (3) (a - b) - (c - d) = a - ( b + c - d ).
第二章 整式及其加减
2.4 整式的加减
3 去括号和添括号
华师版七年级(上)
教学目标
1. 掌握去括号、添括号的法则. 2. 能利用去(添)括号法则进行简单的计算. 重点:去(添括号)法则. 难点:利用去(添括号)进行简单的计算.
导入新课
问题 周三下午,校图书馆内起初有 a 位同学. 后来又 有一些同学前来阅读,第一批来了 b 位同学,第二批 又来了 c 位同学,则图书馆内共有 (a + b + c) 位同学.

去括号与添括号》课件(共27张)

去括号与添括号》课件(共27张)

添括号的例题解析
01
02
03
04
例题1
计算 (a+b)+(c+d) 的结果。

根据添括号的法则,原式可变 为 a+b+c+d。
例题2
计算 -(a+b)-(-c+d) 的结果 。

根据添括号的法则,原式可变 为 -a-b+c-d。
03
去括号与添括号的综合应 用
去括号与添括号的关联性
去括号与添括号的操作是相互关联的,它们在数学表达式中 具有相反的意义。去括号是将括号及其内部内容消除,而添 括号则是将非括号内容放入括号中。
我认为去括号和添括号是非常重 要的数学技能,它们在日常生活
和工作中都有着广泛的应用。
下节课预告
下节课我们将学习一元一次方程的解法,通过学习解一元一次方程的方法,我们可 以解决许多实际问题,例如计算购物时的找零、计算日利率等。
在下节课中,我们将重点掌握移项、合并同类项、去分母等解一元一次方程的技巧 ,并练习多种类型的一元一次方程题目。
解析
首先去除最内层的括号,得到 $7 times 5 - 4$,然后进 行乘法和减法运算,得到最终结果 $35 - 4 = 31$。
解析
首先去除最内层的括号,得到 $3 times 6 - 4$,然后进 行乘法和减法运算,得到最终结果 $18 - 4 = 14$。
02
添括号法则
添括号的定义
添括号是把运算式中的括号添在或去掉时,为了保持运算的等价性,对运算的各 项进行处理的一则规定。
去括号与添括号的例题解析
例题1
计算 (a + b) × c 的结果。
分析

去括号与添括号教学用

去括号与添括号教学用

当括号前的符号为“+”号时,添括号后,括号内的每一项符号保持不变。
正号在数学中表示保持原样。因此,当括号前有正号时,添括号后,括号内的每一项符号保持不变。例如,“a+b”添括号后变为“a+b”,其中“a”和“b”的符号都没有改变。
总结词
详细描述
括号前是“+”号时,添括号后,括号内的每一项符号不变
THANKS
去括号与添括号教学用
目录
去括号的规则 添括号的规则 去括号与添括号的注意事项
01
CHAPTER
去括号的规则
总结词:符号不变
详细描述:当括号前的符号为“+”号时,按照去括号的规则,应将括号去除,并且括号内的内容保持不变。例如,将表达式“(a+b)”中的括号去掉,得到“a+b”,符号没有发生变化。
括号前是“+”号时,去掉括号,括号内的内容不变
总结词:符号相反
详细描述:当括号前的符号为“-”号时,按照去括号的规则,应将括号去除,并且括号内各项的符号与原来相反。例如,将表达式“-(a+b)”中的括号去掉,得到“-a-b”,括号内的“+”号变为“-”号。
括号前是“-”号时,去掉括号,括号内各项的符号与原来相反
总结词
括号内的每一项都要变号
当括号前的符号为“-”号时,去括号后,括号内的每一项都需要变号。
总结词
在数学中,负号具有取反的作用。因此,当括号前有负号时,去括号后,括号内的每一项都需要变号。例如,“-(a+b)”去括号后变为“-a-b”,其中“a”和“b”都变号。
详细描述
括号前是“-”号时,去括号后,括号内的每一项都要变号
02
CHAPTER
添括号的规则

去括号与添括号-华师大版

去括号与添括号-华师大版
在代数式中,如果数字和代数式之间没有其他运算符号,为了保持运算的优先级,需要使用括号将数字和代数式 括起来。这样可以确保运算的正确性,避免出现意外的结果。
代数式中的同类项需要合并时,需要用括号括起来
总结词
同类项需要用括号括起来
详细描述
在代数式中,如果存在同类项需要进行合并时,需要使用括号将它们括起来。这样可以确保合并的正 确性,避免出现运算错误。同时,括号的使用也可以使得代数式更加简洁明了。
去括号与添括号-华师大版
目 录
• 去括号的规则 • 添括号的规则 • 去括号与添括号的例题解析 • 去括号与添括号的注意事项
01 去括号的规则
括号前是“+”号,直接去掉括号
总结词
当括号前是“+”号时,括号可以直接去掉,括号内的各项 符号不变。
详细描述
在数学中,如果括号前是“+”号,表示括号内的各项保持 原来的正负号,因此可以直接去掉括号,而不会改变表达式 的值。例如,将“(a+b)”变为“a+b”。
括号前是“+”号时,去括号后各项 符号不变。例如: $(+a)+(+b)=a+b$。
括号前是“+”号时,如果括号前有数 字,如$3(a+b)$,去括号后各项符号不 变,数字与括号内各项相乘。例如: $3(a+b)=3a+3b$。
添括号时需要注意括号的正负号
添括号后各项符号不变。例如:$a+(b+c)=a+b+c$。
括号前是“-”号,括号及其内部符号需改变符号
总结词
当括号前是“-”号时,括号内的各项需要改变符号,即正数变为负数,负数变 为正数。
详细描述

去括号和添括号的法则

去括号和添括号的法则

去括号和添括号的法则一、去括号法则在代数表达式中,有时候我们需要去除括号来简化表达式。

去括号法则适用于求和、求差和乘法运算。

下面是去括号的三个法则:1.同号相乘法则:当括号外面有一个正号或者一个负号时,我们可以通过将括号里面的每一项与括号外面的符号相乘来去括号。

例如,对于表达式(a+b+c),如果去除括号,则结果为a+b+c。

2.一正一负相乘法则:当括号外面有一个正号,而括号里面的每一项前面有一个负号时,我们可以通过去除括号并反转每一项的正负号来去括号。

例如,对于表达式(a-b-c),如果去除括号,则结果为a-b-c。

3.乘法分配律:当括号外面有一个数与括号里面的每一项相乘时,我们可以通过将括号里面的每一项与括号外面的数相乘来去括号。

例如,对于表达式3(a+b+c),如果去除括号,则结果为3a+3b+3c。

这些去括号法则是非常有用的,因为它们可以使复杂的表达式变得简洁,并且可以更容易地进行计算。

二、添括号法则添括号法则正好与去括号法则相反,它适用于求和、求差和乘法运算。

添加括号可以改变表达式的结构和优先级。

下面是添括号的两个法则:1.加减添括号法则:当一个数和一个和式相加或相减时,我们可以通过在和式的前后添加括号来添括号。

例如,对于表达式a+b-c,我们可以添括号为(a+b)-c,或者a+(b-c),这样可以改变运算的顺序和结果。

2.乘法添括号法则:当一个数与一个乘积相乘时,我们可以通过在乘积的前后添加括号来添括号。

例如,对于表达式a*b+c,我们可以添括号为(a*b)+c,或者a*(b+c),这样可以改变运算的顺序和结果。

添括号法则在对表达式进行化简、分解或重组时非常有用。

它可以帮助我们更好地理解和计算复杂的代数运算。

三、应用场景和示例示例1:简化表达式考虑以下代数表达式:3(a+b)+2(b-c)。

使用乘法分配律和去括号法则,我们可以简化这个表达式为3a+3b+2b-2c。

示例2:重组表达式考虑以下代数表达式:a*b+c*d。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四讲去括号与添括号
【知识要点】
一、去括号法:如果括号前面是加号或乘号,去括号后,原来括号里的符号都不变;如果括号前面是减号或除号,去括号后,原来括号里的加号变为减号。

减号变为加号,乘号变为除号,除号变为乘号。

二、添括号法:如果需要改变运算顺序,就要添加括号;如果括号前面是加号或乘号,括到里面的各个数都不用改变符号;如果括号前面的是减号或除号,括到括号里面的数原来是加号要变成减号,原来是减号要变为加号,乘号变为除号,除号变为乘号。

【典型例题】
例1 78+(29+122) 134+(82-34)
例2 185-(36-15) 127-(27+50)
例3 540÷(18×6) 180×(2÷60)
例4 875-29-371 492-193+93
例5 7200÷25÷4 210÷42×6 13×81÷9
课后作业
1.75+(25+8) 187-39-61 145+(67-45)2.175-57-43 116-(48-84) 723+(82-23)
3.3×25×4 23×63÷7 270×(15÷90)4.10÷5÷2 186÷(3÷2) 27×8÷9
5.195×81+19×195 25÷4+75÷4 187÷12-63÷12-52÷12
6、(99+88)÷11 (230-46) ÷23 (125-10) ×8
7、47×25-17×25 7676×54-5454×76
☆8、计算下面各题。

(30秒内完成)
(1000-100-10)÷5 777+777-777×777÷777
随堂小测
姓名成绩1.75+(129+25) 156+(82-156) 1320-63-37
2.278-(41-22) 329-(29+78) 527-114+14
3.24×25×4 26×180÷60 120×(3÷60)
4.1600÷25÷4 240÷72×9 450÷(25×9)
5. 86×123-86×23 28×9÷7
6.1300÷25÷4 8÷7+9÷7+11÷7。

相关文档
最新文档